工程数学作业5答案
国开电大 工程数学(本) 形考任务1-5答案 (2)

国开电大工程数学(本) 形考任务1-5答案任务1答案在工程数学中,任务1通常包括对于给定的函数或方程求解、求导或求积分等基本运算。
以下是对任务1的答案:1.1 求解方程对于给定的方程,求解意味着找到使方程成立的变量的值。
解方程的一般步骤如下:1.将方程移项,整理为标准形式;2.根据运算法则,对方程进行简化;3.通过合适的代数运算,解出变量的值。
例如,对于方程2x+5=15,我们可以按照以下步骤求解:1.将方程移项得到2x=15−5;2.简化方程为2x=10;3.通过除法运算解出x的值,得到 $x = \\frac{10}{2}= 5$。
因此,方程2x+5=15的解为x=5。
1.2 求导求导是对给定函数的导数进行计算。
函数的导数反映了函数在每个点上的变化率。
求导的一般步骤如下:1.根据导数的定义,写出函数的导数表达式;2.使用导数的基本运算法则,对函数进行求导。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求导:1.写出函数x(x)的导数表达式为x′(x)=6x+2;2.使用导数的基本运算法则得到x′(x)=6x+2。
因此,函数x(x)=3x2+2x+1的导数为x′(x)=6x+2。
1.3 求积分求积分是对给定函数的积分进行计算。
函数的积分表示了函数在指定区间上的面积或曲线长度。
求积分的一般步骤如下:1.根据积分的定义,写出函数的积分表达式;2.使用积分的基本运算法则,对函数进行积分。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求积分:1.写出函数x(x)的积分表达式为 $\\int{(3x^2 + 2x +1)dx}$;2.使用积分的基本运算法则得到 $\\int{(3x^2 + 2x +1)dx} = x^3 + x^2 + x + C$,其中x为常数。
因此,函数x(x)=3x2+2x+1的积分为 $\\int{(3x^2 +2x + 1)dx} = x^3 + x^2 + x + C$。
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。
线性代数工程数学第五版答案

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a .(4) 证明444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 70351100650000601000051001653==D , 395510601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时, ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) . 解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为010********||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C OC A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010********1k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为 ⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201, 于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即 ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,。
工程数学习题答案

f ( x ) = ∑ a k cos kx
k =0
∞
由正交性得
a0 =
1 2π
∫ π f ( x )dx = π ∫
−
π
1
π
0
(π − x )dx =
2
π
0
π 1 π [−(π − x ) 2 ] 0 = 2π 2
ak =
f ( x ) cos kxdx = ∫ π ∫π π
−
1
π
(π − x ) cos kxdx
u( x , t ) = [cos
πa
l
t+
πa π l sin t ] sin x πa l l
⎧ utt = a 2 u xx , (0 < x < l , t > 0) ⎪ ⎪ u x = 0 = u x x = l = 0, 4.求波动方程解 ⎨ ⎪ u t = 0 = 3 sin 3πx / 2l + 6 sin 5πx / 2l , ⎪u ⎩ t t =0 = 0
方程组有非零解的条件为系数矩阵行列式为零,即
[cos 2π λ − 1]2 + sin 2 2π λ = 0
整理得
cos 2π λ = 1
由余弦函数的最大值点得
2π λ = 2nπ
所以特征值和特征函数分别为 (A 和 B 不全为零) λ n = n 2 , X n = A cos nx + B sin nx ,
《工程数学》习题一
y ⎧ dy ⎪ = ry (1 − ), x > 0 1.用分离变量法解常微分方程初值问题 ⎨ dx K ⎪ y ( 0) = y 0 ⎩
解:用常微分方程分离变量法
工程数学第五章习题解答

第四章习题解答1.1某大学生即将毕业就业,在选择单位时他主要考虑如下因素A.单位的工资待遇;B. 单位的社会地位;C.单位的地域条件;D. 本人的兴趣爱好。
它比较上述各种因素得到成对比较阵(表中数字表示行因素相对于列因素的重要性):(1。
(2)现在他准备在甲和乙两份工作中选一份。
他给两份工作各因素满意度打分解: (1)利用和法近似求权向量:先按列归一化得2/13 3/17 1/4 2/174/13 6/17 3/8 6/171/13 2/17 1/8 3/176/13 6/17 1/4 6/17再求各行和得到[0.6980, 1.3886, 0.4960, 1.4174]’再归一化得到权向量[0.1745,0.3471,0.1240,0.3544]’.(2)甲=0.8×0.1745+0.5× 0.3471+0.5×0.1240+0.2×0.3544=0.4460乙=0.5×0.1745+0.6× 0.3471+0.4×0.1240+0.5×0.3544=0.5223应选乙.2.1学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍. 学生们要组织一个10人的委员会,分别用最大剩余法和Q值法计算名额分配。
如果委员会从10个人增至15人呢?(2)Q 值法:2,3,5 (4,5,6)按人数比例的整数部分已将13席分配完毕 A: p 1=235, n 1=3 B :p 2=333, n 2=4 C :p 3=432, n 3=6计算Q 值:3,2,1,)1(2=+=i n n p Q i i i i ,得:第14席444376432,554454333,460243235232221=⨯==⨯==⨯=Q Q Q 给B (3,5,6) 第15席31,Q Q 不变,36966533322=⨯=Q ,给A (4,5,6)bxx=[0 0.2 0.4 0.6 0.8 1];y=[4.0 4.5 5.0 6.0 6.8 7.7]; fun=@(c,x)3+c(1)*x+exp(-c(2)*x); [c,Q]=lsqcurvefit(fun,[1,0.1],x,y) 结果a=4.6769. b=3.4962。
(2024)国开-工程数学(本)_工程数学第5次作业

工程数学(本)形成性考核作业5一、解答题(每题10分,共80分)1.设()3,4X N ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)2. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).3. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)4. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).5. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.975 1.96u =).6. 为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.975 1.96u =).7. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =).8. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =)二、证明题(每题10分,共20分)1.设随机事件A与B相互独立,试证A与B也相互独立.2.设A B,为两个事件,且B A⊂,试证()()+=.P A B P A。
国家开放大学 工程数学形考任务第五次作业

工程数学作业(第五次)(满分100分)第6章 统计推断(一)单项选择题(每小题2分,共6分) ⒈设是来自正态总体(均未知)的样本,则(A )是统计量. A.B.C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计. A.B.C. D.3.对正态总体方差的检验用的是(C ).(A) U 检验法 (B) T 检验法(C) 2χ检验法 (D) F 检验法(二)填空题(每小题2分,共14分)1.统计量就是 不含未知参数的样本的函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法和 最大似然估计法 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 . 4.设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量X U =5.假设检验中的显著性水平为 “弃真” 错误 发生的概率.6.当方差2σ已知时,检验0100μμμμ≠=:,:H H 所用的检验量是检验量t 。
7.若参数θ的估计量),,,(21n x x x ϕ满足 []θθ=)(nx x x E ,...,,ˆ21 ,则),,,(21n x x x ϕ称为θ的无偏估计。
(三)解答题(每小题10分,共80分)1.设对总体得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.2.在测量物体的长度时,得到三个测量值:3.00 2.85 3.15若测量值,试求的最大似然估计值.3.设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.4.测两点之间的直线距离5次,测得距离的值为(单位:m):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为0.95的置信区间.5.测试某种材料的抗拉强度,任意抽取10根,计算所测数值的均值,得∑===10120101i i x x ∑==--=10122521101i i x x s .)(假设抗拉强度,试以95%的可靠性估计这批材料的抗拉强度的置信区间。
工程数学线性代数第五版习题答案

工程数学线性代数第五版习题答案第一章行列式1 利用对角线法则计算下列三阶行列式(1) 2 0 1 1 4 1 1 8 32 0 1解 1 4 11 8 32 ( 4)3 0 ( 1) ( 1) 1 1 80 1 3 2 ( 1) 8 1 ( 4) ( 1)24 8 16 4 4a b c(2) b c ac a ba b c解 b c ac a bacb bac cba bbb aaa ccc3abc a3 b3 c3(3) 解1 1 1a b ca2 b2 c21 1 1a b ca2 b2 c2bc2 ca2 ab2 ac2 ba2 cb2(a b)(b c)(c a)(4)解x y x yy x y xx y x yx y x yy x y xx y x y解逆序数为n(n 1)3 2(1 个)5 2 5 4 (2 个)(2n 1)2 (2n 1)4 (2n 1)6 4 2(1 个) (2n1)(2n 2) (n 1 个)x(x y)y yx(x y) (x y)yx y3 (x y)3 x33xy(x y) y3 3x2 y x3 y3 x32(x3 y3)2 按自然数从小到大为标准次序求下列各排列的逆序数(1)1 23 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n 1) 2 4 (2n)解逆序数为n(n 1)23 2 (1 个)5 2 5 4(2 个)7 2 7 4 7 6(3 个)(2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1 个) (6)1 3 (2n 1) (2n) (2n 2) 24124 12020 5 2 0 011710 520 0 1174 1 101 2 210 3 1412 3 0000 0c112 30 10c31323 336 2 6 4(2 个)(2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1 个)3 写出四阶行列式中含有因子a11a23 的项解含因子a11a23 的项的一般形式为( 1)t a11a23a3r a4s其中rs 是2 和4 构成的排列这种排列共有两个即24 和42所以含因子a11a23 的项分别是( 1)t a11a23a32a44 ( 1)1a11a23a32a44 a11a23a32a44( 1)t a11a23a34a42 ( 1)2a11a23a34a42 a11a23a34a424 计算下列各行列式(1) 14 1 2 4解 1 2 0 2c c 4 1 22 0c47c310 3 210 4 12 1 214 10 3102 ( 1)4 314c2c311 2 39 9 100 0 2 017 17 142 (2) 351 4 11 2 12 3 2 0 6 2 2 1 4 1解 1 2 2 15 06 2c4c22151 4 01 2 22 3 00 6 2r4r22121 4 01 2 22 3 01 4 0r 4 r12 1 4 01 2 2 00 1 c 1 1 b 1ab ac ae (3) bd cd debf cf efab 解bd bf ac ae cd de cf ef1 1 b c e adf b c eb c e1 adfbce 1 1 1 1 4abcdef1 1a 1 0 0(4) 1 b 1 0 0 0 1 da 1 解0 1 0 0 0 0 r 10 c 1 1 d ar 20 1 ab a 01 b 1 0 0 1 c 1 0 0 1 d( 1)( 1 ab 1)2 11 0 a 0 c 3 c 1 1 d dc2 1 ab 1 0 aad c 1 cd 1 0(5 证明:1)( 1)3 21 ab ad 1 1 cdabcd ab cd ad 1a 2 ab b 2(1) 2a 1 证明a b 2b 1 1 (a b )3;a 2 ab b 2c 2 c 1 a 2 ab a 2 b 2 a 22a a b 1 1 2b1 c 3 2a b a c 1 1 02b 2a 03 1ab a 2b 2 a 2 a b a 3 ( 1) b a 2b 2a(b a )(b a ) 1 2 (a b )ax (2) ay az 证明by ay bz az bx ax bz az bx bx ax by by ay bz(a 3 x b 3) y z y zz x ; x y(a 1)2 (a 2)2 (a 3)2(b 1)2 (b 2)2 (b 3)2 (c 1)2 (c 2)2 (c 3)2 (d 1)2(d2)2 (d 3)2(a 1)2(a2)2(a3)2 (b 1)2 (b 2)2 (b 3)2 (c 1)2 (c 2)2 (c 3)2 (d1)2(d2)2(d3)22a 1 2 2 2b 1 2 2 2c 1 2 2 2d1 2 2ax by ay ay b z az az bx ax bz az bx bx ax by by ay bzx ay a y az z axx ay bz az bx ax by aybz z bx y ay bz az bx by b z az bx ax by bz x ax by ay bzy z az bx a 2 y az z ax bx x by y b 2 z x x ax by y ay bzx y z a 3 y z x z x yx y z a 3 y z x z x y y z x b 3 z x y x y zx y z b 3 y z x z x y(a 3x y z b 3) y z x z x ya 2 (3)b 2 0 ;c 2d 2 证明a 2b 2c 2d 2a 22a1 2a3 2a 5(c 4c 3 c 3c 2 c 2c 1 得) b 2 2b 1 2b 3 2b 5 (c c c c 得) c 2 2cd 2 2da 2b 2 1 2c 1 2d3 2c 54 3 2d53 3 2 c 2 0 d 2a 2b 2c 2d 2 b 21 1 1 1 (4) a b c d a 4 b 4 c 4 d 4(a b )(a c )(a d )(b c )(b d )(c d )(a b c d ); 证明1 1 a b a2 b 2 a 4 b 41 0 1 1 c d c2 d 2 c 4 d 41 1 1 b a c a d a 0 b (b 0 b 2(b2 a ) a 2 ) c (c c 2(c 2 a ) a 2) 1 d (d d 2(d 2 a ) a 2)1 1(b a )(c a )(d a ) b b 2(b 1 c a ) c 2(c 1 d a ) d 2(d a )1(b a )(c a )(d a ) 0 c b d b0 c (c b )(c b a ) d (d b )(d b a )(b a )(c a )(d a )(cb )(d b )c (c 1 1 a )d (d b a )=(a b )(a c )(a d )(b c )(b d )(c d )(a b c d )x 1 00 x 1(5)0 0 00 0 0 0x n a 1x n 1a n 1x a nx 1 a n a n 1 a n 2 a 2 x a 1证明 用数学归纳法证明当 n 2 时 D 2x 1 a 2 x a 1x a 1x a 2 命题成立假设对于(n 1)阶行列式命题成立 即D n 1 x n 1 a 1 x n 2a n 2x a n 1则 D n 按第一列展开 有1)n 1x 1 0 011x12D n xD n 1 1 0 0 0 a n (xD n 1 a n x n a 1x n 1a n 1x a n因此 对于 n 阶行列式命题成立6 设 n 阶行列式 D det(a ij ), 把 D 上下翻转、或逆时针旋转 90 、或依副对角线翻转 依次得a n 1 D 1a 11a nna 1na 1n D 2a 11a nna n 1a nn D 3a n 1a 1na 11证明 D 1D 2( n (n 1) 1)2DD 3 D证明 因为 D det(a ij ) 所以a n 1 D 1a 11a nna 1n(a 11 a 21a 111)n 1 a n 1a 21a 1na 2n a 1n a nna 2n( 1)n 1( 1)n a n 1a 31a nna 3n( 1)1 2(n 2)(n 1)D( 1)n (n 1) 2D同理可证11a n 1n (n 1)Tn (n 1)D 21na nn( 1)2D ( 1)2DD 3 ( n (n 1) 1)2D 2( 1)n (n 1) 2( n (n 1)1)2D( 1)n (n 1)D D7 计算下列各行列式(D k 为 k 阶行列式)D aa0 a (1) D n1是 0解1, 其中对角线上元素都是 a 未写出的元素都 aa 0 00 a 0 0 0 a n0 0 0 1 0 00 0 0 a 0 0 0 1 0 00 0 (按第 n 行展开)a 0 0 a0 1 0 0 ( 1)n 1 0 a 00 0 0a0 0(n 1) (n 1)( 1)2n aa (n 1) (n 1)( 1)n 1 ( 1)na (n 2)(n 2)a n a n a n 2 a n 2(a 2 1)x a a (2) D na x a ; a ax解 将第一行乘( 1)分别加到其余各行 得x a x D na xa x a a a x a 0 0 0 x a0 0 x a再将各列都加到第一列上 得x (n 0 D n0 1)a a aax a 0 0 0 x a0 00 x a[x (n 1)a ](x a )n 1(3) D n 1 a n a n 1a 1 (a 1)n (a 1)n 1a 1 1(a n )n (a n )n 1 ;a n 1解 根据第 6 题结果 有1 1 1D n 1an 1 a n a 1(a 1)n 1 (a 1)na n(a n )n 1 (a n )n此行列式为范德蒙德行列式D n 1( 1)n (n 1) 2n 1 i[(a j 1i 1) (aj 1)]( 1)n (n 1) 2n (n 1)n 1 i[ (i j 1n (n 1)j )]1( 1)2(i ( 1)2j )(i j )n 1 i j 1n 1 i j 1a n(4) D 2nc n解a nD 2nc na 1b 1c 1d 1a 1b 1c 1d 1b n;d nb n(按第 1 行展开)d nn32a n 1a nc n 1 0a 1b 1c 1d 10 a n 1b n 1 0d n 1 0 0 d nb n 1( 1)2n 1b a 1 b 1c 1d 1c n 1 c nd n 1 0再按最后一行展开得递推公式D 2n a n d n D 2n 2 b n c n D 2n 2 即 D 2n (a n d n b n c n )D 2n 2于是D 2nn (a i d i i 2b ic i )D 2而D 2a 1b 1c 1d 1a 1d 1b 1c 1所以D 2nn(a i d i i 1b ic i )(5) D det(a ij ) 其中 a ij |i j |;解 a ij |i j |0 1 1 0 D n det(a ij )2 1n 1 n 21 1 123 n 1 1 2 n 2 0 1 n 3 1 0n 4 n 3 n 41 1 r 1 r 2r 2 r 3 1 1 1n 1 n 1 1 1 1 1 1 1 1 111 12 n3 n 4a 1 0 0 0 0 1 a 2 a 2 0 0 0 1 0 a 3 a 311 0 00 0 a 1 1 1 0 0 0 a 1 0 0 0 0 a 1 1 0 1 0 0 0 a 1 2 0 0 10 0a 1 31111na ii 1a a a D 31 1 n nc 2 c 1c 3 c 1 1 0 1 2 1 2 1 2n 1 2n 3 0 0 2 2 2n 4 0 0 0 0 0 0 2 02n 5n 1( 1)n 1(n 1)2n 2(6) D n1 a 1 1 11 1 a2 11 11 a n, 其中 a 1a 2a n 0解1 a 1 1 n11 1 a 211 11 a nc 1 c 2c 2 c 30 0 0 0 0 0a n 1 0a n 1 a n1 1 a n1 1a a a 0 1 12 0 0 1 1 2n0 0 0 0 0 01n 10 1 1 1a 1a 2 a nan1(a a a )(1 1 ) 1 2 na i 1 iD D D D8 用克莱姆法则解下列方程组x 1 x 2 x 3 x 1 2x 2 x x 4 54x 2 (1)2x 1 3x 13x 2 x 2 3 x 3 2x 3 45x 4 2 11x 4解 因为1 1 1 1 12 1 4 D 23 311 52 1114251 1 12 2 1 4 12 3 1 5 0 1 2 111 1 5 1142 1 5 1 2 2 2 2 311 1 1 1 1 4 1 52 1152841 2 3 2 3 3 1D 2 4 2 50 11 D 426 1 2 1 2 4 2 3 1 2 3 12D D 142 所以x 15x 1 x 1 1D6x 2 5x 2 1 x 26x 3 22 x3 3 3 D D10 x 441 D(2) x 2 5x 3 6x 4 0x 3 5x 4 x 4 6x 5 0 5x 5 1解 因为5 16 0 0 0 5 6 0 0D 0 1 5 6 0 0 0 1 5 6 0 0 0 1 51 6 0 0 0 0 5 6 0 0D 1 0 1 5 6 0 0 0 1 5 6 1 0 0 1 566515075 1 0 0 0 1 06 0 0 D 20 0 5 6 0 0 0 1 5 6 0 1 0 1 511455 6 1 0 0 1 5 0 0 0 D 30 1 0 6 0 0 0 0 5 6 0 0 1 1 55 6 0 0 1 1 5 6 0 0D 50 1 5 6 0 0 0 1 5 0 0 0 0 1 1所以703212 5 6 0 1 0 1 5 6 0 0 D 4 0 1 5 0 0 0 0 1 0 6 0 0 0 1 5395x 1507 x 1 665 21145665x 703 3665x 395 x 4665 4lx 1 x 2 x 3212 6659 问 l m 取何值时 齐次线性方程组 x 1 x 1 解?解 系数行列式为m x 2 2m x 2 x 3 0 x 3 0 有非零l 1 1D 1 m 1 m m l1 2m 1令 D 0 得m 0 或 l 1于是 当 m 0 或 l 1 时该齐次线性方程组有非零解10 问 l 取何值时 齐次线性方程组 (1 2x 1 l )x 1 (3 2x 2 l )x 2 4x 3 0x 3 0 有非零解?解 系数行列式为x 1 x 2 (1 l )x 3 01 l2 4 D 23 l 1 1 l 3 l4 2 1 l 11 1 1 l 1 0 1 l(1 l )3 (l 3) 4(1 l ) 2(1 l )( 3 l )1(1 l )3 2(1 l )2 l 3令 D 0 得l 0 l 2 或 l 3 于是 当 l 0 l 2 或 l 3 时该齐次线性方程组有非零解第二章 矩阵及其运算1 已知线性变换x 1 2 y 1 x 2 3y 1 x 3 3y 12 y 2 y 2 2 y 2y 3 5y 3 3y 3求从变量 x 1 x 2 x 3 到变量 y 1 y 2 y 3 的线性变换解 由已知x 1 2 2 1 y 1 x 2 3 1 5 y 2 x 3 3 2 3 y 2y 1 故y 2 y 2y 1 2 2 3 1 3 27x 1 1 5 34x 2x 1 x 2 x 39x 3 7 4 9 y 1 6 3 7 y 2 3 2 4 y 3y 2 6x 1 y 3 3x 1 3x 2 2x 2 7x 3 4x 32 已知两个线性变换x 1 2 y 1 x 2 2 y 1 y 33y 22 y3 y 1 3z 1 z 2 y 2 2z 1 z 3 x 34 y 1 y 2 5y 3y 3 z 2 3z 3求从 z 1 z 2 z 3 到 x 1 x 2 x 3 的线性变换解 由已知x 1 2 0 1 y 1 2 0 1 3 1 0 z 1 x 2 2 3 2 y 2 2 3 2 2 0 1 z 2 x 34 15 y 24 15 0 1 3 z 33 设 A1 11B1 2 4 求 3AB 2A 及 A T B1 1 10 5 1x 1 所以有 x 2 6 12 106z 1 12z 1 1 4 1z 2 4z 2 3 z 1 9 z 2 16 z 33z 39z 3x 3 10z 1 z 2 16z 31 1 11 2 31 1 1 123 1 1 1 解 3AB 2A 3 1 1 1 1 24 2 1 1 1 1 1 1 05 1 1 1 10 5 8 1 1 12 13 223 0 5 6 2 1 1 1 2 17 20 2 9 0 1 1 14 29 21 1 1 123 0 5 8 A T B 1 1 1 1 24 056 1 1 1 0 5 1 2 9 04 计算下列乘积4 3 1 7 (1) 1 2 3 25 7 0 1 4 3 1 7 解1 2 3 2 4 7 1 7 ( 3 2 1 1 35 2) 2 3 1 6(2) (1 5 7 0 132 3) 2135 7 7 2 0 1 49解 (1 223) 2 1 (1 3 2 2 3 1) (10)(3) 1 ( 1 2)313 1 2 14 0 01 2 1 1 3 4 1 3 1 421312 1 4 0 0 1 2 6 7 8 1 134 1 3 1 205 642a x a x a x 设 问因为 因为22 ( 1) 2 2 2 4 解1 ( 1 2) 1 ( 1) 12 1 2 33 ( 1) 3 2 3 6(4)解(5) (x 1 x 2解x 3)a 11 a 11 a 12 a 13a 12 a 12 a 22 a 23a 13 a 13 x 1a 23 x 2a 33 x 3x 1(x 1 x 2 x 3) a 12 a 13 a 22 a 23 a 23 x 2a 33 x 3x 1(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3a 13x 1 a 23x 2 a 33x 3) x 2x 32 11 1 2 22 2 2 33 3 2a 12 x1x 2 2a 13x 1x 32a 23x 2 x 35 A 1 21 3 B 1 01 2(1)AB BA 吗? 解 AB BAAB 3 44 6 BA 1 23 8所以 AB BA(2)(A B )2 A 2 2AB B 2 吗? 解 (A B )2 A 2 2AB B 2A B 2 22 52 2 2 2 8 14 2 5 2 514 293 8 6 8 1 0 10 164 118 123 415 27B 0 20 120 265 0 1 0 9 则 AX AY 且 A 0 但 X Y1 023Al 1因为 解 取 解 取( A但A 2B )22AB B 2所以(A B )2A22AB B 2(3)(A B )(A B ) A 2 B 2 吗?解 (A B )(A B ) A 2 B 2A B 2 2A 2 5( A B )(A B ) 2 2A 2 B23 8 1 0 2 8 而4 11 3 4 1 7故(A B )(A B ) A 2 B 26 举反列说明下列命题是错误的(1)若 A 2 0 则 A 0A 0 10 0则 A 2 0 但 A 0(2)若 A 2 A 则 A 0 或 A EA 1 10 0则 A 2 A 但 A 0 且 A E(3)若 AX AY 且 A 0 则 X Y 解 取A 1 0X1 1 Y 1 1 0 01 10 17 设21 0 求 A A A k1 0 1 0 解 Al 1 l 12l 11 0 1 0 1 0 2l 1 l 13l 1A 3 A 2 AAk8 设 A 1 0 kl 1l 1 00 l 10 0 l求 A k解 首先观察l 1 0 A 20 l 1 0 0 l l 1 0 0 l 1 0 0 l l 2 2l 1 0 l 2 2l 0 0 l 2A 3A 2 A A 4A 3A A 5A 4 A l 3 3l 2 0 l 3 0 0l 4 4l 3 0 l 4 0 0 l 5 5l 4 0 l 5 0 0 3l3l 2l 36l 24l 3l 410l 35l 4l 5l k kl k 1 k (k 1) l k 22 A k0 l k0 0kl k 1 l k用数学归纳法证明 当 k 2 时 显然成立 假设 k 时成立,则 k 1 时,Ak 1A kAl k kl k 10 l k 0 0k (k 1) l k 2 2kl k 1l kl 1 0 0 l 1 0 0 l15l k 1 (k1)l k 1 (k 1)k k 12 0 l k 1 (k 1)l k 1l k 1由数学归纳法原理知l k kl k 1k (k 1) l k 22A k0 l k 0 0 kl k 1 l k9 设 A B 为 n 阶矩阵,且 A 为对称矩阵,证明 B T AB 也是对称矩阵证明 因为 A T A 所以(B T AB )T B T (B T A )T B T A T B B T AB从而 B T AB 是对称矩阵10 设 A B 都是 n 阶对称矩阵,证明 AB 是对称矩阵的充分 必要条件是 AB BA证明 充分性 因为 A T A B T B 且 AB BA 所以(AB )T (BA )T A T B T AB即 AB 是对称矩阵必要性 因为 A T A B T B 且(AB )T AB 所以AB (AB )T B T A T BA 11 求下列矩阵的逆矩阵(1) 1 22 5解 A 2 2 |A | 1 故 A 1 存在 因为A * A 11 A 12 A215 2 A 22 2 1a故A 1 1 A *5 2 | A |2 1(2)解 cos q sin qA sin q cos qcos q sin qsin q cos q|A | 1 0 故 A 1 存在 因为A * A 11 A 12 A 21A 22cos q sin q sin q cos q所以(3)A 1 1 A *| A |1 2 1 3 4 25 4 1cos q sin qsin q cos q1 2 1 解 A 3 4 25 4 1|A | 2 0 故 A 1存在 因为A 11 A * A 12 A 131 1 A 21 A 22 A 23 A 31A 32A 332 1 134 2 0 13 6 1 32 14 21 所以Aa 1 2A * | A |0 3 2 2 16 7 1(4)解 A(a 1a 2 a n 0)a na 1 0 a 2由对角矩阵的性质知a n2 1 1 (2) X 2 1 0 1 6 6 1 0 1 11 123 0 1 24 02 311 解 4 1 21解 1 11 a 1 1 0 A 1a 21 a n12 解下列矩阵方程(1) 2 5 X4 6 1 3 2 1解 X1 51 1 14 63 54 6 2 1 1 2 2 11 1 3 4 3 22 23 0 8X 1 3 3 22 1 112 1 0 1 1 11 01 1 1 1 3 3 4 3 22 2 1 8 5 23 32 3 2 3 31 4 X2 03 1 (3) 1 21 1 0 1X4 3 1 2 0 0 1 1 11 2 4 3 1 1 0 12 1 1 0 1 1 20 1 01 0 01 4 3 (4) 1 0 0 X 0 0 12 0 1 0 0 1 0 1 01 2 00 1 0 11 4 3 1 0 0 解 X1 0 02 0 1 0 0 10 0 11 2 0 0 1 0x 1 2x 2 3x 3 1 2x 1 2x 2 5x 3 23x 1 5x 2 x 3 31 1 1 x 12 2 13 x 2 1110 1 0 1 4 3 1 0 0 2 1 0 1 0 0 2 0 1 0 0 1 1 3 4 0 0 1 1 2 0 0 1 0 1 0 213 利用逆矩阵解下列线性方程组(1)解 方程组可表示为故从而有1 2 3 x 1 1 2 2 5 x 2 2 3 5 1 x 3 3x 1 1 2 3 1 1 x 2 2 2 5 2 0 x 3 3 5 1 3 0x 1 1 x 2 0 x 3 0(2) x 1 2x 1 3x 1 x 2 x 2 2x 2 x 3 2 3x 3 15x 3 0 解 方程组可表示为3x 1 故x 2 x 3x 1 故有x 2 x 3 2 5 x 3 01 1 1 12 5 2 13 1 0 3 2 50 35 0 314 设A k O (k 为正整数) 证明(E A) 1 E A A2 A k 1证明因为A k O 所以E A k E 又因为E A k (E A)(E A A2 A k 1)所以(E A)(E A A2 A k 1) E 由定理2 推论知(E A)可逆且(E A) 1 E A A2 A k 1证明一方面有E (E A) 1(E A)另一方面由A k O 有E (E A) (A A2) A2 A k 1 (A k 1 A k)(E A A2 A k 1)(E A)故(E A) 1(E A) (E A A2 A k 1)(E A)两端同时右乘(E A) 1 就有(E A) 1(E A) E A A2 A k 115 设方阵A 满足A2 A 2E O 证明A 及A 2E 都可逆并求A 1 及(A 2E) 1证明由A2 A 2E O 得A2 A 2E 即A(A E) 2E1或 A (A E) E21 1由定理2 推论知A 可逆且A 由A2 A 2E O 得( A E) 2A2 A 6E 4E 即(A 2E)(A 3E) 4E1或( A2E) (3E4A) E由定理2 推论知(A 2E)可逆且( A2E) 1 1 (3E A)4证明由A2 A 2E O 得A2 A 2E 两端同时取行列式得|A2 A| 2即|A||A E| 2故|A| 0所以A 可逆而A 2E A2 |A 2E| |A2| |A|2 0 故A 2E 也可逆由A2 A 2E O A(A E) 2EA 1A(A E) 2A 1E A 1 1 ( A E)2又由A2 A 2E O (A 2E)A 3(A 2E) 4E(A 2E)(A 3E) 4 E所以(A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1( A2E) 1 1 (3E A)41 116 设A 为3 阶矩阵| A|2求|(2A)5A*|解因为A 11A* 所以|A||(2A) 15A*||1 A 125| A| A 1 ||1 A 125 A 1 |2| 2A 1| ( 2)3|A 1| 8|A| 1 8 2 1617 设矩阵 A 可逆证明其伴随阵A* 也可逆且(A*) 1 (A 1)*证明由A 11A*|A|得A* |A|A 1所以当A 可逆时有|A*| |A|n|A 1| |A|n 1 0从而A*也可逆因为A* |A|A 1 所以B ( A 2E ) 1 A1 1 0 1 1 0 12 31 0 11 2 11 2 3 1 1 0(A *) 1 |A | 1A又 A 1 ( A | A 1 |1)*| A |( A 1)* 所以(A *) 1 |A | 1A |A | 1|A |(A 1)* (A 1)* 18 设 n 阶矩阵 A 的伴随矩阵为 A * 证明 (1)若|A | 0 则|A *| 0 (2)|A *| |A |n 1证明(1)用反证法证明 假设|A *| 0 则有 A *(A *) 1 E 由此得A A A *(A *) 1 |A |E (A *) 1 O所以 A * O 这与|A *| 0 矛盾,故当|A | 0 时 有|A *| 0(2)由于 A 11 A * | A |则 AA * |A |E 取行列式得到|A ||A *| |A |n若|A | 0 则|A *| |A |n 1若|A | 0 由(1)知|A *| 0 此时命题也成立 因此|A *| |A |n 10 3 319 设 A1 1 0 AB A 2B 求 B 12 3解 由 AB A 2E 可得(A 2E )B A 故2 3 3 10 3 3 0 3 320 设 A 0 2 01 0 1且 AB E A 2 B 求 B解 由 AB E A 2 B 得(A E )B A 2 E即(A E)B (A E)(A E)因为| A0 0 1E |0 1 01 0 01 0 所以(A E)可逆从而2 0 1B A E0 3 01 0 221 设A diag(1 2 1) A*BA 2BA 8E 求B解由A*BA 2BA 8E 得(A* 2E)BA 8EB 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A) 18(|A|E 2A) 18( 2E 2A) 14(E A) 14[diag(2 1 2)] 14diag(1 ,21, 1) 22diag(1 2 1)22 已知矩阵A 的伴随阵A*且ABA 1 BA 1 3E 求B解由|A*| |A|3 8 得|A| 2由ABA 1 BA 1 3E 得AB B 3A 1 0 0 00 1 0 01 0 1 0 0 3 0 8B 3(A E) 1A 3[A(E A 1)] 1A 3(E 1 A*) 126(2E A*) 11 0 0 10 6 0 0 0 0 1 0 0 0 6 0 0 1 0 1 0 6 0 6 0 0 3 0 60 3 0 11 1 1 43 1 11 1 683 684331 1求 11623 设 P 1AP其中 P1 4 1 0 A 110 2解 由 P 1AP得 A P P 1 所以 A 11 A =P 11P 1.|P | 3而11P *1 11 0 0 24 P 11 0 0 2111 4 故A 111 4 1 1 1 0 0 3 3 2112731 27321 1 1124 设 AP P其中 P 1 0 211 1 15求j (A ) A 8(5E 6A A 2)解 j ( )8(5E 62)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0)j (A ) Pj ( )P 11 | P |Pj ( )P *1 1 1 1 0 02 2 2 2 1 0 2 0 0 03 0 3 1 1 1 0 0 01 2 11 1 1 4 1 1 1 1 1 125 设矩阵 A 、B 及 A B 都可逆 证明 A 1 B 1 也可逆 并求其逆阵1 2 1 01 0 3 1 0 1 0 10 1 2 1 0 0 2 1 0 0 2 3 0 0 0 3 0 0 031 2A 2 2 1B 13 1B 2 120 31 2 3 1 2 3 5 2 0 1 2 10 3 2 4A 1 E EB 1 A 1 A 1B 1 B 2 1 2 5 2 0 1 2 4 O A 2 O B 2 O A 2 B 2 0 0 4 3 0 0 0 91 2 1 0 1 0 3 1 1 2 5 2 0 1 0 1 0 1 2 1 0 1 2 4 0 0 2 1 0 0 2 3 0 0 4 3 0 0 0 30 030 091 0 1 0 0 0 0A B 0 1 0 1 0 2 0 0 2 0 1 0 C D 1 0 1 0 1 0 1 0 0 2 0 1 0 1 0 1 1 0 1C D 证明 因为A 1(AB )B 1 B 1 A 1 A 1 B 1而 A 1(A B )B 1 是三个可逆矩阵的乘积 所以 A 1(A B )B 1 可逆 即 A 1 B 1 可逆(A 1 B 1) 1 [A 1(A B )B 1] 1 B (A B ) 1A26 计算解 设 A 1则A 1 E 0 1E B 1 0 32 3A 1 A 1B 1 B 2 O A 2而A 1B 1 B 2 O B 22 1O A 2 B 22 3 4 3 A 2 B 20 3 0 30 9所以即27 取 A BC D 1 0 0 1验证 A B | A | |C | | B || D |解 4| A | 而|C | | B | | D | 1 1 0 1 1AA A A 8O O 8 2 111211A B 故C D | A | |C |3 4 4 3| B | | D |O 8 428 设 AO 2 02 2求|A |及 A3 4解 令 14 3A A O A 2 0 22 2则1 A故A 8O 2A 1 O1 O A 28| A 8 | | A 8|| A 8 | | A |8| A |8 10161 24O A41O A 41 254 0 0 54O240 2O 26 2429 设 n 阶矩阵 A 及 s 阶矩阵 B 都可逆 求(1) O AB OO A解 设 B OO A C 1 C 3C 1 C 2 C 2 则 C 4AC 3AC 4E n O B O C 3 C 4BC 1 BC 2 O E s由此得AC 3 E n AC 4 O BC 1 OC 3 A C 4 O C 1 OBC 2 E sC B 1O A O B 1 所以B OA 1 O(2) A OC B1 0B 3 0C 2 11 21 41 21 341111111A O1解 设 C BD 1 D 2 则D 3 D 4A O D 1 D 2 AD 1 AD 2E n O C B D 3 D 4CD 1 BD 3 CD 2 BD 4O E sAD 1 E n AD 2 OD 1 A D 2 O由此得CD 1 CD 2BD 3 O BD 4 E sD B 1CA 1D B 1A O 所以C BA 1 OB 1CA 1 B 130 求下列矩阵的逆阵(1) 5 2 0 0 2 1 0 00 0 8 3 0 0 5 25 2B 8 3 则解 设 A 2 15 2A 15 2 2 11 2 B 1 8 3 2 3 2 5 5 25 8于是(2) 5 2 0 0 2 1 0 0 AA 10 0 8 3 B B 10 0 5 21 0 0 0 12 0 02 13 0 1 2 14 1 2 0 0 25 0 0 0 0 2 3 058则解 设 A1 0 0 0 12 0 0 A O 2 13 0 C B1 2 1 4A 1 OB 1CA 1B 110 11 22 11 26 1 5 8 240 00 01 0 3 1 112 4第三章矩阵的初等变换与线性方程组1 把下列矩阵化为行最简形矩阵1 02 1(1) 2 0 3 13 04 31 02 1解 2 0 3 1 (下一步r2 ( 2)r1 r3 ( 3)r1 )3 04 31 02 1~ 0 0 1 3 (下一步r2 ( 1) r3 ( 2) )0 0 2 01 02 1~ 0 0 1 3 (下一步r3 r2 )0 0 1 01 02 1~ 0 0 1 3 (下一步r3 3 )0 0 0 31 02 1~ 0 0 1 3 (下一步r2 3r3 )0 0 0 11 02 1~ 0 0 1 0 (下一步r1( 2)r2 r1 r3 )0 0 0 11 0 0 0~ 0 0 1 00 0 0 10 2 3 1(2) 0 3 4 30 4 7 10 2 3 10 3 4 3 (下一步 r 2 2 ( 3)r 1 r 3 ( 2)r 1 )0 4 7 10 2 3 1~ 0 0 1 3 (下一步 r 3 r 2 r 1 3r 2 )0 0 1 30 2 0 10~ 0 0 1 3 (下一步 r 1 2 )0 0 0 0 0 1 0 5 ~ 0 0 1 3 0 0 0 01 1 3 4 333 54 1 2 2 3 2 0 33 4 2 11 1 3 4 33 3 54 1 2 2 3 2 0 33 4 211 1 3 4 30 0 4 8 8 0 0 3 6 6 0 0510 1011 3 4 30 0 1 2 2 0 0 1 2 2 0 0 1 2 2 1 1 0 2 0 0 1 2 2 0 0 0 0 0 0 0 00 3 1 3 72 0 2 42 83 03 743解(3)解(下一步 r 2 3r 1 r 3 2r 1 r 4 3r 1)~ (下一步 r 2 ( 4) r 3 ( 3) r 4( 5) )~ (下一步 r 1 3r 2 r 3 r 2 r 4 r 2)3 ~2 (4) 13 22 3 1 3 71 2 0 2 4 3 2 8 3 0 2 3 7 4 30 1 1 1 11 2 0 2 4 0 8 8 9 12 0 7 7 8 11 0 1 1 1 11 02 0 2 0 0 0 1 4 00 0 1 41 02 0 20 1 1 1 1 0 0 0 1 4 0 0 00 01 02 0 2 0 1 1 03 0 0 0 14 0 00 0 0解(下一步 r 1 2r 2 r 3 3r 2 r 4 2r 2)~ (下一步 r 2 2r 1 r 3 8r 1 r 4 7r 1)~ (下一步 r1r 2 r 2 ( 1) r 4 r 3 )~ (下一步 r 2 r 3)~0 1 0 1 0 1 1 2 32 设 1 0 0 A 0 1 0 4 5 6 求 A0 0 1 0 0 17 8 90 1 0解1 0 0 是初等矩阵 E (1 2) 其逆矩阵就是其本身0 0 11 0 10 1 0 是初等矩阵 E (1 2(1)) 其逆矩阵是0 0 11 0 1E (1 2( 1))0 1 00 0 10 1 0 1 2 3 1 0 1 A 1 0 0 4 5 6 0 1 00 0 1 7 8 9 0 0 14 5 6 1 0 1 4 5 2 1 2 3 0 1 0 1 2 2 7 8 9 0 0 1 7 8 272 3 6 3 2 11 2 2 023 20 12 2 1 1 23 2 01 2 13 2 0 1 1 0 0 0 0 2 2 1 0 1 0 0 1 2 3 2 0 0 1 0 01 2 1 0 0 0 11 2 3 2 0 0 1 0 0 1 2 1 0 0 0 1 0 4 9 5 1 0 3 0 0221 0 10 012320 010 0 1 2 1 0 0 0 1 0 0 1 1 1 0 3 4 00 2 1 0 1 0 23 试利用矩阵的初等变换 求下列方阵的逆矩阵(1) 3 2 1 3 1 53 2 33 2 1 1 0 0 3 2 1 1 0 0 解3 1 5 0 1 0 ~ 0 14 1 1 0 3 2 3 0 0 1 0 0 2 1 0 13 2 0 3/ 2 0 1/ 2 3 0 0 7 / 2 2 9/ 2 ~ 0 1 0 1 1 2 ~ 0 1 0 1 1 2 0 0 2 1 0 1 0 0 1 1/ 2 0 1/ 21 0 0 7 / 6 2/3 3/2 ~ 0 1 0 1 1 2 0 0 1 1/ 2 0 1/ 2故逆矩阵为 1 1(2)解~~1 2 3 2 0 0 1 0 0 1 2 1 0 0 0 1 0 0 1 1 1 0 3 4 0 0 0 1 2 1 6 101 2 0 0 1 1 2 2 0 1 0 0 0 1` 0 1 0 0 1 0 1 1 3 6 00 0 1216 1010 01124 0 1 0 0 0 1 0 1 0 0 1 0 1 1 3 6 0 0 0 12 1 6 10112 4 01 0 1 1 1 3 6 21 6 104 1 2 1 3 r 1 0 0 10 22 2 1 2 2 ~ 0 1 0 15 33 1 1 3 1 0 0 1 12 40 2 1(2)设 A2 13 B3 3 4( A T ) 1 B T1 7 1 4~~~故逆矩阵为4 1 21 34 (1)设 A 2 2 1B 2 2 求 X 使 AX B3 1 13 1解 因为( A , B )所以XA 1B10 2 15 3 12 41 2 3 2 3 1求 X 使 XA B解 考虑 A T X T B T 因为0 2 3 1 2 r 1 0 0 2 4( A T, B T) 2 1 3 2 3 ~ 0 1 0 1 7 1 3 4 3 1 0 0 1 1 42 4所以 X T2 1 1 4 7 40 0从而X BA 11 1 05 设 A0 1 1 AX 2X A 求 X1 0 1解 原方程化为(A 2E )X A 因为1 1 0 1 1 0 ( A 2E , A )0 1 1 0 1 11 0 1 1 0 1 1 0 0 0 1 1 ~ 0 1 0 1 0 1 0 0 1 1 1 00 1 1 所以X ( A 2E ) 1 A1 0 11 1 06 在秩是 r 的矩阵中,有没有等于 0 的 r 1 阶子式? 有没有 等于 0 的 r 阶子式?解 在秩是 r 的矩阵中 可能存在等于 0 的 r 1 阶子式 也 可能存在等于 0 的 r 阶子式例如 A 1 0 0 0 0 1 0 0 0 0 1 0R (A ) 30 0 00 0 是等于 0 的 2 阶子式 1 0 0 是等于 0 的 3 阶子式 0 1 07 从矩阵 A 中划去一行得到矩阵 B 问 A B 的秩的关系怎 样?解 R (A ) R (B )这是因为 B 的非零子式必是 A 的非零子式 故 A 的秩不会小于 B 的秩1 18 求作一个秩是 4 的方阵 它的两个行向量是(1 0 1 0 0) (1 1 0 0 0)解 用已知向量容易构成一个有 4 个非零行的 5 阶下三角矩 阵1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 00 0 0 0此矩阵的秩为 4 其第 2 行和第 3 行是已知向量9 求下列矩阵的秩 并求一个最高阶非零子式3 1 0 2 (1) 1 1 2 1 ;1 3 4 4 3 1 0 2解1 12 1 (下一步 r 1r 2 )1 3 4 41 12 1~ 3 1 0 2 (下一步 r 2 3r 1 r 3 r 1 )1 3 4 4 1 12 1~ 0 4 6 5 (下一步 r 3 r 2 )0 4 6 51 12 1~ 0 4 6 50 0 0 0矩阵的 秩为2 3 14 是一个最高阶非零子式3 2 1 3 1 (2) 2 1 3 1 37 0 5 1 81 3 4 4 1 ~ 0 7 11 9 5 0 0 0 0 03 2 秩是 2= -7 是 2 - 12 1 83 7 23 0 7 5 32 5 8 0 10 3 2 02 1 83 72 3 0 7 53 2 5 8 0 1 0 3 2 00 1 2 1 70 3 6 3 5 0 2 4 2 0 1320 1 2 1 70 0 0 0 16 0 0 0 0 14 (下 1 0 3 2 0 0 1 2 1 7 0 0 0 0 1 0 0 0 0 0 1 0 3 2 01 0 32 0 0 1 2 1 7 0 0 0 0 1 0 0 00 03 2 1 3 2解2 13 1 3 (下一步 r 1 r 2 r 2 2r 1 r 3 7r 1 ) 7 0 5 1 8 1 34 4 1 ~ 0 7 11 95 (下一步 r 3 3r 2 )0 21 33 27 15矩阵的 一个最高阶非零子式(3)解 (下一步 r 1 2r 4 r 2 2r 4 r 3 3r 4)~ (下一步 r 2 3r 1 r 3 2r 1)~ 一步 r 2 16r 4 r 3 16r 2 )~~0 7 5矩阵的秩为3 5 8 0 70 0 是一个最高阶非零子式3 2 010 设A、B 都是m n 矩阵证明A~B 的充分必要条件是R(A) R(B)证明根据定理3 必要性是成立的充分性设R(A) R(B) 则A 与B 的标准形是相同的设A 与B 的标准形为D 则有A~D D~B由等价关系的传递性有A~B11 设A 1 2 3k1 2k 3k 2 3问k 为何值可使(1)R(A) 1 (2)R(A) 2 (3)R(A) 31 2 3k 解 A 1 2k 3 r 1 1 k~ 0 k 1 k 1k 2 3 0 0 (k1)(k 2)(1)当k 1 时R(A) 1(2)当k 2 且k 1 时R(A) 2(3)当k 1 且k 2 时R(A) 312 求解下列齐次线性方程组:(1) x12x1x22x3x2x3x4x40 2x12x2x32x4解对系数矩阵A 进行初等行变换有1 1 2A 2 1 12 2 1 1 1 0 11 ~ 0 1 32 0 0 114/34 1 0x 4 1于是x 2 3 4 3x 44 x x 33 4 x 4 x 4故方程组的解为4 x 1 3x 2 k x 3 x 43 (k 为任意常数)3 1x 1 2x 2 x 3 x 4 0 (2) 3x 1 5x 1 6x 2 10x 2 x 3 3x 4 0x 3 5x 4 0解 对系数矩阵 A 进行初等行变换 有1 2 1 1 1 2 0 1 A 3 6 1 3 ~ 0 0 1 0 5 10 1 5 0 0 0 0x 1 于是x 2 x 3x 4 2x 2 x 4 x 20 x 4故方程组的解为x 1 2 1 x 2x 3 x 42x 1k 13x 20 k 2 0 0 1x 35x 4 0 (k 1 k 2 为任意常数) 3x x 2x 7x 0 (3)4 1 2 3 4 3 6 0 x 1 x 2x 1 2x 2 x 34x 3x 4 7x 4 0解 对系数矩阵 A 进行初等行变换 有2 3 1 5 1 0 0 0 31 2 7 0 1 0 0 4 1 3 6 ~ 0 0 1 0 4x 1 11x 2 13x 3 16x 4 0 7x 12x 2 x 3 3x 4 03 4 5 7 2 3 3 24 11 13 16 7 2 1 31 01 0 0 0 01A12 4 7x 1 0 于是x 2 0 x 3 0 x 4 0 0 0 0 1故方程组的解为x 1 0 x 2 0 x 3 0 x 4(4) 3x 1 2x 14x 2 3x 2 5x 3 3x 3 7x 4 0 2x 4 0解 对系数矩阵 A 进行初等行变换 有Ax 3 x~ 13 x3 1317 1719 2017 17 0 0 0 0117 3 19 17 4 20 于是x 2 x 3 x 4x 17 3 x 3 x 4x 17 4故方程组的解为3 13 x 1 17 17x 2 k 19 x 3 17x 4 1k 20 2 17 0 1 (k 1 k 2 为任意常数)2x 3y z 4x 2 y 4z 5 3x 8y 2z 13 4x y 9z 62 3 1 4 12 4 53 8 2 13 412z 1 9 6 1 0 2 1 0 1 1 2 0 0 0 0 0 00 013 求解下列非齐次线性方程组:(1) 4x 1 3x 1 11x 1 2x 2 1x 2 3x 2 x 3 2 2x 3 108解 对增广矩阵 B 进行初等行变换 有4 2 1 2 1 3 3 8 B 3 1 2 10 ~ 0 10 11 34 11 3 0 8 0 0 0 6于是 R (A ) 2 而 R (B ) 3 故方程组无解(2)解 对增广矩阵 B 进行初等行变换 有B ~x 于是y z 2 z zx 2 1即y k 12 (k 为任意常数)z1 02x (3) 4x 2xy z w 1 2 y 2z w 2y z w 1解 对增广矩阵 B 进行初等行变换 有2 1 1 1 1 1 1/ 2 1/ 2 0 1/ 2 B 4 2 2 1 2 ~ 0 0 0 1 0 2 1 1 1 1 0 0 0 0 03 4 x1 y 1 z 12 2 2 于是y y z z w 0x y即z k 1 w1 12 2 1 k 2 0 0 1 0 0120 (k 1 k 2 为任意常数) 0 02x y z w 1 (4) 3x 2 y z x 4 y 3z 3w 45w 2解 对增广矩阵 B 进行初等行变换 有2 1 1 1 1 1 0 1/ 7 1/ 7 6/ 7 B3 2 1 34 ~ 0 1 5/ 7 9/ 7 5/ 7 1 4 35 2 0 0 0 0 0x于是y z wx y 即z w1 z 1 w 6 7 7 7 5 z 9 w 5 7 7 7z w1 1 7 7 k 5 k 9 17 2 7 1 0 0 1675 (k 1 k 2为任意常数)7 0 014 写出一个以2 2 x c 11 c2 0 0 1为通解的齐次线性方程组解 根据已知 可得。
工程数学--线性代数课后题答案_第五版5

工程数学--线性代数课后题答案_第五版第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫⎝⎛==11111a b ,⎪⎪⎭⎫⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T=E -2(x T )T x T =E -2xx T ,所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫ ⎝⎛633312321;解)9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A , 得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000. 解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-0000000001101001101011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T-λE|=|(A-λE)T|=|A-λE|T=|A-λE|,所以A T与A的特征多项式相同,从而A T与A的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明A与B有公共的特征值,有公共的特征向量.证明设R(A)=r,R(B)=t,则r+t<n.若a1,a2,⋅⋅⋅,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,⋅⋅⋅,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,⋅⋅⋅,a n-r,b1,b2,⋅⋅⋅,b n-t 必线性相关.于是有不全为0的数k1,k2,⋅⋅⋅,k n-r,l1,l2,⋅⋅⋅,l n-t,使k1a1+k2a2+⋅⋅⋅+k n-r a n-r+l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A 与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ2+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故|A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25. 13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似. 14.设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则 (A -λE )p =0,即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫ ⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T )32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222.解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10). 17.设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似,求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p . 对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A . 解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎭⎫⎝⎛------=244354331.19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2,即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=.令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A .20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A的n-1重特征值;证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则有A x=λx,λ2x=A2x=aa T aa T x=a T a A x=λa T ax,于是可得λ2=λa T a,从而λ=0或λ=a T a.设λ1,λ2,⋅⋅⋅,λn是A的所有特征值,因为A=aa T的主对角线性上的元素为a12,a22,⋅⋅⋅,a n2,所以a12+a22+⋅⋅⋅+a n2=a T a=λ1+λ2+⋅⋅⋅+λn,这说明在λ1,λ2,⋅⋅⋅,λn中有且只有一个等于a T a,而其余n-1个全为0,即λ=0是A的n-1重特征值.(2)求A的非零特征值及n个线性无关的特征向量.解设λ1=a T a,λ2=⋅⋅⋅=λn=0.因为A a=aa T a=(a T a)a=λ1a,所以p1=a是对应于λ1=a T a的特征向量.对于λ2=⋅⋅⋅=λn=0,解方程A x=0,即aa T x=0.因为a≠0,所以a T x=0,即a1x1+a2x2+⋅⋅⋅+a n x n=0,其线性无关解为p2=(-a2,a1, 0,⋅⋅⋅, 0)T,p3=(-a3, 0,a1,⋅⋅⋅, 0)T,⋅⋅⋅,p n=(-a n, 0, 0,⋅⋅⋅,a1)T.因此n个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a aa a a a n n n p p p . 22.设⎪⎪⎭⎫⎝⎛-=340430241A ,求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1,A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100), ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A⎪⎪⎭⎫ ⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1). (1)求关系式⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛++n n n n y x A y x 11中的矩阵A ; 解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q pq py x 1111, 因此 ⎪⎭⎫⎝⎛--=q p qp A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫⎝⎛n n y x . 解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是 11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-=p q r p q A nn ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111⎪⎭⎫⎝⎛+--++=n n n n q r p p r p q r q p r q q p 1,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9;解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21.对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2)设⎪⎪⎭⎫⎝⎛=122221212A ,求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1=P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1=P diag(12, 0, 0)P -1⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫ ⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵:(1)x x x ⎪⎭⎫⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎭⎫ ⎝⎛=1312A .(2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(T f .解二次型的矩阵为⎪⎪⎭⎫⎝⎛=987654321A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3; 解二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A .由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21 ,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4. 解二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=111111001111011A . 由 2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T)21 ,0 ,21 ,0(4=p . 于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程. 解二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A ,得A 的特征值为λ1=2, λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234, 使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值.证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵.(1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x yy y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3;=(x 1+x 3)2-x 22+(x 2+x 3)2. 令⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C . (3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C .31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a . 解二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A ,其主子式为a 11=1,2111a a a-=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3; 解二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A .因为0211<-=a ,0116112>=--, 038||<-=A , 所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4. 解二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A . 因为 0111>=a ,043111>=--, 06902031211>=--, 024>=A , 所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数. 令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。
工程数学-线性代数第五版课后习题答案

10 求下列矩阵的逆矩阵
(1)
1 2
2 5
解
A
12 25
|A| 1 故 A 1 存在 因为
A*
A11 A21
A12 A22
52 21
故
A 1 1 A* | A|
52 21
(2) cos sin
sin cos
解 A co s si n
a13 a23 a33 x3
(a11x1 a12x2 a13x3
a 12x1 a22x2 a23x3
x1
a13x1 a23x2 a33x3) x2
x3
a11 x12 a22 x22 a33 x32 2a12 x1x2 2a13 x1x3 2a23 x2x3
4 设A
12 13
B
10 12
问
(1)AB BA 吗 ?
所以有 x2 12 z1 4 z2 9 z3
x3 10 z1 z2 16 z3
11 1
1 23
2 设A 1 1 1 B 1 2 4
1 11
0 51
求 3AB 2A 及 ATB
11 1 1 2 3
11 1
解 3 AB 2 A 3 1 1 1 1 2 4 2 1 1 1
1 11 0 5 1
1 11
058 30 56
3 32 3
0
3 32
00
3
4 436 2
0
4 43
00
4
5 5 4 10 3
0
5 54
00
5
k k k 1 k (k 1) k 2
Ak
0
k
2 k k1
00
k
用数学归纳法证明
工程数学-线性代数第五版课后习题答案

第二章 矩阵及其运算13. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .2.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .6. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .7.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.9. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 10. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i n s i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211.11. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(d i a g 4-= =2diag(1, -2, 1). 22.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26.计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O OA A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程数学作业(第五次)
第6章 统计推断
(一)单项选择题
⒈设x x x n 12,,, 是来自正态总体N (,)μσ2
(μσ,2
均未知)的样本,则(A )是统计
量.
A. x 1
B. x 1+μ
C.
x 12
2σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2
均未知)的样本,则统计量(D )不是μ的无偏估计.
A. max{,,}x x x 123
B. 1
2
12()x x + C. 212x x - D. x x x 123--
(二)填空题
1.统计量就是 不含未知参数的样本函数 .
2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.
3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .
4.设x x x n 12,,, 是来自正态总体N (,)μσ2
(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量n
x U /0
σμ-=
.
5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.
(三)解答题
1.设对总体X 得到一个容量为10的样本值
4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,
5.0, 3.5, 4.0
试分别计算样本均值x 和样本方差s 2
.
解: 6.336101
101101
=⨯==∑=i i x x
878.29.259
1)(11012
1012
=⨯=--=∑=i i
x x s
2.设总体X 的概率密度函数为
f x x x (;)(),,
θθθ=+<<⎧⎨
⎩101
0其它 试分别用矩估计法和最大似然估计法估计参数θ.
解:提示教材第214页例3
矩估计:,121)1()(11
0∑⎰===++=
+=n
i i x n x dx x x X E θθθθ
x
x --=112ˆθ 最大似然估计:
θθθθθ)()1()1();,,,(21121n n i n
i n x x x x x x x L +=+==
0ln 1ln ,ln )1ln(ln 11
=++=++=∑∑==n
i i n
i i x n
d L d x n L θθθθ,1ln ˆ1
--
=∑=n
i i
x
n
θ
3.测两点之间的直线距离5次,测得距离的值为(单位:m ):
108.5 109.0 110.0 110.5 112.0
测量值可以认为是服从正态分布N (,)μσ2
的,求μ与σ2的估计值.并在⑴σ225=.;⑵
σ2未知的情况下,分别求μ的置信度为0.95的置信区间.
解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ51
2
2=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.02
1)(=-=Φα
λ 查表得:96.1=λ
故所求置信区间为:]4.111,6.108[],[=+-n x n x σ
λ
σ
λ
(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ
故所求置信区间为:]7.111,3.108[],[=+-n
s
x n s
x λλ
4.设某产品的性能指标服从正态分布N (,)μσ2
,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.
解:237.0162.343
|10
/42017||/|
||0=⨯=-=-=n x U σμ, 由975.02
1)(=-=Φα
λ ,查表得:96.1=λ
因为 237.0||=U > 1.96 ,所以拒绝0H
5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):
20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5
问用新材料做的零件平均长度是否起了变化(α=005.).
解:由已知条件可求得:0125.20=x 0671.02
=s
1365.0259
.0035
.0|8
/259.020
0125.20|
|/|
||0
==
-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ
∵ | T | < 2.62 ∴ 接受H 0
即用新材料做的零件平均长度没有变化。