MATLAB插值与拟合实验报告
matlab插值与曲线拟合实验报告
湖南大学电气与信息工程学院 《数值计算》课程 上机实验报告姓名: 班级: 学号: 日期:指导老师:本次实验题号:第 3 次实验1) 实验目的:1) 用MATLAB 实现拉格朗日插值和分段线性插值。
2) 了解matlab 实现曲线拟合方法的实际应用。
二. 实验内容:1) 插值算法的应用:题目:用拉格朗日插值程序,分段线形插值函数分别研究f (X )的数据表,计算f(0.472) X 0.46 0.47 0.48 0.49 Y0.48465550.49375420.50274980.51166832) 曲线拟合方法的实际应用用电压V=10V 的电池给电容器充电,电容器上t 时刻的电压v(t)=V-(V-V0)e^(-t/T),其中V0是电容器的初始电压,T 是充电常数。
实验测量了一组数据如下,请根据数据表确定V0和T 的大小。
t 0.5 1 2 3 4 5 7 9 V(t) 6.366.487.268.228.668.999.439.63三. 算法介绍或方法基础1.1 拉格朗日插值法对于已给定的点 00(,),...,(,)k k x y x y 和待估计的点的横坐标x ,如上述理论,将其值代入1100,011()()()()():......()()()()kj j i k j i i j j i j j j j j j kx x x x x x x x x x l x x x x x x x x x x x -+=≠-+-----==-----∏计算出插值基函数的值,然后根据公式:():()ki i j L x y l x ==∑计算出纵坐标的估计值,由此完成对该点的插值过程,其中k 为该点插值的阶数。
1.2 线性分段插值利用已给定的点 00(,),...,(,)k k x y x y 对插值区间分为1k -段,将每段的端点(,)i i x y 与 11(,)i i x y ++作为数据点利用公式100010()()()()()f x f x p x f x x x x x -=+--在所构成的区间进行线性插值。
数据插值、拟合方法的MATLAB实现
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
matlab的数据拟合与插值
matlab的数据拟合与插值Matlab 的数据的分析处理-拟合与插值在数学建模过程中,常常需要确定⼀个变量依存于另⼀个或更多的变量的关系,即确定这些变量之间的函数关系。
但在实际中确定这些变量之间函数函数关系时往往没有先验的依据,只能在收集的实际数据的基础上对若⼲合乎理论的形式进⾏试验,从中选择⼀个最有可能反映实际的函数形式,这就是统计学中的拟合和回归⽅程问题。
本节我们主要介绍如何分析处理实际中得到的数据。
下⾯先看⼀个例⼦。
例1 “⼈⼝问题”是我国最⼤社会问题之⼀,估计⼈⼝数量和发展趋势是我们制定⼀系列相关政策的基础。
有⼈⼝统计年鉴,可查到我国从1949年⾄1994⼀般地,我们采⽤下⾯的分析处理⽅法:⾸先,在直⾓坐标系上作出⼈⼝数与年份的散点图象。
观察随着年份的增加⼈⼝数与年份变化关系,初步估计出他们之间的关系可近似地可看做⼀条直线。
那么我们如何把这条直线⽅程确定出来呢?并⽤他来估计1999年我国的⼈⼝数。
⽅法⼀:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)⼆点确定⼀条直线,⽅程为 N = 14.088 t – 26915.842 ,代⼊t =1999,得N ≈12.46亿⽅法⼆:可以多取⼏组点对,确定⼏条直线⽅程,将t = 1999代⼊,分别求出⼈⼝数,在取其算数平值。
⽅法三:可采⽤“最⼩⼆乘法”求出直线⽅程。
这就是曲线拟合的问题。
⽅法⼀与⽅法⼆都具有⼀定的局限性,下⾯我们重点介绍数据的曲线拟合。
所谓曲线拟合是指给定平⾯上的n 个点(x i ,y i ),i=1,2,….,n,找出⼀条曲线使之与这些点相当吻合,这个过程称之为曲线拟合。
最常见的曲线拟合是使⽤多项式来作拟合曲线。
曲线拟合最常⽤的⽅法是最⼩⼆乘法。
其原理是求f(x),使21])([i ni i y x f -=∑=δ达到最⼩。
matlab 提供了基本的多项式曲线拟合函数命令polyfit格式::polyfit(x,y,n)说明:polyfit(x,y,n)是找n 次多项式p(x)的系数,这些系数满⾜在最⼩⼆乘法意义下p(x(i)) ~= y(i).已知⼀组数据,⽤什么样的曲线拟合最好呢?可以根据散点图进⾏直观观察,在此基础上,选择⼏种曲线分别拟合,然后⽐较,观察那条曲线的最⼩⼆乘指标最⼩。
数值分析matlab实验报告
数值分析matlab实验报告数值分析MATLAB实验报告引言:数值分析是一门研究利用计算机进行数值计算和解决数学问题的学科。
它在科学计算、工程技术、金融等领域中有着广泛的应用。
本实验旨在通过使用MATLAB软件,探索数值分析的基本概念和方法,并通过实际案例来验证其有效性。
一、插值与拟合插值和拟合是数值分析中常用的处理数据的方法。
插值是通过已知数据点之间的函数关系,来估计未知数据点的值。
拟合则是通过一个函数来逼近一组数据点的分布。
在MATLAB中,我们可以使用interp1函数进行插值计算。
例如,给定一组离散的数据点,我们可以使用线性插值、多项式插值或样条插值等方法,来估计在两个数据点之间的未知数据点的值。
拟合则可以使用polyfit函数来实现。
例如,给定一组数据点,我们可以通过最小二乘法拟合出一个多项式函数,来逼近这组数据的分布。
二、数值积分数值积分是数值分析中用于计算函数定积分的方法。
在实际问题中,往往无法通过解析的方式求得一个函数的积分。
这时,我们可以使用数值积分的方法来近似计算。
在MATLAB中,我们可以使用quad函数进行数值积分。
例如,给定一个函数和积分区间,我们可以使用quad函数来计算出该函数在给定区间上的定积分值。
quad函数使用自适应的方法,可以在给定的误差限下,自动调整步长,以保证积分结果的精度。
三、常微分方程数值解常微分方程数值解是数值分析中研究微分方程数值解法的一部分。
在科学和工程中,我们经常遇到各种各样的微分方程问题。
而解析求解微分方程往往是困难的,甚至是不可能的。
因此,我们需要使用数值方法来近似求解微分方程。
在MATLAB中,我们可以使用ode45函数进行常微分方程数值解。
例如,给定一个微分方程和初始条件,我们可以使用ode45函数来计算出在给定时间范围内的解。
ode45函数使用龙格-库塔方法,可以在给定的误差限下,自动调整步长,以保证数值解的精度。
结论:本实验通过使用MATLAB软件,探索了数值分析的基本概念和方法,并通过实际案例验证了其有效性。
matlab实验-6matlab插值与拟合实验 (1)
新乡学院数学与信息科学系实验报告实验名称插值与拟合所属课程数学软件与实验实验类型综合型实验专业信息与计算科学班级2011级1班学号11111021012姓名李欢丽指导教师朱耀生一、实验概述【实验目的】学会用一维插值函数yi=interp1(xo,yo,x,’menthod ’)求出函数在插值点处的函数值,和用二维函数plot()作图。
用二维插值函数zi=interp2(x0,y0,z0,x,y,’method ’)求其在网格节点数据的插值,和用三维函数surfc()作图.【实验原理】1,一维插值函数yi=interp1(xo,yo,x,’menthod ’),yi 被插值点处的函数值,xo,yo 插值节点,x 被插值点,nearest 最邻近插值,linear 线性插值,spline 三次样条插值,cubic 立方插值,缺省时,为分段线性插值.2,二维作图函数plot(x,y),x ,y 都是向量时,则以x 中元素为横坐标,y 中元素为纵坐标,且x ,y 长度相同。
x,y 都是矩阵,x 列与y 列结合,绘制多条平面曲线,且必同大小。
3,用作网格节点数据的插值zi=interp2(x0,y0,z0,x,y,’method ’),zi 为被插值点的函数值,x0,y0,z0点,x,y 被插值点,’method ’中’nearest ’为最邻近差值,’linear ’为双线性插值,’cubic ’为双三次插值,缺省时为双线性插值。
4,网格生成函数[X,Y]meshgrid(x,y),x,y 为给定的向量,X,Y 是网格划分后得到的网格矩阵绘制三维曲面图;三维曲面绘制函数surfc(x,y,z)【实验环境】MatlabR2010b二、实验内容问题1 对函数21()1f x x =+,x ∈[-5,5],分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20),并分别作出每种插值方法的误差曲线.1.分析问题通过一维插值函数yi=interp1(xo,yo,x,’menthod ’)求出函数在插值点处的函数值,然后用二维函数plot()作图。
程序设计实验报告(matlab)
程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
Matlab实验报告七(最小二乘拟合曲线拟合)
4.结论及分析
经过实验验证,结果正确,实验无误。
三、实验小结
通过本次实验我发现matlab的用处很广范,能解决生活中的很多问题,预测一些还未发生的事情,越来越感觉这门课用处很大,也渐渐地喜欢这门课了。
t Q K L
1900 1.05 1.04 1.05
1901 1.18 1.06 1.08
1902 1.29 1.16 1.18
1903 1.30 1.22 1.22
1904 1.30 1.27 1.17
1905 1.42 1.37 1.30
1906 1.50 1.44 1.39
1907 1.52 1.53 1.47
Qdata=[1.05 1.18 1.29 1.30 1.30 1.42 1.50 1.52 1.46 1.60 1.69 1.81 1.93 1.95 2.01 2.00 2.09 1.96 2.20 2.12 2.16 2.08 2.24 2.56 2.34 2.45 2.58];
x0=[0.2 0.3 0.3];
2.y=polyval(Βιβλιοθήκη ,x):可用以计算多项式在x处的值y。
3.x = lsqcurvefit (‘fun’,x0,xdata,ydata):用以求含参量x(向量)的向量值函数。
4.x= lsqnonlin (‘fun’,x0,options):用以求含参量x(向量)的向量值函数。
【实验环境】
MatlabR2010b
用Q,K,L分别表示产值、资金、劳动力,要寻求的数量关系 。经过简化假设与分析,在经济学中,推导出一个著名的Cobb-Douglas生产函数:
(*)
式中 要由经济统计数据确定。现有美国马萨诸塞州1900—1926年上述三个经济指数的统计数据,如下表,试用数据拟合的方法,求出式(*)中的参数 。
插值法和拟合实验报告
插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。
二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。
三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。
常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。
-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。
-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。
-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。
2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。
常用的拟合法有最小二乘法。
-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。
四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。
2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。
五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。
根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。
-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。
2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。
可以使用均方根误差(RMSE)等指标来进行评价。
-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。
matlab实验报告 插值和拟合
建模中数据处理和分析班级 学号 姓名 实验地点 完成日期 成绩(一)实验目的与要求应用matlab 处理数据并分析,主要学会并熟练掌握数据拟合和插值。
(二)实验内容1. 用下面一组数据拟合ktbea t c 02.0)(-+=中的参数a ,b ,k2.在某山区测得一些地点的高程如下表。
平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图X Y 120016002000240028003200360040001200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 36001480 1500 1550 1510 1430 1300 1200 980(三)实验具体步骤 实验1要先建立一个M 文件,文件中代码如下: function F=myfun(x,xdata) F=x(1)+x(2)*exp(-0.02*x(3)*xdata) 接下来在command window 中输入如下代码: Clc Clearxdata=[100:100:1000];ydata=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]/1000; x0=[0.2 0.05 0.05];[x,resnorm]=lsqcurvefit(@myfun,x0,xdata,ydata) 接着MATLAB 会进行若干次运算,并给出结果:所以拟合的结果是a=0.0063,b=-0.0034,c=0.2542 然后,我们作图看看拟合的结果,输入代码plot(xdata,0.0063-0.0034*exp(-0.02*0.2542*xdata),xdata,ydata,'o') 得到图像如下:实验二建立一个m 文件,在其中输入代码如下: x=1200:400:4000;y=1200:400:3600;100200300400500600700800900100044.555.566.57x 10-3temps=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x,y,temps)xi=1200:30:4000;yi=1200:30:3600;zi=interp2(x,y,temps,xi',yi,'cubic');mesh(xi,yi,zi)meshz(xi,yi,zi)colordef black运行后打开图形窗口的属性设置对话框,对背景,颜色等属性进行设置,得到下图:(四)实验结果实验中顺利得到拟合结果以及一个三维图像,虽然过程艰辛,但结果十分美好。
插值法和拟合实验报告(数值计算)
插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。
二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。
三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。
1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。
matlab---实验六 插值与拟合
实验六 插值与拟合班级:统计0502 学号:1303050206 姓名:欧钊锋实验目的:● 通过本次实验,掌握拉格郎日插值,分段线性插值和三次样条插值的基本原理和方法 ● 通过最小二乘法实现二次拟合● 通过实验掌握用上述方法解决现实问题的能力实验理论:插值:X 为给定的N 个插值节点,Y 为对应的N 个函数值,利用N 次拉格郎日插值多项式,可以求出插值区间内任意x 的插值拟合:利用分散的数据点,运用最小二乘法、多项式或其他的已知函数等方法来生成一个新的多项式或是函数来逼近这些已知点实验内容(一):(2)利用y=interp1(x0,y0,x)作分段线性插值(3)利用y=spline(x0,y0,x)做三次样条插值程序设计:flagrange 插值function y=ozflagrange(n) %在MA x=-5:0.01:5; X=-5:(10/n):5; Y=1./(1+X.^2); r=length(X); m=length(x); for i=1:m z=x(i);s=0.0;for k=1:rp=1.0;for j=1:rif j~=kp=p*(z-X(j))/(X(k)-X(j));endend插值多项式次的作就Lagrange n x f n )(10,8,6,4,2=n i n h ih x n n i ,,1,0,10,51]5,5[ ==+-=+-个节点等份取将]5,5[,11)()1(2-∈+=x x x f 已知函数s=p*Y(k)+s;endy(i)=s;endplot(x,y,'b-')线性插值x0=linspace(-5,5,10); y0=1./(1+x0.^2);x1=linspace(-5,5,1000); y1=interp1(x0,y0,x1); plot(x1,y1,'g');title('线性插值')三次样条插值x0=-5:1:5;y0=1./(1+X.^2);x=-5:1:5;y=spline(x0,y0,x)plot(x0,y0,'-b',x,y)title('spline fit')实验结果:实验内容(二):已知热敏电阻数据温度t(0C) 20.5 32.7 51.0 73.0 95.7电阻R( ) 765 826 873 942 1032求60C时的电阻R。
实验题目五:插值与拟合Matlab基础
实验五:插值与拟合Matlab 基础
实例1:对下面一组数据作二次多项式拟合:
即要求出二次多项式 中的 ,使得
最小,并作出数据点(*号表示)和拟合曲线。
实例2:气象工作人员在12小时内,每隔1小时对当地气温进行测量,温度依次为5, 8, 9, 13, 22, 27, 31, 30, 22, 25, 26, 23,试分别用线性插值和三次样条插值估计在3.2h 、
6.6h 、
7.8h 、11.5小时的温度值。
实例3:某人在5分钟内饮下1000ML 啤酒后,医务人员相隔一定时间对他体内血液中酒精含量(mg/100ml )进行测量,测量数据如下所示:
试用函数 进行拟合,并求出常数a 、b 和c 。
(提示:方便起见,该函数可取对数处理) ()b ct t at e φ=2123()f x a x a x a =++123(,,)A a a a =20[()]i i i f x y =-∑。
matlab 软件拟合与插值运算实验报告
实验6 数据拟合&插值一.实验目的学会MATLAB软件中软件拟合与插值运算的方法。
二.实验内容与要求在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合>> x=[0.5,1.0,1.5,2.0,2.5,3.0];>> y=[1.75,2.45,3.81,4.80,7.00,8.60];>> p=polyfit (x,y,2);>> x1=0.5:0.05:3.0;>> y1=polyval(p,x1 );>> plot(x,y,'*r',x1,y1,'-b')2.一维插值>> year=[1900,1910,1920,1930,1940,1990,2000,2010];>> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005)p2005 =262.1185>> y= interp1(year,product,x, 'cubic');>> plot(year,product,'o',x,y)3.二维插值>> years=1950:10:1990;>> service=10:10:30;>>wage=[150.697,199.592,187.625;179.323,195.072,250.287;203.212,179.092,322.767;226.505,15 3.706,426.730;249.636,120.281,598.243];>> w=interp2(service,years,wage,15,1975)w =190.6288[例1.98]x=1:6;y=1:4;t=[12,10,11,11,13,15;16,22,28,35,27,20;18,21,26,32,28,25;20,25,30,33,32,30];subplot(1,2,1)mesh(x,y,t)x1=1:0.1:6;y1=1:0.1:4;[x2,y2]=meshgrid(x1,y1);t1=interp2(x,y,t,x2,y2,'cubic');subplot(1,2,2)mesh(x1,y1,t1)三,练习与思考1)已知x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3],y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5],求对x和y进行6阶多项式拟合的系数.x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3];y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5];>> p=polyfit(x,y,6)p =-2.0107 29.0005 -170.6763 523.2180 -878.3092 763.9307 -263.4667x1=0.5:0.05:3.0;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')2)分别用2,3,4,5阶多项式来逼近[0,3]上的正弦函数sin x,并做出拟合曲线及sin x函数曲线图,了解多项式的逼近程度和有效拟合区间随多项式的阶数有何变化.(2)2阶:>> x=0:0.01:3;>> y=sin(x);>> p=polyfit(x,y,2);>> x1=0:0.01:3;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')>>3阶:>> p=polyfit(x,y,3); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>4阶:>> p=polyfit(x,y,4); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>5阶:>> p=polyfit(x,y,5); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>3)已知x=[0.1,0.8,1.3,1.9,2.5,3.1],y=[1.2,1.6,2.7,2.0,1.3,0.5],用不同的方法求x=2点的插值,并分析所得结果有何不同.>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> p=interp1(x,y,2)p =1.8833>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> z=interp1(x,y,2,'cubic')z =1.8844四,提高内容1.三维数据插值[x,y,z,v]=flow(20);[xx,yy,zz]=meshgrid(0.1:0.25:10,-3:0.25:3,-3:0.25:3); vv=interp3(x,y,z,v,xx,yy,zz);slice(xx,yy,zz,vv,[6,9.5],[1,2],[-2,0.2]);shading interpcolormap cool3.三次样条数据插值x=[0 2 4 5 6 12 12.8 17.2 19.9 20];y=exp(x).*sin(x);xx=0:.25:20;yy=spline(x,y,xx);plot(x,y,'o',xx,yy)。
MATLAB拟合和插值
MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。
插值是指您有两个数据点并想知道两者之间的值是什么。
中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。
拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。
语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。
插值与拟合的MATLAB实现
3.3 插值与拟合的MATLAB实现简单的插值与拟合可以通过手工计算得出,但复杂的只能求助于计算机了。
3.3.1 线性插值在MATLAB 中,一维的线性插值可以用函数interpl 来实现。
函数interpl 的调用格式如下:yi = interpl ( x , y , xi ) ,其中yi 表示在插值向量xi 处的函数值,x 与y 是数据点。
这个函数还有如下两种形式:yi = interpl(y , xi),省略x,x 此时为l : N,其中N 为向量y 的长度。
yi = interpl(x , y , xi , method ) ,其中method 为指定的插值方法,可取以下凡种:nearest :最近插值。
linear :线性插值。
spline :三次样条插值。
cubic :三次插值。
注意:对于上述的所有的调用格式,都要求向量x 为单调。
例如:对以下数据点:( 2 * pi , 2 ) , ( 4 * pi , 3 ) , ( 6 * pi , 5 ) , ( 8 * pi , 7 ) , ( 10 * pi , 11 ) , ( 12 * pi , 13 ) , ( 14 * pi , 17) 进行插值,求x = pi , 6 的函数值。
>> x=linspace(0, 2 * pi, 8 );>> y=[2, 3, 5, 7, 11, 13, 17, 19 ];>> xl=[pi , 6 ];>> yl=interpl(x, y, xl)yl =90000 1836903.3.2 Lagrange 插值Lagrange 插值比较常用,是MATLAB 中相应的函数,但根据Lagrange 插值函数公式,可以用M 文件实现:Lagrange.mfunctions = Larange(x, y, x0 )% Lagrange 插值,x 与y 为已知的插值点及其函数值,x0 为需要求的插值点的值nx = length( x );ny = length( y );if nx ~=nywaming( ‘向量x 与y 的长度应该相同’)return;endm = length ( x0 ) ;%按照公式,对需要求的插值点向量x0 的元素进行计算for i = l: mt =0.0;for j = l : nxu = 1.0;for k = l : nxif k~=ju=j * ( x0( i )-x ( k ) ) / ( x( j )-( k ) ) ;endendt = t + u * y( j );ends( i ) = t ;endreturn例如:对(l , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) 进行Lagrange 插值,求x = 23 , 3.7 的函数值。
实验一:常用数据插值、拟合方法的MATLAB实现
2400
1500 1200 1100 1350 1450 1200 1150 1010
2000
1390 1500 1500 1400 900 1100 1060 950
1600
1320 1450 1420 1400 1300 700 900 850
1200
1130 1250 1280 1230 1040 900 500 700
1790 3.9
1860 31.4
表 1 美国人口统计数据
1800
1810
1820
5.3
7.2
9.6
1830 12.9
1870 38.6
1880 50.2
1890 62.9
1900 76.0
1840 17.1
1910 92.0
1850 23.2
1920 106.5
7
吉林农业大学信息技术学院 数学系 2012 年 4 月 8 日
griddata(散乱节点): 参见 matlab 帮助; cz=griddata(x,y,z,cx,cy,’method’)
3) 线性最小二乘拟合: plotfit、polyval: 参见 matlab 帮助; A=plotfit(x,y,m) Y=plotval(A,x)
4) 非线性最小二乘拟合: lsqcurvefit: 参见 matlab 帮助; 需要建立函数 M-文件确定拟合函数:function f=curvefun(x,cdata) 其中:待拟合的参数向量 x=[x(1),x(2) …x(n)] x=lsqcurvefit(‘curvefun’,x0,cdata,ydata).
2
吉林农业大学信息技术学院 数学系 2012 年 4 月 8 日
MATLAB上机实验实验报告
MATLAB上机实验实验报告实验名称:用MATLAB实现多项式拟合及插值一、实验目的:通过使用MATLAB实现多项式拟合及插值的方法,掌握MATLAB软件的基本操作和函数应用,进一步了解多项式拟合及插值的原理和实现过程。
二、实验原理:多项式拟合及插值是一种常见的数值分析方法,通过对已知数据点集合的拟合或插值,构造出一个多项式函数,用于近似表示原始数据。
1.多项式拟合:通过最小二乘法原理,选择一个合适的多项式函数,使得拟合出的多项式与已知数据点之间的误差最小。
拟合函数可以是一次、二次或高阶多项式。
2.多项式插值:通过已知数据点的横纵坐标值,构造一个满足这些点的多项式函数。
插值函数可以是一次、二次或高阶多项式。
插值函数经过每个已知数据点。
三、实验步骤:1.数据准备:选择一组已知数据,包含横纵坐标值。
数据点的个数可以根据具体情况自行确定。
2.多项式拟合:使用MATLAB中的polyfit函数,根据已知数据点进行多项式拟合。
根据拟合结果,获取拟合的多项式系数。
3.多项式插值:使用MATLAB中的polyfit函数,根据已知数据点进行多项式插值。
通过plot函数绘制原始数据点的散点图和插值多项式的曲线图。
可以尝试不同阶数的多项式插值。
4.结果分析:根据实验结果,分析拟合与插值的效果。
对比拟合结果与原始数据的误差大小,评估拟合的准确性。
对比插值结果与原始数据的差异,评估插值的精确度。
五、实验总结:通过这次实验,我熟练掌握了使用MATLAB实现多项式拟合及插值的方法。
在实验中,我了解了多项式拟合的原理,以及如何利用最小二乘法求取多项式拟合的系数。
同时,我也学会了如何使用MATLAB中的polyfit函数实现多项式拟合和插值。
通过实验结果的分析,我对拟合和插值的实际应用和效果有了更加深入的认识。
[1]MATLAB官方文档[2]高等数值分析教程以上为MATLAB上机实验实验报告,共计1200字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告MATLAB
第二次实验报告题目:学生姓名:学院:专业班级:学号:
年月
MATLAB第二次实验报告
————插值与拟合
插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。
所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
一、插值
<1>拉格朗日插值(课上例子)
m=101;
x=-5:10/(m-1):5;
y=1./(1+x.^2);z=0*x;
plot(x,z,'r',x,y,'LineWidth',1.5),
gtext('y=1/(1+x^2)'),pause
n=3;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y1=fLagrange(x0,y0,x);
hold on,plot(x,y1,'b'),gtext('n=2'),pause,
hold off
n=5;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y2=fLagrange(x0,y0,x);
hold on,plot(x,y2,'b:'),gtext('n=4'),pause,
hold off
n=7;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y3=fLagrange(x0,y0,x);hold on,
plot(x,y3,'r'),gtext('n=6'),pause,
hold off
n=9;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y4=fLagrange(x0,y0,x);hold on,
plot(x,y4,'r:'),gtext('n=8'),pause,
hold off
n=11;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y5=fLagrange(x0,y0,x);hold on,
plot(x,y5,'m'),gtext('n=10')
运行后得.
<2>拉格朗日插值(课下修改) yh=lagrange (x,y,xh)function n = length(x);m = length(xh);yh = zeros(1,m);
c1 = ones(n-1,1);c2 = ones(1,m); i=1:n for xp = x([1:i-1 i+1:n]); yh = yh
+ y(i)*prod((c1*xh-xp'*c2)./(x(i)-xp'*c2));end输入x=[1 2 3 4 5 6]
y=[13 21 34 6 108 217]
xh=3.2
lagrange(x,y,xh)
运行后得
x =
1 2 3 4 5 6
y =
13 21 34 6 108 217
xh =
3.2000
ans =
26.0951
二、拟合
<1>课上实例
一种新药用于临床之前,必须设计给药方案药物进入机体后通过血液输送到全身,在这个过程中不断地被吸收、分布、代谢,最终排出体外,药物在血液中的浓度,即单位体积血液中的药物含量,称为血药浓度.
一室模型:将整个机体看作一个房室,称中心室,室内血药浓度是均匀的.快速静脉注射后,浓度立即上升;然后迅速当浓度太高,达不到预期的治疗效果;当浓度太低时,下降.又可能导致药物中毒或副作用太强.临床上,每种药物有一个最小有效浓度c1和一个最大有效浓度c2.设计给药方案时,要使血药浓度保持在c1~c2之间.本题设c1=10ug/ml,c2=25ug/ml.
要设计给药方案,必须知道给药后血药浓度随时间变化的规律.从实验和理论两方面着手:
在实验方面,对某人用快速静脉注射方式一次注入该药物300mg后,在一定时刻t(h)采集血药,测得血药浓度c(ug/ml)如下表:
模型假设一室模型机体看作一个房室,室内血药浓度均匀——1. k(>0)药物排除速率与血药浓度成正比,比例系数 2. 血药浓度立即为d, d/v.3.血液容积v, t=0注射剂量模型建立c d kc?-得:由假设2?d t d kt?e)??c(t?v??/?d(0) 由假设3得:c)在某些点处的值见前表,需经(t及在此,d=300mg,tc v.拟合求出参数k、)t(c用线性最小二乘拟
合.
:程序d=300; t=[0.25 0.5 1 1.5 2 3 4 6 8]; c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01]; y=log(c); a=polyfit(t,y,1) a(1)k=- v=d/exp(a(2)) 运行得c1 =
967.7356-22.1079 -0.0785 1.3586
a1 = -22.1079 2.7173 -0.2356
)l.1502(?),/(.?k023471hv计算得三、实验感受我们主要学习了插值和拟合这两个在实际应用本次实验,中十分广泛的建模方法,同时,它们也是我们学习数
学建模.
的基础。
其中,拉格朗日插值和最小二乘法拟合是最常见到的,所以实验报告就这两种方法进行了相关解释。
插值和拟合,基础但不简单,需要大量的训练才能很好的进行掌握,所以,继续加油吧!.。