幂级数间接展开法

合集下载

初等函数的幂级数展开

初等函数的幂级数展开
f (x) a1 2a2 (x x0 ) 3a3 (x x0 )2 nan (x x0 )n1 , f (x) 2!a2 3 2a3 (x x0 ) n (n 1)an (x x0 )n2 ,
f (x) 3!a3 n (n 1)(n 2)an (x x0 )n3 ,
lim
n
Rn
(
x)
0
,其中
Rn
(
x)
为拉格朗日余项,即
Rn (x) f (x) [a0 a1(x x0 ) a2 (x x0 )2
an (x
x0 )n ]
f n1( ) (x
(n 1)!
x0 )n1

1.2 函数展开成幂级数的方法
1.直接展开法
利用泰勒或麦克劳林展开式把初等函数展开成幂级数的方法称为直接展开法.用直接展 开法将函数 f (x) 展开成 x 的幂级数的步骤如下.
x)
1 2(3
x)
1
4 1
பைடு நூலகம்
x 1 2
1
81
x
1 4

1
(1)n xn 1 x x2 x3
(1)n xn
(1 x 1) ,
1 x n0
1
1 x
1
(1)n
n0
(x 1)n 2n
1
x
2
1
1

2
1
1 x
1
(1)n
n0
(x 1)n 4n
1
x
4
1
1

4
1.2 函数展开成幂级数的方法
解 f (x) 的各阶导数为
f (x) m(1 x)m1 , f (x) m(m 1)(1 x)m2 ,

高等数学第五节 函数幂级数展开

高等数学第五节  函数幂级数展开

f(x) f(0) f(0)x f(0) x2 f(n)(0) xn
2!
n!
rn(x). ②
rn(x)f((n n 1 )(1 )x!)xn1 (0θ1).
②式称为麦克劳林公式 . 幂级数
f()0 f(0 )x f(0 )x 2 f(n )(0 )x n ,
rn(x)(n e( θx 1))!xn1 (0θ1),
且 x ≤ x x , 所以eθx ex , 因而有
rn(x)(n e x 1)!xn1(ne x1)!xn1.
注意到,对任一确定的 x 值, e x 是一个确定
的常数 . 而级数 ⑥ 是绝对收敛的,因此其一
例 1 试将函数 f(x) = ex 展开成 x 的幂级数.
解 由 f(n )(x)ex(n1,2,3, ), 可以
得到
f(0 ) f(0 ) f(0 ) f(n )(0 ) 1 .
因此我们可以得到幂级数
1x1x2 1xn .

2!
n!
显然,这个幂级数的收敛区间为 (,+ ) . 至 于 数 ⑥ 是 否 f(x)以 ex为 和 ,收 函 敛 f数 (x 于 )ex, 还要考察函f(x数)ex 的麦克劳林公式中 项, 因为
所以 f(x) 1 1 1x 2x
(1xx2 xn )
1[1x(x)2 (x)n ]
2 22
2
1 2 2 2 2 21x 2 3 2 31x 2 2 n 2 n 1 11x n .
根据幂级数和的运算法则,其收敛半径应
取较小的一个,故 R = 1,因此所得幂级数的收 敛区间为 1 < x < 1 .
例7
幂级数. 解

第六节 Taylor级数与函数的幂级数展开

第六节 Taylor级数与函数的幂级数展开
( n ) ( z ) (a n 1) f ( n1) ( z ),
令z 0,并由此递推关系,得 f (0) 1, f '(0) a , f "(0) a(a 1),
,
f ( n ) (0) a(a 1) (a n 1),
1 n 1 n 1 ( 1) nz ,( z 1) 2 (1 z ) n 1
2、间接展开法
利用已知函数的展开式,结合幂级数的运算性质, 以求得目标函数的展开式。
例4 把 sin z 和cos z 展开为z 的幂级数。
解:
e iz e iz cos z 2 又, n n ( iz ) ( iz ) iz iz e , e n! n0 n ! n0 故 1 ( iz )n ( iz )n 1 i n ( i )n n z cos z 2 n! 2 n0 n ! n! n0

=
n0

f
(n)
(a ) ( z a )n n!
证毕
上式右端的级数称为f ( z )在点a 的Taylor级数,或 f ( n ) (a ) Taylor 展开式。cn 称为Taylor系数。 n!
若a 0,f ( z ) =
n0
+
f
( n)
(0) n z 称为f ( z )的Marclaurin级数。 n!
由于
k 2( 1) , n n i (i ) 0,
n 2k n 2k 1

1 2( 1)k 2 k ( 1)k 2 k z cos z z 2 k 0 (2k )! k 0 (2 k )!

初等函数的幂级数展开式

初等函数的幂级数展开式

将函数ln(1+x)展开成 x的幂级数 的幂级数. 展开成 的幂级数 例1* 将函数 1 , 解 因为 [ln(1 + x )]′ = 1+ x 又
1 =1−x + x2 −x3+···+(−1)nxn +··· − − 1+ x
对上式逐项积分 对上式逐项积分 ∞ x dt x − ln(1+x) = ∫ = ∑ ∫ (−1)nt ndt 0 1+ t 0 n= 0 1 2 1 3 1 n+1 n = x − x + x − L+ (−1) x +L n+1 2 3 ∞ xn = ∑ ( − 1) n−1 n n=1
n n n−1
(1+x)n=1+nx+
n( n − 1) 2 n( n − 1)L ( n − k + 1) k x x +L+ 2! n! n! − +⋅⋅⋅ +nxn−1+x n ⋅⋅⋅
? (1+x)α =
α (α − 1 ) 2 α (α − 1 ) L (α − n + 1 ) n 1+αx+ x +L x +L+ 2! n!
(0) n f ′′ ( 0 ) 2 f (n) (0) n ∑0 n ! x = f ( 0 ) + f ′( 0 ) x + 2! x + L + n ! x + L n= 称为函数 f (x)的麦克劳林级数 的麦克劳林级数. f
(n) ∞
定理2 泰勒级数在 内收敛于f 定理 f(x)在x0点的泰勒级数在UR (x0)内收敛于 (x) 在 点的泰勒级数 内收敛于 ⇔ 在UR (x0) 内, Rn(x)→0. →

高等数学第五节 函数幂级数展开-PPT文档资料

高等数学第五节  函数幂级数展开-PPT文档资料

f ( 0 ) 2 S (x )f( 0 )f ( 0 )x x n 1 2 ! ) f(n ( 0 ) n x. n !
那么, 级数 ③ 收敛于函数 f(x) 的条件为
lim S ( x ) f ( x ) . n 1
n
注意到麦克劳林公式 ② 与麦克劳林级数 ③ 的关为泰勒公式 .
如果令 x 0 , 就得到 0
f (0 ) 2 f (n)(0 ) n f (x ) f (0 ) f (0 )x x x 2 ! n ! r ). n(x ②
( n 1 ) f ( x )n 1 r ( x ) x ( 0 θ 1 ) . n ( n 1 )!
( 0 ) 1 , , ( 0 ) 0 ,f f( 0 )0, f( 0 ) 1 , f
n 1 ) n ( 0 ) ( 1 ) . f(2n)( 0 )0, f(2
于是可以得到幂级数
2 n 1 1 3 15 x n x x x ( 1 ) , 3 ! 5 ! ( 2 n 1 )!
称为泰勒级数 .
二、 直接展开法
利用麦克劳林公式将函数 f(x 展开成幂级数
的方法,称为直接展开法 .
例1 试将函数 f(x) = ex 展开成 x 的幂级数.
( n ) x 解 由 f ( x ) e( n 1 , 2 , 3 , ) , 可以
得到
( n ) f ( 0 ) f ( 0 ) f ( 0 ) f ( 0 ) 1 .
( θ x ) e n 1 r ( x ) x ( 0 θ 1 ) , n ( n 1 )!
且 x≤
x θx x x , 所以 e e , 因而有

第四节函数的幂级数展开简

第四节函数的幂级数展开简

1.求出f (x)的各阶导数 f (x), f (x),, f (n) (x),,
2.计算 f (x0), f (x0), f (x0),, f (n) (x0),,
3.写出 f (x)在x0 处的泰勒级数


1
n0n!
f
(n)
( x0
)( x

x0
)n
4.求出上述泰勒级数的收敛区间(-R, R),
解 由 ex 1 x 1 x2 1 xn , x (,)
2!
n!
将x 换成 x2 可得函数的幂级数展开式.
ex2 1 x2 1 x4 (1)n x2n , x (,)
2!
n!
例 求 f (x) ln x 在 x0 3 处的展开式.
泰勒级数展开的唯一性 设f (x)在 x0的某对称区间 (R x0, R x0)内可以 展开成 (x x0)的幂级数 f (x) a0 a1(x x0) a2(x x0)2 an(x x0)n , 将上式逐阶求导,有
f (x) a1 2a2(x x0) 3a3(x x0)2 nan(x x0)n1 , f (x) 2!a2 3 2a3(x x0) n(n 1)an(x x0)n2 , f (x) 3!a3 n(n 1)(n 2)an (x x0)n3 ,
lim
n
Sn
(
x)

f (x)
的充分必要条件是
lim
n
rn
(
x)

0
也即当
lim
n
rn
(
x)

0
时,有

考研数学指导将函数展开为幂级数的方法

考研数学指导将函数展开为幂级数的方法

考研数学指导将函数展开为幂级数的方

2015年考研复习已经开始,现在正值考研初期复习,数学作为考研必考的重要科目,针对考生需求,太奇考研小编为即将考研的朋友编辑整理了“2015考研数学初期复习指导:将函数展开为幂级数的方法”,希望对广大考友有所帮助!
将函数展开成幂级数的方法主要有两种:直接展开法和间接展开法。

直接展开法指的是:利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间直接展开成指定点的泰勒级数的方法。

间接展开法指的是:通过一定运算将函数转化为其他函数,进而利用新函数的幂级数展开式将原来函数展开为幂级数的方法。

所用运算主要是加法运算,数乘运算,(逐项)积分运算和(逐项)求导运算。

常见函数的麦克劳林级数展开式为:
下面举例帮大家巩固以上知识点:。

函数展开成幂级数

函数展开成幂级数
函数展开成 幂级数的方法
1. 直接展开法
把函数 f (x) 展开成 x 的幂级数的步骤:
第一步 求出 f (x) , f (x) , , f (n) (x) , ,
第二步 求出 f (0) , f (0) , f (0) , , f (n) (0) , ,

第三步 写出幂级数
f (n) (0) xn ,并求出收敛半径 R .
n2 n 1
x (1)n1(2n 1) xn (1 x 1) .
n2 n(n 1)

将函数
sin
x
展开成

x

π 4

的幂级数.

sin x

sin

π 4


x

π 4

sin
π 4
cos

x

π 4



1 2(1
x)

1 2(3
x)

1

1
,
4 1
x 1 2
8 1
x
1 4
将 1 (1)n xn 中的 x分别换成 x 1 和 x 1 ,
1 x n0
24
可得
1
4
1
x
1 2


1 4
n0
(1)n 2n
n1 n
例 把函数 f (x) (1 x) ln(1 x) 展开成 x 的幂级数.


f (x) (1 x)
(1)n1 xn
n1 n


(1)n1 xn

10.4 函数的幂级数展开式

10.4 函数的幂级数展开式

内具有各阶导数, 则 f ( x) 在该邻域内能展开
成泰勒级数的充要条件是 f ( x) 的泰勒公式的 余项满足
lim Rn ( x) 0
n
(3)
其中
1) f(n( ) Rn ( x) ( x x0 )n1 (n 1)!
定理2 若 f ( x) 能展开成 x 的幂级数,则此展 开式是唯一的,且与它的麦克劳林级数相同.
x ( , )
用同样的展开方法,我们可以得到另一
个重要的展开式
m
m(m 1) 2 (1 x) 1 m x x 2! m(m 1) (m n 1) n x ( 1 x 1) n!
从上述讨论不难看出,直接展开法较繁, 多数使用下面的间接展开方法。
1 n! 且其收敛半径为 R lim n 1 (n 1)!
考虑余项
e Rn ( x) x n1 (n 1)!
的极限,因
e lim Rn ( x) lim x n 1 n n ( n 1)!
x x lim e 0 n (n 1)!
10.4.4 小结
1. 泰勒级数
函数展开成泰勒级数的充要条件
2. 函数展开成幂级数的方法
直接展开法
间接展开法
π ( x) sin( x n ) 2
时,f ( n ) (0) (1) k ,其中 k 0 , 1, 2 ,
可得级数
1 3 1 5 1 n 1 x x x (1) x 2 n1 3! 5! (2n 1)!
其收敛半径为R . 考虑余项
1 x n 1 xn ( ) n x 6 n 0 3 6(1 ) 6 n 0 3 3 1

函数幂级数的展开和应用

函数幂级数的展开和应用

函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。

7-7初等函数的幂级数展开式

7-7初等函数的幂级数展开式

一、直接法(泰勒级数法)
利用泰勒公式或麦克劳林公式将f(x)展开为幂级数
步骤: (1) 求 f (n)(x), n=0,1,2,
(2)
计算
an
f (n)( x0 ) , n!
n=0,1,2,
(3)
写出幂级数
n1
f(nn)(!x0)(xx0)n
并求出其收敛区间.
(4) 讨论 ln im Rn(x)? 0 若为0, 则幂级数在此收敛区间内等于函数 f(x);
所以
(1)
1 5
ห้องสมุดไป่ตู้
x

1 5(1
x
)
1[15x(x)2 (x)n ]
5 55
5
1 55x25 x32 5xn n1
x n
由 | x | 1
n0 5n1
得收敛区间为:
x(5, 5).
5
(2)
1 1 5x 3(x2)

1 3

1

1 x
n ! (n1 )!


n xn1
n1 (n1)!
x(, +).
例5 将下列函数展开成 x的幂级数.
1
解 因为
1
(1) 1
=1x
x +
2
x2
(2) arctan x x3+···+(1)nxn
+···x(1,1).
1 x
(1) 以x2 代替上式中的 x ,
1
1
an an1
|

lim|
n
n1
n
|=1,
注意: 当x=1时, 级数的收敛性与 的取值有关.

函数展开成幂级数讲解

函数展开成幂级数讲解
把 x 换成 x 2 , 得
n 0

(1)
x
2n
( 1 x 1 ).
17
例2 将 f ( x ) e 2 x 展开成x的幂级数. 2 3 x x 1 n x 解 e 1 x x , x (, ) 2! 3! n 0 n ! 将-2x代入上式中x的位置,即得

f ( x)
a
n 0
n
x
n
问题: 1.如果能展开, a n 是什么? 2.展开式是否唯一? 3.在什么条件下才能展开成幂级数?
6
函数能展开成幂级数的定义:
给定函数 如果能找到一个幂级数,使得 它在某区间内收敛,且其和恰好就是给定的函数 则称函数在该区间内能展开成幂级数

f ( x)
例如:
x
a
n
f ( n ) (0) (0) 1 (n 0 ,1,), an n!
x
( n 1)!
0,
e x n 1 e (n 1)!
lim Rn ( x ) 0.
n
x
( 在0与x 之间)
ex
1 n x , x ( , ) n 0 n !
n 0
( an x n ) (an x n )
n 0
x


n 0
x x0
收敛域 x
x ( R , R )
x ( R , R )
2
n 0
0 ( an x )d x (an xn )d x
n
x


n 0
n 0
0
二、幂级数和函数的求法
• 求部分和式的极限 (在收敛区间内) •逐项求导或求积分法

初等函数的幂级数展开

初等函数的幂级数展开
14
2. 间接展开法 利用一些已知的函数展开式及幂级数的运算性质, 将所给函数展开成 幂级数. 1 例4. 将函数 展开成 x 的幂级数. 2 1+ x 1 2 n 解: 因为 = 1+ x + x +L+ x +L ( −1 < x < 1 ) 1− x 把 x 换成− x 2 , 得 1 2 4 n 2n = 1 − x + x + L + ( − 1 ) x +L 2 1+ x ( −1 < x < 1 ) 1 2 n ( ) ( ) ( ) = 1 + ϕ x + ϕ x + L + ϕ x + 1 − ϕ (x) ϕ (x) < 1
π )] = 1 [ cos( x − π ) + sin( x − 4 4 2 1 − 1 (x − π )2 + 1 ( x − π )4 − L 1 = 2 2! 4 4! 4
1 π 3 1 π 5 π − ( x − ) + ( x − ) − L + ( x − ) 3! 4 5! 4 4 1 π 1 π 2 1 π 3 = 1 + ( x − ) − ( x − ) − ( x − ) + L 2 4 2! 4 3! 4 ( − ∞ < x < +∞ )
13
1 ,−1 , − 对应 m = 1 的二项展开式分别为 2 2
1 2 1 1⋅ 3 3 1⋅ 3 ⋅ 5 4 x + 1+ x =1+ x − x − x +L 2⋅ 4 2 2⋅4⋅6 2 ⋅ 4 ⋅ 6 ⋅8 ( − 1 ≤ x ≤ 1) 1⋅ 3 2 1⋅ 3 ⋅ 5 3 1⋅ 3 ⋅ 5 ⋅ 7 4 1 1 x − x + x −L =1 − x + 2⋅ 4 2 2⋅4⋅6 2 ⋅ 4 ⋅ 6 ⋅8 1+ x ( − 1 < x ≤ 1) 1 n n 2 3 + L + ( − 1 ) x +L − x + x − x =1 1+ x ( − 1 < x < 1) 1 = 1 + x + x2 + L + xn + L 1− x ( −1 < x < 1)

解析函数展成幂级数的方法分析论文

解析函数展成幂级数的方法分析论文

┊┊ ┊┊ ┊┊┊ ┊┊┊┊ ┊ ┊装 ┊ ┊┊ ┊ ┊ 订┊ ┊┊┊ ┊ 线 ┊┊┊ ┊┊┊ ┊┊ ┊ ┊┊ ┊┊ 解析函数展开成幂级数的方法分析 樊庆仓 (伊犁师范学院数学与统计学院 新疆 伊宁 835000) 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。

本文将从直接法和间接法这两大方法对解析函数进行幂级数的展开并加以分析。

关键词:解析函数;幂级数;直接展开;间接展开。

中图分类号: O175.8 一、 一、引言 解析函数的幂级数展开是作为一个强有力的教学工具,在整个分析学中占有举足轻重 的地位。

将一个函数展开为幂级数是级数部分最重要的运算之一。

展开的方法可分为两种, 一是直接展开法,即先求各阶导数,再按泰勒级数或麦克劳林级数写出,最后验证在级数 收敛区间内lim n →∞n R(x )=0 。

二是间接展开法,即利用某些已知的初等函数的幂级数展 开式和幂级数的代数运算及分析运算的性质,推出相应的展开式。

用直接展开法具有一定的 缺点,即工作量大,()()n f x 的规律难以寻求,还要讨论余项的性质不易使用。

为了避免余项 的讨论经常使用间接展开法。

本文通过举例讲解将函数展开成幂级数的各种方法,比较它们 优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数 选择最简单快捷的方法来展开幂级数,提高学生的计算和运算能力。

二、预备知识 (一)、幂级数的解析性 定理:幂级数)(0a z C n n -∑∞=n 的和函数,f(z)是收敛圆内的一个解析函数,且其各阶导数为: )1()()(-=∑∞=n n C z f pn n p ……p n a z p n --+-))(1(,其中,p 为自然数,2,1,0(!)()(==p n a f C p P …) (二)、解析函数的泰勒展开 泰勒(Taylor)展开定理:设f(z)在区域D :)(0R z z <-内解析,则在D 内f(z)可展为泰勒级数:nn n z z a z f )()(00-=∑+∞=,)(0R z z <-,其中,2,1,0(!)()()(210)(10==-=⎰+n n z f z d f i a n c n n ξξξπ…)。

幂级数的展开

幂级数的展开

函数的幂级数展开研究摘要:本文主要讨论函数项级数中的幂级数的展开。

我们把按照泰勒定理及相关定理展开函数的幂级数的方法叫直接法。

一般情况下,只有少数简单的函数能利用直接法得到其幂级数展开式。

更多的函数是通过间接法得到。

间接法就是根据唯一性定理,利用已知函数的展开式,通过线性运算、变量代换、恒等变形、逐项求导或逐项积分等方法间接地求得幕级数的展开式的方法。

同时幂级数在近似计算、数值逼近、微分方程的解等许多数学方面具有重要作用,但前提是正确展开一个函数的幂级数。

因此,我们的目的是通过实例总结和研究高等数学中函数的幂级数展开的常用方法和实际问题中的应用。

关键词:函数;幂级数;展开式Abstract: This paper centers on the expansion of power series in function series. We define the method of expanding power series according to Taylor’s theorem and relative theorems the Direct Method. Normally, only a few simple functions can get their expansion of power series through the Direct Method while most of functions through the Indirect Method. The Indirect Method is a method of getting the power series of functions indirectly through linear operation, variable substitution, identical deformation, derivation or integration term by term, based on the Uniqueness Theorem and the expansion of known functions. Meanwhile, power series plays an significant role in many aspects of mathematics such as approximation, numerical approximation, the solution of differential equation on condition that the power series is expanded correctly. Therefore, our purpose is to study different methods of the expansion of power series in Higher Mathematics and their application in practical problems by summarizing demonstrating examples.Keywords: Function; power series; expansion.级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。

函数展开成幂级数的·方法

函数展开成幂级数的·方法
( m 1)( m n 1) ( m 1)( m n) m ( m 1)( m n 1) 利用 ( n 1)! n! n!
在(1,1)内, 若
(1 x ) s( x )
2 ( 1 ) ( 1)( n 1) n1 2 2 x x x 2! n! s( x )
s( x ) 令 ( x ) , (1 x )
(0) s(0) 1,
(1 x ) s( x ) (1 x ) 1 s( x ) 且 ( x ) (1 x )2 (1 x ) 1[(1 x ) s( x ) s( x )] 0. 2 (1 x )
1 2 n n 2n ( 2) ( x ) ( 1 ) x 2 1 x n 0 n 0
( 1 x 1)
2n
( 3) cos x (sin x ) [ ( 1) n

( x )
n 0
x n x ] ( 1) ( 2n 1)! n 0 ( 2n)!
xn 1 2 1 n ( 3)1 x x x e x 2! n! n 0 n! an1 n! lim lim 0, R . ( x ) n an n ( n 1)!
e x x n 1 (4) Rn ( x ) x e ( n 1)! ( n 1)!
若 lim Rn ( x ) 0, 则( 3)中的幂级数为 f ( x )的展开式.
n
f
( n)
Example 1. 将f ( x ) e x 展开成x的幂级数. Solution. (1) f ( n) ( x ) e x

高数无穷级数初等函数的幂级展开式

高数无穷级数初等函数的幂级展开式

n
故得 x 1, 1。
11
3. 常用的麦克劳林级数展开式
xn xn (1)e x 1 x , n! n 0 n!
x , 。
x3 x5 x 2 n 1 (2)sin x x ( 1) n1 3! 5! ( 2n 1)! x 2 n1 ( 1) n , ( 2n 1)! n 0
lim Rn ( x ) 0
n
n1

n1

n 1

x lim 0 n ( n 1)!
n1
xn xn ex 1 x , n! n 0 n!
x , 。
7
例2 将函数 f ( x ) sinx 展开成 的幂级数 x 。
1
一、泰勒级数和麦克劳林级数
1. 泰勒公式 (拉格朗日中值公式(往高阶)的推广)
则有 f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( n ) ( x0 ) ( x x0 )n Rn ( x ) n!
设f ( x )在x0的 某 一 邻 域 内 存 在 直( n 1)阶 的 导 数 , 到


x dx 0 x dx 0
n x n n 0 n1 n 0 2
x

x 1, 1
n1 x x3 x n x x 1 1 2 3 n1 n1 n 0 x n 1 1n 因幂级数 在 x 1 收敛, x 1 发散 在 , n1 n 0
2
2. 泰勒级数与麦克劳林级数
设 f ( x ) 在 x0 的 某 一 邻 域 内 存 在 任 阶 的 导 数 , 则 意 f ( x0 ) f ( x0 )( x x0 )

间接展开法求幂级数

间接展开法求幂级数

间接展开法求幂级数在数学中,幂级数是一种以变量的幂次递增的形式展开的无穷级数。

求解幂级数对于理解和解决许多数学问题至关重要。

其中一种常见的方法是使用间接展开法。

间接展开法是一种通过将幂级数转换为已知的级数来求解的方法。

其基本思想是利用已知级数的性质和公式,将待求解的幂级数变换为已知的级数,从而得到解析解或估计值。

具体步骤如下:1. 确定已知级数:选择一个已知的幂级数,通常是一些常见的级数,如几何级数、指数级数或三角级数等。

2. 变换幂级数:通过代数运算或函数变换等方法,将待求解的幂级数转换为已知级数的形式。

这可以通过变量替换、级数展开或函数重写等方式实现。

3. 求解已知级数:利用已知级数的性质和公式,计算出已知级数的解析解或估计值。

4. 反变换:将已知级数的解析解或估计值反变换回原来的幂级数形式,从而得到待求解的幂级数的解析解或估计值。

需要注意的是,间接展开法并不是一种普适的方法,它的成功与否取决于能否找到合适的变换和已知级数。

因此,在使用间接展开法时,需要具备一定的数学知识和技巧。

举个例子,假设我们要求解幂级数∑(n^2)/(3^n),我们可以尝试使用间接展开法。

首先,我们观察到该幂级数中的幂次为n的项可以表示为(n^2) * (1/3)^n,这与几何级数的形式类似。

接下来,我们考虑已知的几何级数∑(r^n),其中|r|<1。

通过将n替换为2n,我们可以得到∑(r^(2n))。

然后,我们将幂级数∑(n^2)/(3^n)变换为∑[(1/3)^n * (n^2)],即∑[(1/3)^(2n) * (n^2)]。

现在,我们需要计算已知的几何级数∑[(1/3)^(2n)]。

根据几何级数的公式,我们知道∑[(1/3)^(2n)] = 1/(1 - (1/3)^2) = 9/8。

最后,我们将已知的几何级数的结果乘以∑[(1/3)^(2n) * (n^2)],即(9/8) * ∑[(1/3)^(2n) * (n^2)],从而得到幂级数∑(n^2)/(3^n)的解析解或估计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的函数展开式有:
1
xn 1 x x2 xn , | x | 1
1 x n0
ex xn 1 x x2 xn , | x |
n0 n!
2!
n!
sin x (1)n
x 2n1
n0
(2n 1)!
x x3 x5 (1)n x2n1 , | x |
3! 5!
(2n 1)!

4
arctan1
1
1 3
1 5
(1)n1
1 2n
1
.
THANK YOU
微积分Ⅱ
CalculusⅡ
第十章 无穷级数
§10.1 无穷级数的概念 §10.2 无穷级数的基本性质 §10.3 数项级数的敛散性判别法 §10.4 函数项级数与幂级数 §10.5 函数的幂级数展开
幂级数间接展开法
利用一些已知的函数展开式及幂级数的运算法则(四则 法则, 逐项求导逐项求积),将所给函数展成幂级数。

将函数 f ( x ) e x 2 展开成 x 的幂级数.
解:
由 e x x n 1 x x 2 x n , | x |
n0 n!
2!
n!
知 ex2 x2n 1 x2 x4 x2n , | x |
n0 n!
2!
n!

将函数
f
(x)
1
1 x
2
展开成
n0 2n 1
n0 2n 1
当 x 1 时,
(1)n 收敛。
n0 2n 1
所以, arctan x (1)n x2n1, x [1,1] n0 2n 1

证明
41 2n
1
.
证:由 arctan x (1)n x , 2n1 x [1,1] n0 2n 1
令 x 1,
x
的幂级数.
解: 由
1
(1)n xn , | x | 1
1 x n0

f (x)
1 1 x2
n0
(1)n x2n , |
x2
| 1
即 | x | 1
例 将函数 f ( x ) arctan x 展开成 x 的幂级数.
解: f (x)
1 1 x2
n0
(1)n x2n ,
x (1,1)
,两边积分得
x
f (x) f (0) f (x)dx
x
(1)n x2ndx
(1)n x2n1
0
n0 0
n0 2n 1
因 f (0) 0, 所以
f ( x) arctan x (1)n x , 2n1 x (1,1) n0 2n 1
当 x 1 时,
(1)n (1)2n1 (1)n1 收敛;
相关文档
最新文档