初二数学实数测试题

合集下载

初二数学实数考试题及答案

初二数学实数考试题及答案

初二数学实数考试题及答案一、选择题(每题2分,共20分)1. 以下哪个数不是实数?A. πB. -3C. √2D. i2. 计算下列哪个表达式的结果是实数?A. (-2)^2B. √(-1)C. 1/0D. √(-9)3. 若a > 0,b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b < 0C. a + b < 0D. a - b > 04. 绝对值的定义是:A. |x| = x,当x > 0B. |x| = -x,当x < 0C. |x| = 0,当x = 0D. 所有以上5. 下列哪个数是无理数?A. 1/3B. 0.33333(无限循环)C. √3D. 22/76. 两个数的和是正数,它们的积是负数,那么这两个数:A. 都是正数B. 都是负数C. 一个是正数,一个是负数D. 无法确定7. 一个数的相反数是:A. 它自己B. 它的绝对值C. 它的倒数D. 它的绝对值的负数8. 计算√(64)的结果是:A. 8B. -8C. 8iD. 1/89. 下列哪个数是实数?A. 1 + 2iB. √(-4)C. 3.1415926D. -3/210. 如果a是实数,那么a的平方:A. 总是正数B. 总是负数C. 总是非负数D. 可以是任何实数答案:1-5 D A D C C 6-10 C D A A C二、填空题(每题2分,共20分)1. 圆周率π是一个________数。

2. 两个相反数的和是________。

3. 绝对值不大于2的所有整数有________。

4. 如果一个数的绝对值是5,那么这个数是________或________。

5. 无理数是指不能表示为两个整数的比的数,例如________。

6. 一个数的平方根是它本身的数有________和0。

7. 一个数的立方根是它本身的数有________、-1和0。

8. 一个数的相反数是它自己的数是________。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

初二数学实数试卷数轴题

初二数学实数试卷数轴题

一、选择题(每题3分,共15分)1. 在数轴上,点A表示的数是-3,点B表示的数是2,那么AB线段的长度是:A. 5B. 7C. 2D. 12. 在数轴上,点C表示的数是5,点D表示的数是-2,那么CD线段的中点表示的数是:A. 1B. 2C. 3D. 43. 在数轴上,点E表示的数是-4,点F表示的数是3,那么EF线段的长度是:A. 7B. 9C. 5D. 84. 在数轴上,点G表示的数是-1,点H表示的数是2,那么GH线段的长度是:A. 3B. 1C. 2D. 45. 在数轴上,点I表示的数是-3,点J表示的数是-6,那么I、J两点之间的距离是:A. 3B. 6C. 9D. 12二、填空题(每题5分,共25分)6. 在数轴上,点K表示的数是-5,那么点K的相反数表示的数是______。

7. 在数轴上,点L表示的数是4,那么点L到原点的距离是______。

8. 在数轴上,点M表示的数是-2,那么点M到点3的距离是______。

9. 在数轴上,点N表示的数是1,那么点N到点-4的距离是______。

10. 在数轴上,点O表示的数是-7,那么点O到原点的距离是______。

三、解答题(每题10分,共30分)11. 在数轴上,点P表示的数是-1,点Q表示的数是2,那么点P和点Q之间的距离是______。

12. 在数轴上,点R表示的数是-4,点S表示的数是3,那么点R和点S之间的距离是______。

13. 在数轴上,点T表示的数是-2,点U表示的数是5,那么点T和点U之间的距离是______。

四、应用题(15分)14. 小明在数轴上表示了以下信息:他的家在点A处,表示的数是-3;他所在学校在点B处,表示的数是5;他所在班级在点C处,表示的数是-1。

请根据这些信息,在数轴上表示出以下问题:(1)小明家到学校的距离是多少?(2)小明家到班级的距离是多少?(3)学校到班级的距离是多少?答案:一、选择题:1. A2. A3. A4. A5. B二、填空题:6. 57. 48. 59. 5 10. 7三、解答题:11. 3 12. 7 13. 7四、应用题:14. (1)小明家到学校的距离是8。

初二上册数学实数的练习题

初二上册数学实数的练习题

初二上册数学实数的练习题题目:初二上册数学实数的练习题实数是数学中最基本、最广泛应用的数系之一。

在初二上册数学学习中,实数的概念和性质是重要的学习内容之一。

为了巩固对实数的理解和运用,本文将提供一些初二上册数学实数的练习题,帮助同学们加深对实数的认识和运算能力。

【练习题一】计算下列各题中实数的和、差、积及商,并化简结果:1. $3\sqrt{2} + 5\sqrt{2}$2. $2\sqrt{3} - 4\sqrt{3}$3. $4\sqrt{5} \cdot 2\sqrt{5}$4. $\frac{2\sqrt{6}}{\sqrt{2}}$5. $\frac{5\sqrt{3}}{2\sqrt{6}}$【解答】1. $3\sqrt{2} + 5\sqrt{2}$结果:$8\sqrt{2}$2. $2\sqrt{3} - 4\sqrt{3}$结果:$-2\sqrt{3}$3. $4\sqrt{5} \cdot 2\sqrt{5}$结果:$8\cdot 5 = 40$4. $\frac{2\sqrt{6}}{\sqrt{2}}$结果:$\sqrt{2}$5. $\frac{5\sqrt{3}}{2\sqrt{6}}$结果:$\frac{5\sqrt{3}}{2\sqrt{6}}$(无法化简)【练习题二】根据实数的性质,判断下列等式是否成立,如果成立请说明理由,如果不成立请给出反例:1. $\sqrt{3} + \sqrt{5} = \sqrt{8}$2. $2\sqrt{7} - \sqrt{5} = \sqrt{14}$3. $\sqrt{6} + \sqrt{2} = \sqrt{8}$4. $\sqrt{13} \cdot \sqrt{7} = \sqrt{20}$5. $\sqrt{10} \div \sqrt{5} = \sqrt{2}$【解答】1. $\sqrt{3} + \sqrt{5} = \sqrt{8}$不成立。

初二实数基础测试题及答案

初二实数基础测试题及答案

初二实数基础测试题及答案实数是数学中最基本的数集,包括有理数和无理数。

本次初二实数基础测试题旨在帮助学生巩固对实数概念的理解,掌握实数的运算规则。

以下是测试题及答案。

一、选择题(每题2分,共20分)1. 实数包括以下哪些数?A. 有理数B. 无理数C. 有理数和无理数D. 只有有理数答案:C2. 下列哪个数不是实数?A. πB. -3C. √2D. 1/3答案:无(所有选项都是实数)3. 实数a和b的和为正数,那么a和b必须满足以下哪个条件?A. 都是正数B. 都是负数C. 至少有一个是正数D. 至少有一个是负数答案:C4. 以下哪个数是有理数?A. πB. √3C. 0.33333(无限循环)D. √2答案:C5. 实数的绝对值总是:A. 正数B. 零C. 负数D. 非负数答案:D6. 如果a > b,且a和b都是实数,那么|a - b|等于:A. a - bB. b - aC. a + bD. 0答案:A7. 实数的相反数是:A. 它的平方B. 它的倒数C. 它的绝对值D. 它的负数答案:D8. 以下哪个运算不能在实数范围内完成?A. 加法B. 减法C. 乘法D. 除法(除数为0)答案:D9. 实数的平方总是:A. 正数B. 零C. 负数D. 非负数答案:D10. 实数的幂运算中,指数为分数时,结果可能是:A. 有理数B. 无理数C. 有理数或无理数D. 都不是答案:C二、填空题(每题2分,共20分)11. √9 = ______答案:312. -√4 = ______答案:-213. |-5| = ______答案:514. 1/2 的倒数是 ______答案:215. 2π 的相反数是 ______答案:-2π16. 如果a = -3,那么a的绝对值是 ______答案:317. 3 + 4i 是一个 ______答案:复数18. √16的两个解是 ______答案:4 和 -419. √(-1)^2 = ______答案:120. 如果x^2 = 9,那么x的两个解是 ______答案:3 和 -3三、解答题(每题10分,共30分)21. 计算下列表达式的值:(3 + √5)^2答案:[(3 + √5) + (3 - √5)] * [(3 + √5) - (3 - √5)] = (6) * (2√5) = 12√522. 解方程:2x^2 - 5x + 2 = 0答案:使用求根公式,x = [5 ± √(5^2 - 4*2*2)] / (2*2) = [5 ± √17] / 423. 证明:对于任何实数a和b,(a + b)^2 = a^2 + b^2 + 2ab答案:(a + b)^2 = a^2 + 2ab + b^2(根据平方差公式)四、简答题(每题10分,共30分)24. 描述实数的分类。

初二上册数学实数的运算练习题

初二上册数学实数的运算练习题

初二上册数学实数的运算练习题在初二上册数学课程中,学习实数的运算是一个重要的内容。

通过练习题的实践,我们能够加深对实数运算规则的理解,并提升解题能力。

本文将为大家提供一些实数的运算练习题,并分析解题思路。

1. 练习题一已知实数a = 4.5, b = -2.3,计算下列各式的值:(1)a + b;(2)a - b;(3)a × b;(4)a ÷ b。

解析:根据实数的加减乘除法运算规则,我们可以直接计算得出结果:(1)a + b = 4.5 + (-2.3) = 2.2;(2)a - b = 4.5 - (-2.3) = 6.8;(3)a × b = 4.5 × (-2.3) = -10.35;(4)a ÷ b = 4.5 ÷ (-2.3) ≈ -1.956。

2. 练习题二已知实数a = -√7,b = √3,计算下列各式的值:(1)a + b;(2)a - b;(3)a × b;(4)a ÷ b。

解析:在计算过程中,我们需要注意实数的运算规则和根号的运算性质:(1)a + b = -√7 + √3,由于根号内无法进行简化,所以直接保持原样;(2)a - b = -√7 - √3,同样保持原样;(3)a × b = (-√7) × √3 = -√(7 × 3) = -√21;(4)a ÷ b = (-√7) ÷ √3 = -√(7 ÷ 3) = -√(7/3)。

3. 练习题三已知实数a = -1/4, b = 1/6,计算下列各式的值:(1)a + b;(2)a - b;(3)a × b;(4)a ÷ b。

解析:对于分数的实数运算,我们需要注意分母的处理:(1)a + b = (-1/4) + (1/6),通分并相加:(-3/12) + (2/12) = -1/12;(2)a - b = (-1/4) - (1/6),同样通分并相减:(-3/12) - (2/12) = -5/12;(3)a × b = (-1/4) × (1/6) = -1/24;(4)a ÷ b = (-1/4) ÷ (1/6) = (-1/4) × (6/1) = -6/4 = -3/2。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

八年级(上)数学《实数》测试题

八年级(上)数学《实数》测试题

八年级(上)数学《实数》测试题姓名: 班级: 得分:一.选择题(每题3分,共30分) 1.81的算术平方根是( )A .9 B.-9 C. ±9 D. 3 2. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2πD. 0.151151115…3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数4. 下列说法错误的是( ) A. 1的平方根是±1 B. –1的立方根是–1C.2是2的算术平方根 D. –3是2)3(-的平方根5. 和数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数 6. 下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000017. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a8. 边长为1的正方形的对角线长是( ) 整数 B. 分数 C. 有理数 D. 不是有理数92a a =-,则实数a 在数轴上的对应点一定在 ()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 10.下列说法中正确的是 ( )A. 实数2a -是负数 B. a a =2C.a -一定是正数D. 实数a -的绝对值是a二.填空题(每小题3分,共30分)11. 9的算术平方根是 ;3的平方根是 ; 271的立方根是 . 12.2-1的相反数是 , -36-的绝对值是 ;32-= .13.无理数10的小数部分可以表示为 . 14.64的立方根是______;364的平方根是______.15. 25的所有整数的和是 . 16. 若a ,b 都是无理数,且2=+b a ,则a ,b 的值可以是 .17.有如下命题:①负数没有立方根; ②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号; ④如果一个数的立方根是这个数本身,那么这个数是1或0. ⑤无限小数就是无理数; ⑥0.101001000100001 是无理数. 其中假命题有 18.有个数值转换器,原理如下:输出y是无理数取立方根输入x当输入x 为64时,输出y 的值是19、ππ-+-43= _____________。

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。

初二数学实数练习题

初二数学实数练习题

初二数学实数练习题1. 已知数集A={-3, -2, -1, 0, 1, 2, 3},数集B={0, 1, 2, 3, 4, 5},数集C={-5, -4, -3, -2, -1, 0},求下列集合的并集和交集:(1) A∪B(2) A∪C(3) B∩C解析:(1) A∪B代表集合A和集合B的并集,即两个集合中所有的元素放在一起,去重复后的结果。

A∪B = {-3, -2, -1, 0, 1, 2, 3, 4, 5}(2) A∪C代表集合A和集合C的并集。

A∪C = {-5, -4, -3, -2, -1, 0, 1, 2, 3}(3) B∩C代表集合B和集合C的交集,即两个集合中共有的元素。

B∩C = {0}2. 已知数集D={x | -3 ≤ x ≤ 3},数集E={x | -4 < x < 2},数集F={x | -2 ≤ x < 4},判断下列命题的真假:(1) D⊆E(2) F⊆E(3) E⊆F解析:(1) D⊆E代表集合D是集合E的子集,即D中的所有元素也同时属于E。

由题可知,D中的元素范围是-3 ≤ x ≤ 3,而E中的元素范围是-4 < x < 2。

所以D⊆E是成立的,即D是E的子集。

(2) F⊆E代表集合F是集合E的子集,即F中的所有元素也同时属于E。

由题可知,F中的元素范围是-2 ≤ x < 4,而E中的元素范围是-4 < x < 2。

尽管F的范围是包含了E的范围,但F中的元素-2是不属于E的元素,所以F⊆E是不成立的。

(3) E⊆F代表集合E是集合F的子集,即E中的所有元素也同时属于F。

由题可知,E中的元素范围是-4 < x < 2,而F中的元素范围是-2 ≤ x < 4。

所以E⊆F是成立的,即E是F的子集。

总结:根据数学实数集合的概念和范围比较,我们可以准确地求解出集合的并集和交集,以及判断集合之间的子集关系。

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

人教版八年级数学上册第十三章实数测试题(有答案)

人教版八年级数学上册第十三章实数测试题(有答案)

《实数》 基础测试题(一)、精心选一选1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( )A .1B .2C .3D .42.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 13.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115( 5.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 下列说法正确的是( )A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根(二)、细心填一填7.在数轴上表示的点离原点的距离是 。

设面积为5的正方形的边长为x ,那么x =8. 9的算术平方根是 ;94的平方根是 ,271的立方根是 , -125的立方根是 .9. 25-的相反数是 ,32-= ; 10. =-2)4( ; =-33)6( ; 2)196(= .38-= .11. 比较大小;5.; (填“>”或“<”) 12. 要使62-x 有意义,x 应满足的条件是(三)、用心做一做13.将下列各数填入相应的集合内。

-7,0.32, 13,0,3125-,π,0.1010010001…①有理数集合{ … }②无理数集合{ … }③负实数集合{ … }14.化简①2+32—52 ② 7(71-7)③ |23- | + |23-|- |12- | ④ 41)2(823--+15.求下列各式中的x(1)12142=x (2)125)2(3=+x16.比较下列各组数的大少(1) 4 与 36317. 一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水底的底边长.18...一个正数.....a .的平方根是.....3.x .―.4.与.2.―.x .,则..a .是多少?....(四)、附参考答案(一)、精心选一选(每小题4分,共24分)1.B2.A3.D4.B5.B6.B(二)、细心填一填(每小题4分,共24分)7.3、58. 3 、 32± 、 31 、 -5 9. 52- 、 23-10. 4 、 -6 、196 、 -2;215- > 5.0; 12. 3≥x(三)、用心做一做 13.(6分)将下列各数填入相应的集合内。

初二数学第二章实数检测试卷(有解析)

初二数学第二章实数检测试卷(有解析)

初二数学第二章实数检测试卷(有解析)一、精心选一选!81.边长为4的正方形的对角线长是( D )A.整数B.分数C.有理数D.无理数2. 的算术平方根是( A )A. B.- C. D.±3..下列说法不正确的是( C )A.-1的立方根是-1;B.-1的平方是1;C.-1的平方根是-1;D.1的平方根是±14. 下列各式中,正确的是( C )A. B. C. D.5. 要使=3-x,则x的取值范畴( D )A.x≤3B.x≥3C.0≤x≤3D.任意数6.已知|x|=2,则下列四个式子中一定正确的是( C )A.x=2B.x=—2C.x2=4D.x3=87.已知x、y为实数,且,则的值为( D )A.3B.-3C.1D.-18.-8的立方根与4的平方根之和为( D )A.0B.4C.-4D.0或-4二、细心填一填!89. 若无理数a满足,请写出两个符合条件的无理数:_______、____ ____。

10.2的平方根是_______,-27的立方根是_______.11.假如某数的一个平方根是-6,那么那个数为________.12. 用运算器运算:≈________ .(结果保留四个有效数字)13. 假如与互为相反数,则ab= ____ ______。

14. ______。

15.比较大小:_________π.16.一个数的平方等于64,则那个数的立方根是________.17.如图:(1)斜边所在的正方形面积是___________.⑵假如斜边用b表示,b是有理数吗?18.如图,正方形网格中的每个小正方形边长差不多上1,任意连结这些小正方形的顶点,可得到一些线段。

请在图中画出如此的线段。

19.(1)填空:①( )2 =_____ _;( )2=______;②( )2等于=______;(2) 归纳:关于正数a,( )2=______;即一个正数a的平方根的平方等于它的本身。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学实数测试题集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]2017年初二数学第二章实数测试题(二) 姓名 班级 一、选择题(每题3分,共27分) 1、下列计算正确的是( )A.164=±B.32221-= C.2464÷= D.2623•= 2、16的算术平方根是( ) A .4 B .±4 C .2 D .±23、9的平方根是( )A . 3 B . ±3 C . 3 D . ±34、下列各组数中互为相反数的是( )A .-2与(-2)2B .-2与38-C .2与(-2)2D .|-2|与25、计算212-613+8的结果是( ) A .32-2 3B .5- 2C .5- 3D . 226、已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1527、对任意实数a ,下列等式一定成立的是( )A .a 2=aB .a 2=-aC .a 2=±aD .a 2=|a |8、下列各数:2π, 0,9, 3·, 227,27, 1010010001.6,1-2中无理数个数为( )A .2 个B .3 个C .4 个D .5 个9、下列说法错误的是( )A .16的平方根是±2B .2是无理数C .327-是有理数D .22是分数 二、填空题(每题3分,共27分)10、比较下列实数的大小(在 填上>、<或=)①3- 2-; ②215- 21;③112 53。

11、计算:|2-3|= .(结果保留根号)12、计算1112()2232----= .13、、若()2120160x y ++-=,则x y = _14、已知a 、b 为两个连续的整数,且a <28<b ,则a +b =________。

15、数轴上A 、B 两点对应的实数分别是2和2.若点A 关于点B 的对 称点为点C ,则点C 对应的实数为 .16、如图,在网格图中的小正方形边长为1,则图中的△ABC 的面积等于 。

17、若||4x =,29y =,且||x y x y -=-,则x y +的值为 。

18、如图,图中的线段AE 的长度为 。

三、解答题19、计算(1)(32+2)×12(2) 32+50-38 (3)26+(2-3)2(4)(3+22)(3-22) (4) 27― 12― 3―12(5)5145203-- (6)20513375⨯--20、计算(1))5.02313()81448(--- (2)520)61(2÷+- (3)78(52)(52)-⋅+ (4)326273⨯-(5)16+327-+33-2(3)-21、当25+=a ,25-=b 时,求ab 和22b ab a ++的值22设2+6的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x -1的算术平方根.23、已知13+=x ,13-=y ,求下列各式的值:(1)222y xy x ++, (2)22y x -.24、若,x y 都是实数,且338y x x =-+-+,求3x y +的立方根.2017年初二数学第一二章检测题 姓名 班级一、选择题(每题3分,共24分) 1、下列实数中是无理数的是( ) A. 4 B.39 C. ⋅⋅83.0 722-2、6的算术平方根是( )A. 6± B. 6 C. 6± D. 63、下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,64、下列各式中,正确的是( )'D EAB CDA BCD A . 416±= B .416=± C .3273-=- D .4)4(2-=-5、一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( )(A )150cm (B )90cm (C )80cm (D )40cm 6、有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于( )A .2B .8C .D .7、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是( )A .13B .26C .47D .948、已知直角三角形中一条直角边长为12cm ,周长为30cm ,则这个三角形的面积是( )A .220cmB .230cmC .260cmD .275cm二、填空题(每题3分,共24分)9、如果a 有算术平方根,那么a 一定是 。

10、比较大小:2352 (填“>”或“<”或“=” ) 11、当x 时,2x有意义。

12、一个数的算术平方根的相反数是,则这个数是13、若三角形的三角之比为1﹕2﹕3,则此三角形为__________三角形,且三角的对应边分别为c 、a 、b ,则三边的关系为__________. 14、在﹣,,,,,0.,…(相邻两个2之间1的个数逐次加1)中,是无理数的是__________.15、81的平方根是 若一个三角形三边之比为5:12:13,且周长为60cm ,则它的面积是 2cm 16、直角三角形两直角边长分别为5和12,则它斜边上的高为__________. 17、若5+的小数部分是a ,5﹣的小数部分是b ,则ab+5b=__________.18、如图,把一张长方形纸片沿对角线AC 折叠,使点D 落在点D ′处,AD ′交BC 于E ,AD=8cm ,AB=4cm.(1)BE 的长是 (2)△ACE 的面积是三、解答题19、计算(1) 9371248-+ (2)1235⨯- (3)2)223(- (4))32)(32(-+ (5)()()1323+-(6)1268⨯ (7) 34827+ (9)()13311831312-⎪⎪⎭⎫ ⎝⎛⨯+--+⨯-π20、若1x y +-与1x y -+互为相反数,求()()20152016x y x y ++-的值。

21、已知2a+1的平方根是±3,5a+2b ﹣2的算术平方根是4,求:3a ﹣4b 的平方根.22、如图,一个长方体形的电子元件,长、宽、高分别为8cm ,8cm ,12cm ,该电子元件内部是空的,不计外壳厚度,工程师想在A 点到G 点之间安装一条电线.(1)请问怎么安装这条电线是最短的请你计算出这条最短的电线需要多少cm (运算结果保留根式)(2)如果这条电线只能沿电子元件的外壳表面安装,此时 你能帮工程师设计一条最短的线路吗安装这条最短的电线需要多少cm23、如图所示,折叠长方形一边AD ,点D 落在BC 边的点F 处,已知 BC=10厘米,AB=8厘米,求BF 与FC 的长.2017年初二数学第一次考试试题 姓名 班级 一、选择题(每题3分,共24分)1、的倒数是()A .B .C . ﹣3D .2、36的算术平方根是()A . 6B . ±6C .D .±3、估计26 的值在()A.2到3之间B、3到4之间C.4到5之间D.5到6之间4、下列二次根式中,属于最简二次根式的是()A.B.C.D.5、下列说法,正确的是()A.所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数就不是有理数6、下列各组数中,是勾股数的一组是()=,b=2,c=1 =7,b=24,c=25C.a=,b=, c=1 =2,b=3,c=57、要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤28、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2二、填空题(每题3分,共24分)9、364的平方根为271-的立方根是。

10、已知等腰三角形的一条腰长为5,底边长是6,则它底边上的高为________.11、在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=________.12、如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为.13、在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A沿纸箱表面爬到顶点B点,那么它所行的最短路线的长是.14、x为无理数21的小数部分,则x= (结果保留根号)15、已知y=++5,则x2﹣xy+y2= .16、把下列各数填入集合内:-7, , 31,46, 0, 8,21,3216,-2π.①无理数集合: { …};③有理数集合: { …}②整数集合: { …};④分数集合{ …};三、解答题17.(4分)计算:()-10201331161(1)272π⎛⎫-⨯---+- ⎪⎝⎭18、(6分)求下列各式中的x (1)3x 2=27,. (2)8)12(3-=-x19、(18分)计算(1)271238250+-+ (2)7216(31)(31)8-++- (3)32)48312123÷+-(4)(﹣4)﹣(3﹣2)(5)(2+)2﹣(+)(﹣ (6)2)21(29510518-+-+-20、(5分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图1中画出一条长 为的线段;(要求线段的端点都在格点上)(2)在图2中画出一个以格点为顶点,面积为10的等腰三角形.(要求三角形的顶点都在格点上)21、(5分)在△ABC中,AC=8,BC=6,在△ABE中,DE为AB边上的高,DE=12,△ABE的面积为60,△ABC是否为直角三角形22、(5分)已知:x﹣6和3x+14是a的两个不同的平方根,2y+2是a的立方根.(1)求x,y,a的值;(2)求1﹣4x的算术平方根.23、(5分)如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.24、(5分)已知21a+的平方根是±3,522a b+-的算术平方根是4,求34a b-的平方根.25、(6分某校要在一块三角形空地上种植花草,如图所示,AC=13米、AB=14米、BC=15米,若线段CD是一条引水渠,且点D在边AB上.已知水渠的造价每米150元.问:点D与点C距离多远时,水渠的造价最低最低造价是多少元)26、(5分)如图,在长中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC上,设此点为F,若△ABF的面积为30cm2,求DE的长。

相关文档
最新文档