第四讲 matlab插值、拟合和回归分析

合集下载

matlab插值与拟合

matlab插值与拟合

matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。

插值是通过创建新的数据点来填充在已知数据点之间的空白。

MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。

具体使用哪种插值方法取决于数据的特性和所需的精度。

插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。

拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。

在MATLAB中,可以使用`polyfit`函数进行多项式拟合。

该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。

该函数返回一个向量`p`,表示多项式的系数。

可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。

需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。

因此,选择合适的插值和拟合方法是非常重要的。

Matlab__数据处理函数(插值,拟合,回归分析)

Matlab__数据处理函数(插值,拟合,回归分析)

Matlab曲线拟合工具箱zy搜集整理1 插值 (1)1.1 一维插值interp1 (1)1.2 二维数据内插值interp2 (3)1.3 三维插值interp3 (4)1.4 快速Fourier 算法作一维插值interpft (5)1.5 命令5 griddata (5)1.6 三次样条数据插值spline (6)1.7 n 维数据插值interpn (7)1.8 生成三位图形矩阵数据meshgrid (8)1.9 多维函数数据产生函数ndgrid (8)2 拟合 (9)2.1 多项式曲线拟合ployfit (9)2.2 多项式曲线求值函数polyval (10)2.3 多项式曲线拟合的评价和置信区间函数polyconf (10)2.4 稳健回归函数robust (11)2.5 向自定义函数拟合nlinfit (12)2.6 拟合工具cftool (13)3 回归分析 (14)3.1 多元线性回归分析函数regress (15)1插值Matlab中插值函数汇总和使用说明1.1 一维插值interp1MATLAB中的插值函数为interp1,其调用格式为:yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为:27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

matlab4插值与拟合

matlab4插值与拟合

1. 多项式拟合x0=0:0.1:1;y0=[-.447 1.978 3.11 5.25 5.02 4.66 4.01 4.58 3.45 5.35 9.22];p=polyfit(x0,y0,3)p = 56.6915 -87.1174 40.0070 -0.9043poly2str(p,'x')xx=0:0.01:1;yy=polyval(p,xx);plot(xx,yy,'-b',x0,y0,'or')2.插值插值的定义——是对某些集合给定的数据点之间函数的估值方法。

当不能很快地求出所需中间点的函数时,插值是一个非常有价值的工具。

Matlab提供了一维、二维、三次样条等许多插值选择table1 ——table2 ——intep1 ——interp2 ——spline ——利用已知点确定未知点粗糙——精确集合大的——简化的二维数据插值在MATLAB中,提供了解决二维插值问题的函数interp2,其调用格式为:Z1=interp2(X,Y,Z,X1,Y1,'method')其中X,Y是两个向量,分别描述两个参数的采样点,Z是与参数采样点对应的函数值,X1,Y1是两个向量或标量,描述欲插值的点。

Z1是根据相应的插值方法得到的插值结果。

method的取值与一维插值函数相同。

X,Y,Z也可以是矩阵形式。

同样,X1,Y1的取值范围不能超出X,Y的给定范围,否则,会给出“NaN”错误,若X维数为1*n, Y维数为1*m,则Z的维数必须是m*n.例如1某实验对一根长10米的钢轨进行热源的温度传播测试。

用x表示测量点0:2.5:10(米),用h表示测量时间0:30:60(秒),用T表示测试所得各点的温度(℃)。

试用线性插值求出在一分钟内每隔20秒、钢轨每隔1米处的温度TI。

命令如下:x=0:2.5:10;h=[0:30:60]';T=[95,14,0,0,0;88,48,32,12,6;67,64,54,48,41];xi=[0:10];hi=[0:20:60]';TI=interp2(x,h,T,xi,hi)mesh(xi,hi,TI)surfc(x,h,T)例2 某观测站测得某日6:00时至18:00时之间每隔2小时的室内外温度(℃),用3次样条插值分别求得该日室内外6:30至17:30时之间每隔2小时各点的近似温度(℃)。

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术在科学研究和工程领域中,数据的插值和拟合技术在数值计算和数据处理中具有重要意义。

Matlab作为一款强大的科学计算软件,提供了丰富的插值和拟合函数和工具箱,能够满足不同场景下的需求。

插值是一种通过已知数据点构建新数据点的技术。

在实际问题中,我们经常会遇到仅有少量已知数据点,但需要了解未知数据点的情况。

插值技术就可以帮助我们填补数据之间的空缺,以便更好地分析和理解数据。

Matlab中提供了多种插值函数,包括线性插值、多项式插值、样条插值等。

这些函数能够根据已知数据点的特征,推测出未知数据点的可能取值。

通过合理选择插值方法和参数,我们可以得到较为准确的结果。

以线性插值为例,其原理是根据已知数据点的直线特征,推测出未知数据点的取值。

在Matlab中,我们可以使用interp1函数实现线性插值。

该函数的基本用法是给定一组x和对应的y值,以及待插值的点xq,函数将计算出对应的插值点yq。

通过指定xq的形式,我们可以实现不仅仅是单个点的插值,还可以实现多点插值和插值曲线绘制。

这种灵活性使得插值操作更加方便快捷。

拟合技术则是通过一定数学函数的近似表示,来描述已知数据的特征。

它可以帮助我们找到数据背后的规律和趋势,从而更好地预测未知数据。

在Matlab中,拟合问题可以通过polyfit和polyval函数来解决。

polyfit函数可以根据一组已知数据点,拟合出最优的多项式曲线。

该函数的输入参数包括x和y,代表已知数据的横纵坐标值;以及n,代表拟合的多项式次数。

polyfit函数将返回拟合得到的多项式系数。

通过polyval函数,我们可以使用这些系数来求解拟合曲线的纵坐标值。

这样,我们就能够利用拟合曲线来预测未知数据点。

插值和拟合技术在实际问题中都有广泛的应用,尤其在数据处理和信号处理方面。

例如,当我们在实验中测量一组数据时,可能会存在测量误差或者数据缺失的情况。

此时,通过插值技术我们可以填补数据之间的空白,并得到一个更加完整的数据集。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

第四章数据处理1. 插值与拟合2. MATLAB指令的用法

第四章数据处理1. 插值与拟合2. MATLAB指令的用法
第四章 数据处理
1. 插值与拟合
插值问题 :已知函数f (x)的离散值,用已知函数g(x)逼近f (x)。 g(x)称为插值函数,可以是代数多项式,三角多项式或有理函数等。 按插值范围分为内插:在已知数据点范围之内插入数据
外插:在已知数据点的范围之外插入数据。 按插值方法分为
• 多项式插值 二点可连直线,三点可定抛物线,通常n + 1个数据点可定不高于n次的代 数多项式,使其代表的曲线通过这n + 1个数据点。 插值多项式有:拉格朗日多项式,牛顿多项式,埃尔米特多项式。
l1(x)
=
(x (x1
− −
x0)(x − x2) x0)(x1 − x2)
l2(x)
=
(x (x2
− −
x0)(x − x1) x0)(x2 − x1)
L2(x)
=
(x (x0
− −
x1)(x − x2) x1)(x0 − x2)
y0
+
(x (x1
− −
x0)(x − x2) x0)(x1 − x2)
解:设所求的最小二乘二次拟合多项式是P2(x) = a0 + a1x + a2x2,此问题的
正则方程组是
9a0 + 0 + 3.75a2 = 18.1732
0 + 3.75a1 3.75a0 + 0
a2 =
7.6173
其解为a0 = 2.0034, a1 = 2.2625, a3 = 0.0378,所求多项式为
l1(x0) = 0, l1(x1) = 1, l1(x2) = 0,
也就是
l2(x0) = 0, l2(x1) = 0, l2(x2) = 1.

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。

对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。

在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。

一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。

在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。

1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。

在MATLAB中,可以通过interp1函数进行线性插值。

2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。

在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。

具体的插值效果与所选用的多项式阶数有关。

3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。

在MATLAB中,可以通过spline函数进行三次样条插值。

二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。

数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。

在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。

1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。

该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。

根据所选用的多项式阶数,拟合效果也会有所不同。

2. 指数拟合指数拟合常用于具有指数关系的数据。

在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

matlab 插值法拟合

matlab 插值法拟合

matlab 插值法拟合Matlab是一款强大的数学软件,拥有丰富的函数库,可以进行各种数学计算和数据处理。

其中,插值法是一种常用的数值计算方法,可以通过已知数据点的信息,来估计在数据点之间的数值。

本文将介绍Matlab中的插值法及其应用。

插值法在科学计算和工程领域中有着广泛的应用。

它可以用来估计任意点的函数值,基于已知数据点之间的关系。

在Matlab中,插值法可以通过interp1函数实现。

该函数可以采用不同的插值方法,例如线性插值、拉格朗日插值和样条插值等。

线性插值是最简单的插值方法之一。

它假设函数在两个数据点之间的变化是线性的,并根据这个假设进行插值计算。

在Matlab中,可以使用interp1函数的默认设置来进行线性插值。

例如,给定一组已知数据点的横坐标和纵坐标,我们可以使用interp1函数来估计在两个数据点之间的任意点的函数值。

拉格朗日插值是一种更高阶的插值方法,它通过已知数据点来构造一个多项式函数,并使用这个函数来进行插值计算。

在Matlab中,可以使用interp1函数的'Lagrange'选项来进行拉格朗日插值。

该方法可以得到更精确的插值结果,特别是在数据点较密集的情况下。

样条插值是一种更加平滑的插值方法,它通过拟合一组分段函数来进行插值计算。

在Matlab中,可以使用interp1函数的'spline'选项来进行样条插值。

样条插值可以得到光滑的插值曲线,适用于需要光滑过渡的情况。

除了interp1函数之外,Matlab还提供了其他一些插值函数,例如interp2、interp3和interpn等。

这些函数可以用于二维或多维数据的插值计算。

它们可以根据给定的数据点,在不同的维度上进行插值,得到更加准确的插值结果。

在实际应用中,插值法常常用于数据处理和函数逼近。

例如,在图像处理中,可以使用插值法来放大或缩小图像。

在信号处理中,可以使用插值法来重建缺失的信号。

插值与拟合matlab实现

插值与拟合matlab实现

插值与拟合matlab实现插值与拟合的Matlab实现王正盛编写在科技工程中,除了要进行一定的理论分析外,通过实验、观测数据,做分析、处理也是必不可少的一种途径。

由于实验测定实际系统的数据具有一定的代表性,因此在处理时必须充分利用这些信息;又由于测定过程中不可避免会产生误差,故在分析经验公式时又必须考虑这些误差的影响。

两者相互制约。

据此合理建立实际系统数学模型的方法成为数值逼近法。

一、插值法1、数学原理工程实践和科学实验中,常常需要从一组实验观测数据中,求自变量与因变量的一个近似的函数关系式。

例如:观测行星的运动,只能得到某时刻所对应的行星位置(用经纬度表示),想知道任何时刻的行星位置。

例如:大气压测定问题;导弹发射问题;程序控制铣床加工精密工件问题;飞机船舶制造问题等等。

都属于此类问题。

因为考虑到代数多项式既简单又便于计算,所以人们就用代数多项式近似地表示满足个点的函数关系式——插值法建模。

(1)计算方法课程中学习了两种多项式插值:Lagrange插值和Newton均差插值:已知n+1个数据点:n次Lagrange插值公式:特别地,当n=1时,————线性插值当n=2时,———————抛物线插值或二次插值Newton均差插值公式:,其中是k阶均差,可由均差表方便计算得到。

Lagrange插值和Newton均差插值本质上是一样的,只是形式不同而已,因为插值多项式是唯一的。

(2)Runge现象和分段低次插值:如在[-5,5]上各阶导数存在,但在此区间取n个节点构造的Lagrange插值多项式在区间并非都收敛,而且分散得很厉害。

(matlab\bin\ Lagrange.m是自己编写的M文件)[例]取n=-10hold offx=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.1:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0)hold onplot(x0,y1,'b:')legend('插值曲线','原数据曲线')因此插值多项式一般不要超过四次为宜。

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。

这种问题的解决方法通常可以分为两种:插值和拟合。

插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。

插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。

拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。

MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。

接下来我们将详细介绍MATLAB中常用的插值和拟合方法。

篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。

1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。

在MATLAB中,可以使用interp1函数来进行线性插值的计算。

该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。

2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。

MATLAB中的polyfit函数可以用来进行多项式的拟合计算。

这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。

3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。

样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。

篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。

1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。

在MATLAB中,可以使用polyfit函数来进行线性拟合计算。

如何使用MATLAB进行数据拟合与回归分析

如何使用MATLAB进行数据拟合与回归分析

如何使用MATLAB进行数据拟合与回归分析使用 MATLAB 进行数据拟合与回归分析近年来,数据分析在科学研究、工程设计和商业决策中发挥着越来越重要的作用。

而 MATLAB 作为一种功能强大的数据分析工具,被广泛应用于各个领域。

本文将介绍如何使用 MATLAB 进行数据拟合和回归分析,并探讨其中的一些技巧和注意事项。

一、数据导入与预处理在进行数据拟合和回归分析之前,首先需要将数据导入 MATLAB 环境中,并进行预处理。

可以使用 MATLAB 中的 readtable() 函数将数据从文件中读取到一个表格中,然后通过对表格的操作来对数据进行预处理,例如删除缺失值、处理异常值等。

二、数据拟合数据拟合是指根据已知的数据集合,通过一个数学模型来描述真实数据的曲线走势。

在MATLAB 中,有多种方法可以进行数据拟合,如多项式拟合、曲线拟合、样条拟合等。

1. 多项式拟合多项式拟合是最简单的数据拟合方法之一。

在 MATLAB 中,可以使用 polyfit() 函数进行多项式拟合。

该函数可以将一组数据拟合成一个指定阶数的多项式曲线,并返回多项式的系数。

2. 曲线拟合曲线拟合是指将一条已知函数的曲线拟合到一组离散的数据点上。

在MATLAB 中,可以使用 fit() 函数进行曲线拟合。

该函数支持多种预定义的曲线模型,也可以自定义曲线模型,根据数据点对模型进行拟合,并返回最优拟合参数。

3. 样条拟合样条拟合是指将一条平滑的曲线拟合到一组离散的数据点上,并满足一定的平滑性要求。

在 MATLAB 中,可以使用 spline() 函数进行样条拟合。

该函数可以根据给定的数据点,生成一条平滑的曲线,并返回样条曲线的系数。

三、回归分析回归分析是通过一个或多个自变量来预测因变量之间的关系。

在MATLAB 中,可以使用 regress() 函数进行线性回归分析。

该函数可以根据给定的自变量和因变量数据,拟合出一个线性模型,并返回模型的系数和统计指标。

Matlab数学建模学习笔记——插值与拟合

Matlab数学建模学习笔记——插值与拟合

Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。

假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。

插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。

插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。

插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。

I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。

但是n越⼤,分段越多,插值误差越⼩。

拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。

在matlab 中都有特定的函数来完成这些功能。

这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。

插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。

具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。

如何使用MATLAB进行数据拟合与回归分析

如何使用MATLAB进行数据拟合与回归分析

如何使用MATLAB进行数据拟合与回归分析MATLAB是一种功能强大的数值计算和数据分析工具,可以用于数据拟合和回归分析。

下面将介绍如何使用MATLAB进行数据拟合和回归分析的步骤。

1. 导入数据:首先,将需要进行数据拟合和回归分析的数据导入到MATLAB中。

可以通过读取Excel文件、文本文件或直接将数据输入到MATLAB的工作空间中。

2. 数据预处理:在进行数据拟合和回归分析之前,通常需要对数据进行预处理。

这包括数据清洗、去除异常点、处理缺失值等。

MATLAB提供了许多数据预处理函数,如清除NaN值的函数“cleanData”和删除异常值的函数“outliers”。

3. 数据可视化:在进行数据拟合和回归分析之前,可以先对数据进行可视化,以便更好地了解数据的特征和分布。

MATLAB提供了丰富的绘图函数,可以绘制散点图、直方图、箱线图等。

例如,可以使用“scatter”函数绘制散点图,使用“histogram”函数绘制直方图。

4. 数据拟合:数据拟合是根据已有数据点,拟合出一个数学模型与函数,以揭示数据的内在规律。

在MATLAB中,可以使用“polyfit”函数进行多项式拟合,使用“fit”函数进行曲线拟合,也可以使用自定义函数进行拟合。

拟合过程可以使用最小二乘法等方法进行。

5. 回归分析:回归分析是通过对自变量和因变量之间的关系进行建模,预测因变量的值。

在MATLAB中,可以使用线性回归模型、多项式回归模型、逻辑回归模型等进行回归分析。

可以使用“fitlm”函数进行线性回归分析,使用“polyfit”函数进行多项式回归分析,使用“fitglm”函数进行逻辑回归分析。

6. 模型评估:在进行数据拟合和回归分析之后,需要对模型进行评估,以判断模型的合理性和预测能力。

在MATLAB中,可以使用均方误差(MSE)、决定系数(R-squared)、残差分析等方法对模型进行评价。

可以使用“mse”函数计算MSE,使用“rsquared”函数计算R-squared。

matlab 插值拟合

matlab 插值拟合

matlab 插值拟合摘要:一、插值与拟合的基本概念二、MATLAB 中的插值函数1.线性插值2.最邻近插值3.三次样条插值4.多项式插值三、MATLAB 中的拟合函数四、MATLAB 插值与拟合的应用实例五、总结正文:一、插值与拟合的基本概念插值是一种通过已知的数据点来预测未知数据点的方法。

它是基于已知数据点的函数值,通过一定的算法来预测未知数据点上的函数值。

拟合则是一种更广义的概念,它不仅包括插值,还包括了通过已知数据点来确定函数的形式,如多项式、指数、对数等。

在实际应用中,拟合常常用来解决数据点的预测和预测模型的选择问题。

二、MATLAB 中的插值函数MATLAB 提供了多种插值函数,包括线性插值、最邻近插值、三次样条插值和多项式插值等。

下面我们逐一介绍这些函数。

1.线性插值线性插值是最简单的插值方法,它通过计算已知数据点之间的直线来预测未知数据点上的函数值。

在MATLAB 中,线性插值的函数是`yinterp1`,其用法如下:```matlabyinterp1(x0,y0,xq,method,extrapolation)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为线性插值("linear"),`extrapolation`指定是否进行外推,默认为关闭("off")。

2.最邻近插值最邻近插值是一种基于距离的插值方法,它通过找到距离未知数据点最近的已知数据点来预测未知数据点上的函数值。

在MATLAB 中,最邻近插值的函数是`yinterp2`,其用法如下:```matlabyinterp2(x0,y0,xq,method)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为最邻近插值("nearest")。

曲线的插值与拟合matlab

曲线的插值与拟合matlab

在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。

曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。

1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。

插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。

而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。

2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。

常见的方法包括线性插值、多项式插值、样条插值等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。

(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。

虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。

(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。

在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。

(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。

在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。

3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。

在实际操作中,我们可以使用不同的方法来进行曲线的拟合。

常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。

matlab拟合函数并插值

matlab拟合函数并插值

matlab拟合函数并插值在MATLAB中进行拟合函数并插值可以通过以下步骤实现:1. 准备数据:首先,您需要准备要进行拟合和插值的数据。

这可以是一组x和y值,其中x是输入数据,y是对应的目标输出数据。

2. 拟合函数:使用MATLAB中的拟合函数来对数据进行拟合。

例如,您可以使用`fit`函数来拟合一组数据。

以下是一个简单的例子:```matlabx = [1, 2, 3, 4, 5]; % 输入数据y = [2, 3, 5, 7, 11]; % 输出数据fitresult = fit(x', y', 'poly1'); % 拟合一个一次多项式函数```在这个例子中,我们使用了`fit`函数来拟合一组输入数据`x`和输出数据`y`,并指定了要拟合的函数类型为一次多项式。

`fit`函数将返回拟合的结果,其中包含了拟合的函数表达式和拟合参数等信息。

3. 进行插值:一旦您完成了拟合,您可以使用插值方法来预测新的输入数据对应的输出值。

在MATLAB中,插值可以通过使用`interp1`函数来实现。

以下是一个简单的例子:```matlabxnew = [1.5, 2.5, 3.5, 4.5]; % 新的输入数据ynew = interp1(fitresult, xnew); % 使用拟合结果进行插值```在这个例子中,我们使用了`interp1`函数来对新的输入数据进行插值,并使用了之前拟合的结果作为插值函数的参数。

`interp1`函数将返回对应于新的输入数据`xnew`的插值结果`ynew`。

在MATLAB中进行拟合函数并插值需要准备数据、使用拟合函数进行拟合、使用插值函数进行插值。

这些步骤可以帮助您在MATLAB中实现拟合和插值的功能。

第四讲matlab插值、拟合和回归分析

第四讲matlab插值、拟合和回归分析

第四讲matlab插值、拟合和回归分析第四讲插值、拟合与回归分析在⽣产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的⼀批离散样本点,要求得到变量之间的函数关系或得到样本点之外的数据。

解决此类问题的⽅法⼀般有插值、拟合和回归分析等。

设有⼀组实验数据0011(,),(,),(,)n n x y x y x y ,当原始数据精度较⾼,要求确定⼀个简单函数()y x ?=(⼀般为多项式或分段多项式)通过各数据点,即(),0,,i i y x i n ?== ,称为插值问题。

另⼀类是拟合问题,当我们已经有了函数关系的类型,⽽其中参数未知或原始数据有误差时,我们确定的初等函数()y x ?=并不要求经过数据点,⽽是要求在某种距离度量下总体误差达到最⼩,即(),0,,i i i y x i n ?ε=+= ,且20ni i ε=∑达到最⼩值。

对同⼀组实验数据,可以作出各种类型的拟合曲线,但拟合效果有好有坏,需要进⾏有效性的统计检验,这类问题称为回归分析。

⼀、插值(interpolation)常⽤的插值⽅法有分段线性插值、分段⽴⽅插值、样条插值等。

1、⼀元插值yi=interp1(x,y,xi,method)对给定数据点(x,y),按method 指定的⽅法求出插值函数在点(或数组)xi 处的函数值yi 。

其中method 是字符串表达式,可以是以下形式:'nearest' ——最邻近点插值'linear' ——分段线性插值(也是缺省形式)'spline' ——分段三次样条插值'cubic' 分段⽴⽅插值例:在⼀天24⼩时内,从零点开始每间隔2⼩时测得环境温度数据分别为(℃):12,9,9,10,18,24,28,27,25,20,18,15,13⽤不同的插值⽅法估计中午1点(即13点)的温度,并绘出温度变化曲线。

>> x=0:2:24;>> y=[12 9 9 10 18 24 28 27 25 20 18 15 13];>>y_linear=interp1(x,y,13),y_nearest=interp1(x,y,13,'nearest')>>y_cubic=interp1(x,y,13,'cubic'),y_spline=interp1(x,y,13,'spline')>> y1=interp1(x,y,xx); y2=interp1(x,y,xx,'nearest');>> y3=interp1(x,y,xx,'cubic');y4=interp1(x,y,xx,'spline');>> subplot(2,2,1),plot(x,y,'or',xx,y1)>> subplot(2,2,2),plot(x,y,'or',xx,y2)>> subplot(2,2,3),plot(x,y,'or',xx,y3)>> subplot(2,2,4),plot(x,y,'or',xx,y4)2、⼆元插值zi=interp2(X,Y,Z,xi,yi,method)已知数据点(X,Y,Z),求插值函数在(xi,yi)处的函数值zi,插值⽅法method同interp1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 插值、拟合与回归分析在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样本点,要求得到变量之间的函数关系或得到样本点之外的数据。

解决此类问题的方法一般有插值、拟合和回归分析等。

设有一组实验数据0011(,),(,),(,)n n x y x y x y ,当原始数据精度较高,要求确定一个简单函数()y x ϕ=(一般为多项式或分段多项式)通过各数据点,即(),0,,i i y x i n ϕ== ,称为插值问题。

另一类是拟合问题,当我们已经有了函数关系的类型,而其中参数未知或原始数据有误差时,我们确定的初等函数()y x ϕ=并不要求经过数据点,而是要求在某种距离度量下总体误差达到最小,即(),0,,i i i y x i n ϕε=+= ,且20ni i ε=∑达到最小值。

对同一组实验数据,可以作出各种类型的拟合曲线,但拟合效果有好有坏,需要进行有效性的统计检验,这类问题称为回归分析。

一、插值(interpolation)常用的插值方法有分段线性插值、分段立方插值、样条插值等。

1、一元插值yi=interp1(x,y,xi,method)对给定数据点(x,y),按method 指定的方法求出插值函数在点(或数组)xi 处的函数值yi 。

其中method 是字符串表达式,可以是以下形式:'nearest' ——最邻近点插值'linear' ——分段线性插值(也是缺省形式)'spline' ——分段三次样条插值'cubic' 分段立方插值例:在一天24小时内,从零点开始每间隔2小时测得环境温度数据分别为(℃):12,9,9,10,18,24,28,27,25,20,18,15,13用不同的插值方法估计中午1点(即13点)的温度,并绘出温度变化曲线。

>> x=0:2:24;>> y=[12 9 9 10 18 24 28 27 25 20 18 15 13];>>y_linear=interp1(x,y,13),y_nearest=interp1(x,y,13,'nearest')>>y_cubic=interp1(x,y,13,'cubic'),y_spline=interp1(x,y,13,'spline')>> y1=interp1(x,y,xx); y2=interp1(x,y,xx,'nearest');>> y3=interp1(x,y,xx,'cubic');y4=interp1(x,y,xx,'spline');>> subplot(2,2,1),plot(x,y,'or',xx,y1)>> subplot(2,2,2),plot(x,y,'or',xx,y2)>> subplot(2,2,3),plot(x,y,'or',xx,y3)>> subplot(2,2,4),plot(x,y,'or',xx,y4)2、二元插值zi=interp2(X,Y,Z,xi,yi,method)已知数据点(X,Y,Z),求插值函数在(xi,yi)处的函数值zi,插值方法method同interp1。

这里要求X,Y,Z是同维矩阵,且X,Y是网格矩阵,或者X是与Z列数相同的行向量,Y是与Z行数相同的列向量。

例:测得平板表面5 3网格点处的温度分别为试作出平板表面的温度分布图>> x=1:5;y=1:3;z=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86];>> xx=1:0.1:5;yy=1:0.1:3;yy=yy';>> zz=interp2(x,y,z,xx,yy,'cubic');>> mesh(xx,yy,zz)3、不规则点的插值若数据是不规则的,即数据不能构成矩阵形式,从而不能用interp2函数进行插值。

zi=griddata(x,y,z,xi,yi,method)这里,x,y,z为同维向量,表示已知数据点的坐标,xi,yi是行向量和列向量,返回值zi为在meshgrid(xi,yi)网格矩阵处的函数值。

method 可选择’linear’,’nearest’,’cubic’。

例:假如上例中的数据残缺不全>> x=[3 4 5 1 3 4 1 2 5];y=[1 1 1 2 2 2 3 3 3];>>z=[80 82 84 79 61 65 84 84 86];>> xx=1:0.1:5;yy=1:0.1:3;>> zz=griddata(x,y,z,xx,yy','cubic');>> mesh(xx,yy',zz)二、拟合(Fit)1、多项式拟合p=polyfit(x,y,n) 用n次多项式拟合向量数据(x,y)。

例:拟合下列数据>> x=[0.1 0.2 0.15 0 -0.2 0.3];y=[0.95 0.84 0.86 1.06 1.50 0.72];>> p=polyfit(x,y,2);>> xx=-0.2:0.01:0.3;yy=polyval(p,xx);>> plot(x,y,'or',xx,yy)2、曲线拟合当经验函数不是多项式,而是其它类型的函数时,可以用lsqcurvefit 函数对拟合函数中的未知参数进行估计。

c=lsqcurvefit(fun,c0,xdata,ydata)fun 是经验拟合函数,含有未知参数,即具有形式fun(c,x),c0是未知参数的预估计值,(xdata,ydata)是已知实验数据。

例:已知数据表用适当的曲线进行数据拟合。

先画散点图,根据散点图确定拟合曲线为对数函数ln b t y a += >> t=1:16;>> y=[4 6.4 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.42 10.5 ... 10.55 10.58 10.6]; >> plot(t,y,'or')>> f=inline('c(1)+c(2)*log(t)','c','t') %建立拟合函数 >> c=lsqcurvefit(f,[1,1],t,y) %求未知参数 >> tt=1:0.1:16;yy=f(c,tt); >> hold on >> plot(tt,yy) 3、拟合工具箱Matlab 中的拟合工具箱是一个更方便、更直观进行曲线拟合的图形界面,用cftool 指令打开拟合工具箱。

拟合效果主要看2个参数:SSE (误差平方和)和R-Square ,SSE 越接近0,R-Square 越接近1,拟合效果越好。

三、多元线性回归问题:设有因变量y 和p 个自变量12,,p x x x ,它们具有某种线性关系 1122p p y x x x βββε=+++ 其中12,,p βββ 为待定系数,ε为随机误差。

现有容量为n 观测数据,,1,2,,1,2,i ij y x i n j p == ,怎样确定待定系数12,,p βββ ,并进行有效性检验?将样本代入关系式,得Y X βε=+,其中1111211221222212,,p p p n n np p y x x x y x x x Y X y x x x ββββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Matlab 求解:[b,bint,r,rint,stats]=regress(Y ,X,alpha)其中alpha 为显著性水平,省略时为默认值0.05;输出变量中,b 为β的参数估计值,bint 为b 的置信度为1-alpha 的置信区间,r 为残差向量Y X β-,也即ε,rint 为ε的置信区间,stats 是包含3个元素的检验统计量,分别是R-square :相关系数R 的平方,F-统计量和p 值。

回归效果:R-Square 越接近1,p 值越接近0(一般要求p<0.05)。

例:某种水泥在凝固时放出的热量(单位:卡/克)Y 与水泥中下列4种化学成分所占的百分比有关:x1:233CaO Al O ⋅; x2: 23CaO SiO ⋅; x3:23234.CaO Al O Fe O ⋅; x4:22CaO SiO ⋅ 现测得13组数据,见表,要求建立热量与水泥化学成分之间的经验回归关系式。

输入数据,可以先建立2个全零矩阵x=zeros(13,4);y=zeros(13,1);然后将表中的数据直接复制、粘贴到相应位置。

>> [b,bint,r,rint,stats]=regress(y,x) 最后得到的回归方程为:12342.193 1.15330.75850.4863y x x x x =+++如果回归方程是形式:01122p p y x x x ββββε=++++ ,相当于增加一个变量0x ,001122p p y x x x x ββββε=++++ ,而01x ≡。

如上例>> x=[ones(13,1),x];>> [b,bint,r,rint,stats]=regress(y,x) 得回归关系式:123462.4054 1.55110.51020.10190.1441y x x x x =+++-上机练习1、在1-12的11小时内,每隔1小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。

试估计每隔1/10小时的温度值。

2、已知飞机下轮廓线上数据如下,求x 每改变0.1时的y 值。

X 035791112131415Y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.63、在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。

4、山区地貌:在某山区测得一些地点的高程如下表:(平面区域1200<=x<=4000,1200<=y<=3600),试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。

相关文档
最新文档