2,3,4次曲线拟合matlab程序

合集下载

[matlab曲线拟合]MATLAB的曲线拟合

[matlab曲线拟合]MATLAB的曲线拟合

[matlab 曲线拟合]MATLAB的曲线拟合篇一: MA TLAB的曲线拟合MA TLAB软件提供了基本的曲线拟合函数的命令。

曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。

1.线性拟合函数:regress调用格式:b =regress[b,bint,r,rint,stats]= regress[b,bint,r,rint,stats] =regressx=[ones …];y=x*[10;1]+normrnd;[b,bint]=regress结果得回归方程为:y=9.9213+1.0143xx=1:20;y=x+3*sin;p=polyfitxi=linspace;z=polyval;% 多项式求值函数plotlegendfunction yy=modela=beta0;b=beta0;yy=a+*exp);拟合程序:x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.0014.00...16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.0024.00...24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.0032.00...34.00 36.00 36.00 38.00 38.00 40.00 42.00]‟;y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.430.44 0.43...0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.400.41 0.41...0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.390.39]‟;beta0=[0.30 0.02];betafit = nlinfit结果:betafit =0.3896 0.1011即:a=0.3896 ,b=0.1011 拟合函数为:x1 =[1150,1000,900,850,700,625,550,475,3350,3500,5900,5800,5700,4600,4625,4725,11650,11200,11200 ]‟;x2 =[175,100,25,0,75,100,150,200,50,600,500,225,100,1225,1600,2000,1200,1000,1550 ]‟;x = [x1,x2];y=[1.44E-02,1.80E-02,6.08E-02,5.59E-02,3.42E-02,7.74E-03,1.17E-03,6.16E-03,1.91E-04,1.,resplot3)% 值的选取没有定法,与实际问题的模型有关。

matlab各类拟合曲线代码

matlab各类拟合曲线代码

标题:探索MATLAB中各类拟合曲线的代码应用在MATLAB中,拟合曲线是数据分析和模型建立中常用的技术之一。

通过拟合曲线,我们可以了解数据之间的关联性并建立预测模型,为进一步分析和应用数据奠定基础。

本文将深入探讨MATLAB中各类拟合曲线的代码应用,帮助读者更深入地理解该主题。

一、线性拟合曲线1. 使用MATLAB进行线性拟合曲线的代码示例在MATLAB中,使用polyfit函数可以进行线性拟合。

对一组数据点(x, y)进行线性拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2, 3.5, 5, 7, 8.5];p = polyfit(x, y, 1);```其中,x为自变量,y为因变量,1表示进行一次线性拟合。

通过polyfit函数,可以得到线性拟合的系数p。

2. 线性拟合曲线的应用和特点线性拟合曲线适用于线性关系较为明显的数据,例如物理实验数据中的直线关系。

通过线性拟合,可以获得各项系数,对数据进行预测和建模。

二、多项式拟合曲线1. 使用MATLAB进行多项式拟合曲线的代码示例在MATLAB中,使用polyfit函数同样可以进行多项式拟合。

对一组数据点(x, y)进行二次多项式拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [1, 4, 9, 16, 25];p = polyfit(x, y, 2);```其中,x为自变量,y为因变量,2表示进行二次多项式拟合。

通过polyfit函数,同样可以得到多项式拟合的系数p。

2. 多项式拟合曲线的应用和特点多项式拟合曲线适用于数据中存在曲线关系的情况,通过选择合适的最高次数,可以灵活地拟合各种曲线形状。

三、非线性拟合曲线1. 使用MATLAB进行非线性拟合曲线的代码示例在MATLAB中,使用fit函数可以进行非线性拟合。

对一组数据点(x, y)进行指数函数拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2.1, 7.4, 16.1, 29.3, 48.2];f = fit(x', y', 'exp1');```其中,x为自变量,y为因变量,'exp1'表示进行指数函数拟合。

Matlab中的曲线拟合方法

Matlab中的曲线拟合方法

Matlab中的曲线拟合方法引言在科学与工程领域,数据拟合是一个重要的技术,可用于分析实验数据、预测未知的对应关系,并量化观察到的现象。

其中,曲线拟合是一种常见的数据拟合方法,而Matlab作为一种功能强大的科学计算软件,提供了多种曲线拟合工具和函数,方便用户进行数据分析和模型建立。

本文将对Matlab中的曲线拟合方法进行详细介绍和讨论。

一、线性拟合线性拟合是最简单且常见的曲线拟合方法,其基本思想是通过一条直线拟合数据点,找到最佳拟合直线的参数。

在Matlab中,可以使用polyfit函数实现线性拟合。

该函数接受两个输入参数,第一个参数为数据点的x坐标,第二个参数为数据点的y坐标。

返回结果为一个一次多项式拟合模型的参数。

例如,我们有一组实验测量数据如下:x = [1, 2, 3, 4, 5];y = [3, 5, 7, 9, 11];通过polyfit函数进行线性拟合:coeff = polyfit(x, y, 1);其中,1表示要拟合的多项式的次数,这里我们选择了一次多项式(直线)。

coeff即为拟合得到的直线的参数,可以通过polyval函数将参数代入直线方程,得到对应x的y值。

y_fit = polyval(coeff, x);接下来,我们可以使用plot函数将原始数据点和拟合曲线都绘制在同一张图上:figure;plot(x, y, 'o', 'MarkerSize', 10); % 绘制原始数据点hold on;plot(x, y_fit); % 绘制拟合曲线xlabel('x');ylabel('y');legend('原始数据点', '拟合曲线');通过观察图像,我们可以初步判断拟合的效果如何。

如果数据点较为分散,直线拟合效果可能较差。

在此情况下,可以考虑使用更高次的多项式进行拟合。

二、多项式拟合多项式拟合是一种常见的曲线拟合方法,其基本思想是通过一个一定次数的多项式函数来拟合数据点。

matlab 自定义曲线数据拟合

matlab 自定义曲线数据拟合

在MATLAB中,您可以使用曲线拟合工具箱(Curve Fitting Toolbox)进行自定义曲线数据拟合。

以下是一个详细步骤:1. 打开MATLAB软件,点击主页选项卡下的“导入数据”按钮。

2. 在弹出的对话框中,选择包含x和y数据的文件,然后点击“导入所选内容”。

这将在工作区中生成两个列向量,分别为x和y数据。

3. 创建一个名为“cftool”的函数文件,以便在后续步骤中调用曲线拟合工具。

在函数文件中,编写以下代码:```MATLAB% 导入数据x = load('x_data.txt');y = load('y_data.txt');% 进行曲线拟合f = cftool('x', 'y', 'Custom');```4. 在上述代码中,'Custom'表示自定义函数。

接下来,我们需要编写自定义函数来描述拟合的曲线。

例如,如果您的数据符合二次多项式关系,可以编写以下自定义函数:```MATLABfunction y = custom_function(x)y = x^2 + 3*x + 2;end```5. 将自定义函数加载到cftool函数中:```MATLABerDefinedFunction = @(x) custom_function(x);```6. 拟合数据并查看结果:```MATLABf.FitTask.Options.Display = 'plot';f.FitTask.Options.PlotTitle = 'Custom Fit';f.FitTask.Options.XLabel = 'X';f.FitTask.Options.YLabel = 'Y';f.FitTask.Run();```7. 如果需要,您可以将拟合后的函数表达式保存到一个新的文件中。

2,3,4次曲线拟合matlab程序

2,3,4次曲线拟合matlab程序

2,3,4次曲线拟合matlab程序2,3,4次曲线拟合matlab程序【程序代码】clf resetH=axes('unit','normalized','position',[0,0,1.5,1],'visible','off');set(gcf,'currentaxes',H);str='\fontname{微软雅⿊}2,3,4次曲线拟合程序';text(0.17,0.9,str,'fontsize',15);%这是设置字体位置的h_fig=get(H,'parent');set(h_fig,'unit','normalized','position',[0.1,0.2,0.8,0.5]);%这是设置出现窗⼝的⼤⼩的h_axes=axes('parent',h_fig,'unit','normalized','position',[0.1,0.15,0.55,0.7],'xlim',[015],'ylim',[0 1.8],'fontsize',8);h_text=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.90,0.24,0.03],'horizontal','left','s tring',{'左区间'});h_text1=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.75,0.24,0.03],'horizontal','left',' string',{'右区间'});h_text2=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.62,0.24,0.03],'horizontal','left',' string',{'步长'});h_text3=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.48,0.24,0.03],'horizontal','left',' string',{'拟合矩阵'});h_edit=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.82,0.24,0.08],'horizontal','left','callback',['a=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=polyval(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);h_edit1=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.67,0.24,0.08],'horizontal','left','callback',['b=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=polyval(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);h_edit2=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.54,0.24,0.08],'horizontal','left','callback',['n=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=polyval(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);h_edit3=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.38,0.24,0.1],'horizontal','left','callback',['x=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=polyval(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);h_push1=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.24,0.12,0.08],'string',' grid on','callback','grid on');h_push2=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.15,0.12,0.08],'string',' grid off','callback','grid off');h_push3=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.15,0.12,0.08],'string','退出','callback','exit'); h_push4=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.24,0.12,0.08],'string','关闭','callback','close(gcbf)');【操作界⾯】。

曲线拟合法的Matlab实现

曲线拟合法的Matlab实现

曲线拟合法的Matlab实现曲线拟合在许多科学和工程领域中都有广泛应用,包括机器学习,数据科学,信号处理,控制工程等。

在Matlab中实现曲线拟合的方法有多种,其中最常用的是使用fit()函数。

以下是一个基本的示例,演示如何在Matlab中使用fit()函数进行曲线拟合。

我们需要一些数据。

假设我们有一组x和y数据点,我们想要在这些点上拟合一条曲线。

y = 3*x.^2 + 2*x + 1 + randn(size(x));fitresult = fit(x, y, 'poly1');在这里,'poly1'表示我们想要拟合一个一次多项式。

你可以使用'poly2','poly3'等来拟合更高次的多项式。

同样,你也可以使用其他类型的模型,如指数、对数、自定义函数等。

然后,我们可以使用plot()函数将原始数据和拟合曲线一起绘制出来。

在这里,'hold on'命令用于保持当前图像,这样我们就可以在同一个图形上绘制多条线了。

我们可以使用fitresult来获取拟合曲线的参数和其他信息。

例如:以上就是在Matlab中进行曲线拟合的基本步骤。

需要注意的是,对于复杂的实际问题,可能需要进行更复杂的模型选择和参数优化。

也可以使用其他工具如curve fitting toolbox进行更详细的分析和拟合。

最小二乘曲线拟合是一种数学统计方法,用于根据给定数据点拟合出一条曲线或曲面,使得该曲线或曲面最小化每个数据点到拟合曲线或曲面的平方误差之和。

这种方法广泛应用于数据分析和科学计算等领域。

本文将介绍最小二乘曲线拟合的基本原理和在Matlab中的实现方法。

假设有一组数据点 (x_i, y_i),i=1,2,...,n,需要拟合出一条曲线y=f(x)。

最小二乘法要求曲线 f(x)最小化每个数据点到曲线的平方误差之和,即E = sum (f(x_i)-y_i)^2对曲线 f(x)进行求导,得到一元一次方程:f'(x)=sum(f(x)-y)*x-sum(f(x)-y)E = sum [(f'(x))^2] * x^2 - 2 * sum [f(x) * f'(x) * x] + 2 * sum [f(x)^2]令 E对 f'(x)的导数为零,可得到最小二乘曲线拟合的方程:sum [f'(x)^2] * x^2 - 2 * sum [f(x) * f'(x) * x] + 2 * n * f(x)^2 = 0在Matlab中,可以使用polyfit函数实现最小二乘曲线拟合。

用MATLAB作曲线拟合

用MATLAB作曲线拟合
MATLAB作曲线拟合
1. 线性拟合 作多项式f(x)=a1xm+ …+amx+am+1拟合,可用以下命令:
a=polyfit(x,y,m)
输出拟合多项式系数 a=[a1, …am , am+1] (数组))
输入同长度 的数组X,Y
多项式在 x 处的值 y 可用以下命令计算: y=polyval(a,x)
0.0062 0.0062 x = 0.0063 -0.0034
0.0056 0.0063 0.2542
0.0059 0.0063
4)拟合得a=0.0063 b=-0.0034 k=0.2542
0.0061 0.0063
可以看出,两个命令的计算结果是相同的.
例. 由数据 温度t(0C) 20.5 32.7 51.0 73.0 95.7
6.50,6.59];
x0=[0.2,0.05,0.05];
x=lsqcurvefit ('curvefun1',x0,tdata,cdata)
f= curvefun1(x,tdata)
解法2: 用命令 lsqnonlin f(x)=F(x,tdata,ctada)= (a be0.02kt1 c1,, a be0.02kt10 c1)T x=(a,b,k)
function f=curvefun1(x,tdata)
f=x(1)+x(2)*exp(-0.02*x(3)*tdata)
2)输入命令
%其中 x(1)=a; x(2)=b;x(3)=k;
tdata=100:100:1000
cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,

matlab拟合散点曲线

matlab拟合散点曲线

在MATLAB 中,可以使用scatter 函数来绘制散点图,并使用fit 函数来拟合曲线。

下面是一个简单的示例代码,演示如何使用MATLAB 拟合散点曲线:生成测试数据x = linspace(0, 2*pi, 100);y = sin(x);绘制散点图scatter(x, y, 'filled');拟合二次曲线f = @(x) x.^2; 定义二次函数params = fit(x, y, 'Linear'); 拟合线性曲线params2 = fit(x, y, 'Quadratic'); 拟合二次曲线params3 = fit(x, y, 'Cubic'); 拟合三次曲线绘制曲线hold on;plot(f(params.a), f(params.b), 'r'); 绘制线性曲线plot(f(params2.a), f(params2.b), 'g'); 绘制二次曲线plot(f(params3.a), f(params3.b), 'b'); 绘制三次曲线绘制拟合曲线hold off;xlabel('x');ylabel('y');title('Sinusoidal Curve Fitting');grid on;在上面的代码中,我们首先生成了一个测试数据集,其中包含100 个正弦波形的数据点。

然后,我们使用scatter 函数绘制了这些数据点的散点图。

接下来,我们使用fit 函数分别拟合了线性、二次和三次曲线。

最后,我们使用plot 函数绘制了这些曲线,并添加了坐标轴标签、标题和网格线。

需要注意的是,在使用fit 函数拟合曲线时,需要先定义曲线的数学公式,并指定数据集作为输入。

fit 函数返回一个包含拟合参数的结构体,其中包含曲线的系数和截距等信息。

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线听说你想要用cftool作出这样的东西?楼上有人说用cftool-v1,不过很绝望比较新的版本都完全无法使用这个功能了。

反正我的R2016a不行。

我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,希望对大家有帮助!转载请注明原出处和原作者!这里我们以RLC串联谐振需要在同一个坐标里画出频率特性的XC,XL,Z曲线为例,首先敲出坐标数据如下(请手动无视i数据):然后运行,转到了cftool界面如下:首先我们拟合xc-f曲线(这是个反函数曲线),然后点:文件——generate code然后你看到了这个:保存一下,然后点运行,这里就有点GAY了,说什么参数不足,但是没事,你鼠标点一下“键入运行代码那一行然后变成了下面这个样子”,再点运行图标。

然后会跳出一个窗口,就是下面这个玩意儿,注意观察的话,你会发现他的曲线颜色和你一般的直接从cftool里点print to figure曲线颜色不一样!我们要的就是这个效果!保留上面这个窗口,回答cftool依次把剩下的xl-f曲线,z-f曲线按照上面的步骤操作,得到三个窗口。

接下来是见证奇迹的时候了!进到每个窗口把属性编辑器打开,像酱紫:然后你看到下面这一幕:没错,刚才的单个独立窗口合并到了一起变成了三个标签!接下来就是把任何两个标签里的曲线复制到余下哪一个,比如我们把figure1,figure2里的曲线都弄到figure3里:选中figure2曲线——右击复制(千万不要用ctrl+c,不信你可以看一下会发生什么。

)——到figure3里右击粘贴(同样的道理,不要Ctrl+v),现在看到你要的了吧!对figure1实行同样的操作,然后就得到了:剩下的就是用属性编辑器编辑成你要的样子了!声明一下,如果直接从cftool里print to figure三次然后再复制粘贴是不行的,应为根本无法实现曲线的复制粘贴,他产生的结果会和上面你用Ctrl+c复制Ctrl+v粘贴产生同样的效果,根本不是我们想要的!重复一遍,我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,完全野路子,希望对大家有帮助!转载请注明原出处和原作者!谢谢!吐槽一下知乎的回答编辑板块渣渣。

matlab曲线拟合

matlab曲线拟合

§5.4 曲线拟合的MATLAB 实现MATLAB 软件提供了基本的曲线拟合函数的命令.多项式函数拟合:a=polyfit(xdata,ydata,n)其中n 表示多项式的最高阶数,xdata ,ydata 为将要拟合的数据,它是用数组的方式输入.输出参数a 为拟合多项式11++++=n n n a x a x a y 的系数],,,[11+=n n a a a a 多项式在x 处的值y 可用下面程序计算.y=polyval(a,x)一般的曲线拟合:p=curvefit(‘Fun’,p 0,xdata,ydata)其中Fun 表示函数Fun(p,data)的M 函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是{}2).^),((min ydata xdata p Fun sum p -若要求解点x 处的函数值可用程序f=Fun(p,x)计算.例如已知函数形式dx bx ce ae y --+=,并且已知数据点,,,2,1),,(n i y x i i =要确定四个未知参数a ,b ,c ,d .使用curvefit 命令,数据输入],,,[];,,,[2121n n y y y ydata x x x xdata ==;初值输],,,[00000d c b a p =;并且建立函数dx bx ce ae y --+=的M 文件(Fun .m ).若定义d p c p b p a p ====4321,,,,则输出],,,[4321p p p p p =又如引例的求解,MATLAB 程序:t=[l :16]; %数据输人y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 10.58 10.6] ;plot(t,y,’o’) %画散点图p=polyfit(t,y,2) (二次多项式拟合)计算结果:p=-0.0445 1.0711 4.3252 %二次多项式的系数由此得到某化合物的浓度y 与时间t 的拟合函数20445.00711.13252.4t t y -+=对函数的精度如何检测呢?仍然以图形来检测,将散点与拟合曲线画在一个画面上.参见图5.3.),,'',,(),()160,16,0(yi xi o y x plot xi p polyval yi linspace xi ==由此看见上述曲线拟合是比较吻合的。

曲线拟合 matlab

曲线拟合 matlab

曲线拟合 matlab
在MATLAB中进行曲线拟合可以使用多种方法,其中最常见的是使用fit 函数,它是Curve Fitting Toolbox 中的一个函数。

以下是一个基本的示例:
matlab
% 生成一些数据
x = linspace(0,10,100);
y = 3*x.^2 + 2*x + randn(size(x));
% 使用fit函数进行拟合
f = fit(x', y', 'poly1');
% 绘制原始数据和拟合曲线
plot(f, x, y);
在这个例子中,我们首先生成了一些数据,然后使用fit 函数对数据进行拟合。

在这个例子中,我们使用的是一次多项式('poly1'),但你可以选择其他多项式或非多项式函数。

拟合完成后,你可以使用 f 这个拟合对象来绘制原始数据和拟合曲线。

注意:在使用Curve Fitting Toolbox之前,你需要先安装它。

你可以在MATLAB的Add-Ons Explorer中找到并安装它。

用MATLAB作曲线拟合

用MATLAB作曲线拟合

fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata
选项见无 迭代初值 已知数据点 约束优化
2. lsqnonlin
已知数据点: xdata=(xdata1,xdata2,…,xdatan) ydata=(ydata1,ydata2,…,ydatan)
lsqnonlin用以求含参量x(向量)的向量值函数 f(x)=(f1(x),f2(x),…,fn(x))T 中的参量x,使得
MATLAB作曲线拟合
1. 线性拟合 作多项式f(x)=a1xm+ …+amx+am+1拟合,可用以下命令:
a=polyfit(x,y,m)
输出拟合多项式系数 a=[a1, …am , am+1] (数组))
输入同长度 的数组X,Y
多项式在 x 处的值 y 可用以下命令计算: y=polyval(a,x)
(5) [x, options,funval] = lsqcurvefit (‘fun’,x0,xdata,ydata,…);
(6) [x, options,funval, Jacob] = lsqcurvefit (‘fun’,x0,xdata,ydata,…);
说明:x = lsqcurvefit (‘fun’,x0,xdata,ydata,options);
fT ( x )f( x ) f 1 ( x ) 2 f2 ( x ) 2 fn ( x ) 2
最小。 其中 fi(x)=f(x,xdatai,ydatai)
=F(x,xdatai)-ydatai
输入格式为:
1) x=lsqnonlin(‘fun’,x0);
2) x= lsqnonlin (‘fun’,x0,options);

matlab三次样条曲线拟合代码

matlab三次样条曲线拟合代码

在MATLAB中,你可以使用`polyfit` 和`polyval` 函数来进行三次样条曲线拟合。

以下是一个简单的样例代码:
```matlab
样本数据
x = [1, 2, 3, 4, 5]; x 数据
y = [1, 4, 9, 16, 25]; y 数据
计算差分,得到差分数据
dx = diff(x);
dy = diff(y);
拟合样条曲线,得到系数
p = polyfit(x(1:end-1), y(1:end-1), 3);
计算三次样条曲线
xx = x(1:end-1);
yy = polyval(p, xx);
画图
figure;
plot(x, y, 'o', xx, yy, '-');
legend('原始数据', '三次样条曲线');
xlabel('x');
ylabel('y');
```
在这个例子中,我们首先定义了一组x 和y 数据。

然后,我们计算了差分,得到了连续的x 和y 值。

使用`polyfit` 函数,我们得到了描述三次样条曲线的系数。

使用这些系数和`polyval` 函数,我们可以在任何x 值上计算出对应的y 值。

最后,我们画出了原始数据和三次样条曲线。

注意,这个例子假设你的数据是等间隔的。

如果你的数据不是等间隔的,你可能需要更复杂的方法来计算差分和拟合样条曲线。

matlab曲线拟合输出拟合函数在其他文件调用

matlab曲线拟合输出拟合函数在其他文件调用

Matlab曲线拟合输出拟合函数在其他文件调用在使用Matlab进行曲线拟合时,我们通常会得到一个拟合函数,用于描述实验数据的趋势和规律。

然而,有时候我们需要在其他文件中调用这个拟合函数,以便进行进一步的分析和处理。

本文将介绍如何在Matlab中输出拟合函数,并在其他文件中调用这个函数。

让我们来看一下如何在Matlab中进行曲线拟合,并输出拟合函数。

假设我们已经有了一组实验数据x和对应的y,我们可以使用Matlab 中的polyfit函数来进行多项式拟合。

我们可以使用二次多项式来拟合数据:```matlabp = polyfit(x, y, 2);```这将得到一个二次多项式拟合的系数p。

接下来,我们可以使用polyval函数来计算拟合后的y值,并且将拟合结果绘制成图表:```matlaby_fit = polyval(p, x);plot(x, y, 'o', x, y_fit, '-');```通过这样的步骤,我们就可以在Matlab中完成曲线拟合,并且得到拟合函数的系数。

接下来,我们需要将这个拟合函数输出到其他文件中,以便在其他程序中进行调用。

为了实现这一点,我们可以将拟合函数写入到一个独立的文件中。

我们可以创建一个名为"fitting_function.m"的文件,将拟合函数写入其中:```matlabfunction y_fit = fitting_function(x, p)y_fit = polyval(p, x);end```在这个文件中,我们定义了一个名为"fitting_function"的函数,用于计算拟合后的y值。

这个函数需要输入实验数据x和拟合函数的系数p,然后返回拟合后的y值。

现在,我们可以在其他文件中调用这个函数了。

假设我们需要在一个名为"main_program.m"的文件中调用拟合函数。

matlab 数据点拟合曲线

matlab 数据点拟合曲线

在MATLAB中,可以使用多项式拟合(polyfit)函数来拟合数据点曲线。

以下是使用多项式拟合的基本步骤:
1. 准备数据:首先,你需要准备一组数据点,这些点应该是你想要拟合的曲线上的点。

2. 调用polyfit函数:在MATLAB命令窗口中,输入以下命令来调用polyfit函数:
```matlab
p = polyfit(x, y, n);
```
其中,x和y是数据点的横坐标和纵坐标,n是多项式的阶数。

例如,如果你想要拟合一个二次曲线,可以将n设置为2。

3. 生成拟合曲线:使用polyval函数生成拟合曲线上的点。

在MATLAB命令窗口中,输入以下命令:
```matlab
yfit = polyval(p, x);
```
这将生成一个与原始数据点对应的拟合曲线。

4. 绘制原始数据点和拟合曲线:使用plot函数绘制原始数据点和拟合曲线。

在MATLAB 命令窗口中,输入以下命令:
```matlab
plot(x, y, 'o', x, yfit, '-');
```
这将绘制原始数据点(使用'o'标记)和拟合曲线(使用'-'标记)。

这些是基本的步骤,你可以根据需要进行调整和扩展。

注意,polyfit函数返回一个多项式系数矩阵p,你可以使用这些系数来进一步分析拟合曲线的性质。

Matlab数据拟合实用教程

Matlab数据拟合实用教程
程序运行后显示
x= 3.0022 4.0304 0.9404
resnorm = 0.0912
2021/10/10
16
例4 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17
2021/10/10
2
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6)
5
解: 描出散点图, 在命令窗口输入:
t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
a=polyfit(t,y,1)
a= -0.3012 29.3804
用Matlab进行数据拟合
1. 多项式曲线拟合: polyfit.
p=polyfit(x,y,m) 其中, x, y为已知数据点向量, 分别表示横,纵坐 标, m为拟合多项式的次数, 结果返回m次拟合 多项式系数, 从高次到低次存放在向量p中.
y0=polyval(p,x0) 可求得多项式在x0处的值y0.
t=0:0.1:1.2 s=polyval(p3,t) s1=polyval(p6,t) hold on plot(t,s,'r-','linewidth',2) plot(t,s,'b--','linewidth',2) grid

使用MATLAB进行曲线拟合的步骤与技巧

使用MATLAB进行曲线拟合的步骤与技巧

使用MATLAB进行曲线拟合的步骤与技巧曲线拟合是一种常用的数学方法,用于生成一个与给定数据点集最匹配的曲线。

MATLAB是一种强大的数值计算软件,提供了多种工具和函数,可用于进行曲线拟合。

本文将介绍使用MATLAB进行曲线拟合的步骤与技巧,帮助读者更好地理解和使用该工具。

1. 数据准备在进行曲线拟合之前,首先需要准备好要拟合的数据。

这些数据可以是实验测量得到的,也可以是从其他来源获得的。

确保数据的质量和准确性对于得到好的拟合结果至关重要。

将数据保存在一个.txt或.csv等常见格式的文件中,以便后续导入MATLAB进行处理。

2. 导入数据将准备好的数据导入MATLAB中是进行曲线拟合的第一步。

使用MATLAB内置的导入函数,如`csvread`或`dlmread`,可以轻松地从文本文件中导入数据。

如果数据保存在Excel文件中,可以使用`xlsread`函数进行导入。

确保正确指定文件路径和文件名,以及数据在文件中的位置。

3. 数据可视化在进行曲线拟合之前,建议先对数据进行可视化,以更好地理解数据的特点和趋势。

使用MATLAB的绘图函数,如`plot`或`scatter`,可以将数据点绘制在坐标轴上。

通过观察数据的分布和走势,可以作出一些初步的判断,如选择适当的拟合函数类型。

4. 选择拟合函数选择适当的拟合函数是曲线拟合的关键步骤。

不同的数据集可能需要使用不同类型的函数进行拟合。

MATLAB提供了多种内置的拟合函数,如多项式拟合、指数拟合、幂函数拟合等。

可以使用命令窗口中的`help`命令来查找和了解这些函数的用法和参数设置。

5. 执行拟合在选择拟合函数后,可以执行拟合操作。

MATLAB提供了各种拟合函数,如`polyfit`、`fittype`和`fit`等,用于实现不同类型的拟合。

使用合适的函数,根据数据和所选的拟合函数类型,进行参数估计和模型拟合。

根据拟合结果,可以得到拟合曲线的参数和拟合曲线本身。

matlab 多条曲线拟合公式

matlab 多条曲线拟合公式

MATLAB是一种非常强大的数学软件,它可以用来进行数值计算、数据分析、图形展示等多种功能。

在MATLAB中,拟合多条曲线是一个常见的需求,它可以用来分析多种因素对某一变量的影响,也可以用来预测未来的趋势。

在本文中,我们将讨论MATLAB中拟合多条曲线的公式及其实现方法。

1. 多条曲线拟合的常见公式在MATLAB中,拟合多条曲线的常见公式包括多项式拟合、曲线拟合、曲线拟合等。

其中,多项式拟合是一种最常见的方法,它可以用来拟合多项式函数,一般形式为:y = a0 + a1*x + a2*x^2 + ... + an*x^n其中,y是因变量,x是自变量,a0、a1、a2等是多项式的系数,n是多项式的阶数。

使用MATLAB的polyfit函数可以实现多项式拟合。

2. 多条曲线拟合的实现方法在MATLAB中,拟合多条曲线的实现方法主要包括使用polyfit函数进行多项式拟合、使用curve fitting工具箱进行曲线拟合等。

下面我们将分别介绍这两种方法的具体实现步骤。

2.1 使用polyfit函数进行多项式拟合polyfit函数是MATLAB中用来进行多项式拟合的函数,它的基本用法是:p = polyfit(x, y, n)其中,x和y是要拟合的数据点的自变量和因变量,n是多项式的阶数。

p是多项式的系数,它可以通过polyval函数来计算拟合后的曲线。

以下是一个具体的例子:x = [1, 2, 3, 4, 5];y = [2, 3, 5, 7, 11];p = polyfit(x, y, 2);f = polyval(p, x);plot(x, y, 'o', x, f, '-');2.2 使用curve fitting工具箱进行曲线拟合除了polyfit函数,MATLAB还提供了curve fitting工具箱,它可以用来进行更加复杂的曲线拟合。

使用curve fitting工具箱进行曲线拟合的基本步骤如下:(1) 导入数据:使用importdata函数导入要拟合的数据。

matlab曲线拟合-langyuewu的专栏-CSDN博客

matlab曲线拟合-langyuewu的专栏-CSDN博客

matlab曲线拟合-langyuewu的专栏-CSDN博客matlab曲线拟合收藏MATLAB软件提供了基本的曲线拟合函数的命令.多项式函数拟合:a=polyfit(xdata,ydata,n)其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式的系数多项式在x处的值y可用下面程序计算.y=polyval(a,x)一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,ydata)其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是若要求解点x处的函数值可用程序f=Fun(p,x)计算.例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d.使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出又如引例的求解,MATLAB程序:t=[l:16];%数据输人y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 10.58 10.6] ;plot(t,y,’o’)%画散点图p=polyfit(t,y,2) (二次多项式拟合)计算结果:p=-0.0445 1.0711 4.3252 %二次多项式的系数由此得到某化合物的浓度y与时间t的拟合函数对函数的精度如何检测呢?仍然以图形来检测,将散点与拟合曲线画在一个画面上.参见图5.3.由此看见上述曲线拟合是比较吻合的。

*************************************************************** *******做:以同样的数据,若假定拟合曲线为,试将该拟合曲线与上述的拟合曲线进行比较,精度如何?注意:曲线拟合与曲线插值有什么区别?*************************************************************** *****MATLAB程序其中,标有‘+’的是已知数据点,连接数据点的实线是线性插值函数曲线,光滑的函数曲线是最佳拟合曲线。

MATLAB中如何直接曲线拟合

MATLAB中如何直接曲线拟合

MATLAB中如何直接曲线拟合,而不使用cftool的GUI界面(这里使用的版本是MATLAB 2009a)我们知道在MATLAB中有个很方便的曲线拟合工具:cftool最基本的使用方法如下,假设我们需要拟合的点集存放在两个向量X和Y中,分别储存着各离散点的横坐标和纵坐标,则在MATLAB中直接键入命令cftool(X,Y) 就会弹出Curve Fitting Tool的GUI界面,点击界面上的fitting即可开始曲线拟合。

MATLAB提供了各种曲线拟合方法,例如:Exponential, Fourier, Gaussing, Interpolant, Polynomial, Power, Rational, Smoothing Spline, Sum of Functions, Weibull等,当然,也可以使用Custom Equations.cftool不仅可以绘制拟合后的曲线、给出拟合参数,还能给出拟合好坏的评价参数(Goodness of fit)如SSE, R-square, RMSE等数据,非常好用。

但是如果我们已经确定了拟合的方法,只需要对数据进行计算,那么这种GUI的操作方式就不太适合了,比如在m文件中就不方便直接调用cftool。

MATLAB已经给出了解决办法,可以在cftool中根据情况生成特定的m文件,让我们直接进行特定的曲线拟合并给出参数。

具体方法在帮助文件的如下文档中" \ Curve Fitting Toolbox \ Generating M-files From Curve Fitting Tool " ,以下简单举例说明:以双色球从第125期到第145期蓝球为Y值:Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11];X=1:1:21;cftool(X,Y);点击Fitting选择最常用的多项式拟合(Polynomial),选择3次多项式拟合(cubic),然后就会出现如下拟合图形:然后在Curve Fitting Tool窗口中点击" \ File \ Generate M-file " 即可生成能直接曲线拟合的m函数文件,其中使用的拟合方法就是刚才使用的三次多项式拟合,文件中这条语句证明了这一点:ft_ = fittype('poly3');保存该m文件(默认叫做createFit.m),调用方法和通常的m文件一样,使用不同的X和Y值就能拟合出不同的曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2,3,4次曲线拟合matlab程序
【程序代码】
clf reset
H=axes('unit','normalized','position',[0,0,1.5,1],'visible','off');
set(gcf,'currentaxes',H);
str='\fontname{微软雅黑}2,3,4次曲线拟合程序';
text(0.17,0.9,str,'fontsize',15);%这是设置字体位置的
h_fig=get(H,'parent');
set(h_fig,'unit','normalized','position',[0.1,0.2,0.8,0.5]);%这是设置出现窗口的大小的
h_axes=axes('parent',h_fig,'unit','normalized','position',[0.1,0.15,0.55,0.7],'xlim',[015],'ylim',[0 1.8],'fontsize',8);
h_text=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.90,0.24,0.03],'horizontal','left','s tring',{'左区间'});
h_text1=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.75,0.24,0.03],'horizontal','left',' string',{'右区间'});
h_text2=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.62,0.24,0.03],'horizontal','left',' string',{'步长'});
h_text3=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.48,0.24,0.03],'horizontal','left',' string',{'拟合矩阵'});
h_edit=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.82,0.24,0.08],
'horizontal','left','callback',['a=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);
h_edit1=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.67,0.24,0.08],
'horizontal','left','callback',['b=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);
h_edit2=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.54,0.24,0.08],
'horizontal','left','callback',['n=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);
h_edit3=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.38,0.24,0.1],
'horizontal','left','callback',['x=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']);
h_push1=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.24,0.12,0.08],'string',' grid on','callback','grid on');
h_push2=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.15,0.12,0.08],'string',' grid off','callback','grid off');
h_push3=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.15,0.12,0.08],'string','退出','callback','exit');
h_push4=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.24,0.12,0.08],'string','关闭','callback','close(gcbf)');
【操作界面】。

相关文档
最新文档