湖北省部分高中2015届高三元月调考数学理试题 Word版含答案

合集下载

「湖北省武汉市武昌区2015届高三元月调考数学理试题Word版含答案」

「湖北省武汉市武昌区2015届高三元月调考数学理试题Word版含答案」

武昌区2015届高三年级元月调研考试理 科 数 学 试 卷本试题卷共5页,共22题。

满分150分,考试用时120分钟★祝考试顺利 ★注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置。

2.选择题的作答:选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内。

答在试题卷上或答题卷指定区域外无效。

4.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,若i 3)i 3(-=+z ,则=||zA.1 ﻩB.2 ﻩC.3 D .22.已知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧≤-≤-=1|1|1|1|),(y x y x A ,()()}111|),{(22≤-+-=y x y x B ,“存在点A P ∈”是“B P ∈”的A .充分而不必要的条件B .必要而不充分的条件 C.充要条件 D.既不充分也不必要的条件 3.若62)(xb ax +的展开式中x 3项的系数为20,则a 2+b 2的最小值为 A.1 B.2 ﻩC.3 ﻩD.4 4.根据如下样本数据x3 45 6 7 y 4.0 2.5 -0.50.5 -2.0 y 就 A .增加4.1个单位 B.减少4.1个单位C.增加2.1个单位D.减少2.1个单位5.如图,取一个底面半径和高都为R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R 的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为圆S 和圆环S ,那么A .圆S >圆环SB .圆S =圆环SC .圆S <圆环SD .不确定6.一个几何体的三视图如图所示,则该几何体的表面积和体积分别是A .24+26和40 B.24+26和72 C .64+26和40 D .50+26和727.已知x,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z =y -a x取得最大值的最优解不唯一...,则实数a 的值为A.错误!或-1B.2或错误!C.2或1 D.2或-18.如图,矩形A BCD 的四个顶点的坐标分别为A(0,—1),B (π,—1),C (π,1),D(0,1),正弦曲线f (x )=s in x和余弦曲线g (x )=cos x 在矩形AB CD 内交于点F,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是A .π21+ ﻩ B.π221+ C.π1 ﻩ D.π21 9.抛物线22(0)y px p =>的焦点为F ,准线为l ,,A B 是抛物线上的两个动点,且满足32π=∠AFB .设线段AB 的中点M 在l 上的投影为N ,则||||MN AB 的最大值是 A .3 ﻩB .23 ﻩC.33 D.43C BxyO AED Ff (x )=sin xg (x )=cos x俯视图 正视图侧视图3 64 210.已知函数()f x 是定义在R 上的奇函数,它的图象关于直线1=x 对称,且()x x f =()10≤<x .若函数()a xx f y --=1在区间[]10,10-上有10个零点(互不相同),则实数a 的取值范围是 A .]54,54[- B.)54,54(- C .]101,101[- D. )101,101(-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答.题卡对应题号......的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知正方形ABCD 的边长为2,E 为CD 的中点, F 为AD 的中点,则=⋅BF AE _______.12.根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是_______.13.设斜率为22的直线l 与双曲线)0,0(12222>>=-b a by a x 交于不同的两点P 、Q ,若点P、Q 在x 轴上的射影恰好为双曲线的两个焦点,则该双曲线的离心率是 .14. “渐升数”是指除最高位数字外,其余每一个数字比其左边的数字大的正整数(如13456和35678都是五位的“渐升数”).(Ⅰ)共有 个五位“渐升数”(用数字作答);(Ⅱ)如果把所有的五位“渐升数”按照从小到大的顺序排列,则第110个五位“渐升数”是 .(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)过圆外一点P 作圆的切线PA (A 为切点),再作割线P BC依次交圆于B ,C .若PA =6,AC =8,BC =9,则AB =________. 16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎩⎨⎧+==at y t x ,(t 为参数,a 为实数常数),曲线2C 的参数方程是⎩⎨⎧+-=-=bt y t x ,(t 为参数,b为实数常数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线3C 的极坐标方程是1=ρ. 若1C 与2C 分曲线3C 所成长度相等的四段弧,则=+22b a .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)已知函数a x x x x x f +-+-++=22sin cos )62sin()62sin()(ππ的在区间]2,0[π上的最小值为0. (Ⅰ)求常数a 的值;(Ⅱ)当],0[π∈x 时,求使0)(≥x f 成立的x 的集合.18.(本小题满分12分)已知等差数列{a n }的首项为1,前n 项和为n S ,且S 1,S2,S 4成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n T 为数列}1{1nn a a +的前n 项和,是否存在正整数n ,使得20151007<n T ?若存在,求n 的最大值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,点E ,F分别是棱AB ,BC 上的动点,且AE=B F.(Ⅰ)求证:A 1F ⊥C 1E ;(Ⅱ)当三棱锥BEF B -1的体积取得最大值时,求二面角B EF B --1的正切值.20.(本小题满分12分)(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X 的分布列和数学期望.21.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的焦距为4,其长轴长和短轴长之比为1:3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C 的右焦点,T 为直线)2,(≠∈=t t t x R 上纵坐标不为0的任意一点,过F作TF 的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段P Q(其中O 为坐标原点),求t 的值; (ⅱ)在(ⅰ)的条件下,当||||PQ TF 最小时,求点T 的坐标.22.(本小题满分14分)已知函数1e )(--=ax x f x(a为常数),曲线y=f (x)在与y轴的交点A 处的切线斜率为ABCDE F A 1B 1C 1D 1-1.(Ⅰ)求a 的值及函数f (x )的单调区间; (Ⅱ)证明:当0>x 时,1e 2+>x x;(Ⅲ)证明:当*∈N n 时,()nn n e)3(1ln1312113+>++++ .武昌区2015届高三年级元月调研考试理科数学参考答案及评分细则一、选择题:1.A 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.C 二、填空题:11. 0 12. an =2n ,或a N =2N 13.214.(Ⅰ)126;(Ⅱ)34579 15. 4 16. 2 三、解答题: 17.解:(Ⅰ)因为()a x x x f ++=2cos 2sin 3,所以()a x x f ++=)62sin(2π.因为]2,0[π∈x 时,]67,6[62πππ∈+x ,所以67π=x 时)(x f 的取得最小值a f +-=1)67(π.依题意,01=+-a ,所以1=a ;…………………………………………………(6分)(Ⅱ)由(Ⅰ)知()1)62sin(2++=πx x f .要使()0≥x f ,即21)62sin(-≥+πx . 所以Z ∈+≤+≤-k k x k ,6726262πππππ,即Z ∈+≤≤-k k x k ,26ππππ.当0=k 时,26ππ≤≤-x ;当1=k 时,2365ππ≤≤x .又],0[π∈x ,故使0)(≥x f 成立的x 的集合是],65[]2,0[πππ .………………………………(11分)18.解:(Ⅰ)设数列{}n a 的公差为d ,依题意,1,d +2,d 64+成等比数列,所以()d d 6422+=+,即022=-d d ,所以0=d 或2=d .因此,当0=d 时,1=n a ;当2=d 时,12-=n a n .……………………………………………(6分)(Ⅱ)当1=n a 时,1≥=n T n ,此时不存在正整数n,使得20151007<n T ; 当12-=n a n 时,()()12121531311+⨯-++⨯+⨯=n n T n)]121121()5131()3111[(21+--++-+-=n n 12)1211(21+=+-=n nn . 由20151007<n T ,得2015100712<+n n ,解得1007<n . 故n 的最大值为1006. …………………………………………………(12分)19.解:设x BF AE ==.以D为原点建立空间直角坐标系,得下列坐标:()0,0,0D ,()0,0,2A ,()0,2,2B ,()0,2,0C ,()2,0,01D ,()2,0,21A ,()2,2,21B ,()2,2,01C ,()0,,2x E ,()0,2,2x F -.(Ⅰ)因为)2,2,(1--=x F A ,)2,2,2(1--=x E C , 所以()()02,2,22,2,11=--⋅--=⋅x x E C F A .所以E C F A 11⊥.………………………………………(4分) (Ⅱ)因为BEF BEF BEF B S BB S V ∆∆-=⨯=323111, 所以当BEF S ∆取得最大值时,三棱锥BEF B -1的体积取得最大值. 因为()()11122≤--=-=∆x x x S BEF ,所以当1=x 时,即E ,F 分别是棱AB,BC 的中点时,三棱锥B 1-BEF 的体积取得最大值,此时E ,F 坐标分别为()0,1,2E ,()0,2,1F . 设平面EF B 1的法向量为()c b a m ,,=,则()()()()⎪⎩⎪⎨⎧=-⋅=⋅=--⋅=⋅,00,1,1,,,02,1,0,,1c b a EF m c b a E B m 得⎩⎨⎧=-=+.0,02b a c b 取1,2,2-===c b a ,得()1,2,2-=m .显然底面ABCD 的法向量为()1,0,0=n . 设二面角B EF B --1的平面角为θ,由题意知θ为锐角. 因为31||||,cos -=⋅>=<n m n m n m ,所以31cos =θ,于是322sin =θ.x所以22tan =θ,即二面角B EF B --1的正切值为22.………………………………(12分)20.解:(Ⅰ)设A1表示事件“日车流量不低于10万辆”,A 2表示事件“日车流量低于5万辆”,B 表示事件“在未来连续3天里有连续2天日车流量不低于10万辆且另1天车流量低于5万辆”.则P(A 1)=0.35+0.25+0.10=0.70,P (A 2)=0.05,所以P (B )=0.7×0.7×0.05×2=0.049. …………………………………………………(6分)(Ⅱ)X 可能取的值为0,1,2,3,相应的概率分别为027.0)7.01()0(303=-⋅==C X P ,189.0)7.01(7.0)1(213=-⋅⋅==C X P , 441.0)7.01(7.0)2(223=-⋅⋅==C X P ,343.07.0)3(333=⋅==C X P .X 的分布列为因为X ~B (3,0.7),(12分)21.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,3,42222b a b a c 解得a2=6,b 2=2.所以椭圆C 的标准方程是12622=+y x . …………………………………………………(4分) (Ⅱ)(ⅰ)由(Ⅰ)可得,F 点的坐标是(2,0).设直线PQ 的方程为x =m y+2,将直线PQ的方程与椭圆C 的方程联立,得错误! 消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=错误!,y 1y 2=错误!.于是x 1+x 2=m (y 1+y 2)+4=错误!. 设M为PQ 的中点,则M点的坐标为)32,36(22+-+m mm .因为PQ TF ⊥,所以直线FT 的斜率为m -,其方程为)2(--=x m y . 当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=.将M 点的坐标为)32,36(22+-+m m m 代入,得36)2(3222+⋅-=+-m t t m m m .解得3=t . ………………………………………………(8分)(ⅱ)由(ⅰ)知T为直线3=x 上任意一点可得,点T点的坐标为),3(m -. 于是1||2+=m TF ,221221221221)()]([)()(||y y y y m y y x x PQ -+-=-+-=]4))[(1(212212y y y y m -++=]324)34)[(1(2222+--+-+=m m m m ]324)34)[(1(2222+--+-+=m m m m 3)1(2422++=m m .所以1)3(241)1(2431||||222222++⋅=++⋅+=m m m m m PQ TF 14)1(4)1(2411)3(2412222222+++++⋅=++⋅=m m m m m 414124122++++⋅=m m 33442241=+⋅≥.当且仅当m2+1=错误!,即m=±1时,等号成立,此时错误!取得最小值33. 故当错误!最小时,T 点的坐标是(3,1)或(3,-1).………………………………………………(14分)22.解:(Ⅰ)由1e )(--=ax x f x,得a x f x-='e )(.又11)0(-=-='a f ,所以2=a .所以12e )(--=x x f x ,2e )(-='xx f .由02e )(>-='xx f ,得2ln >x .所以函数)(x f 在区间)2ln ,(-∞上单调递减,在),2(ln +∞上单调递增. ……………………(4分)(Ⅱ)证明:由(Ⅰ)知4ln 112ln 2e)2(ln )(2ln min -=--==f x f .所以4ln 1)(-≥x f ,即4ln 112e -≥--x x,04ln 22e >-≥-x x. 令1e )(2--=x x g x,则02e )(>-='x x g x.所以)(x g 在),0(+∞上单调递增,所以0)0(1e )(2=>--=g x x g x,即1e 2+>x x .…………(8分)(Ⅲ)首先证明:当0>x 时,恒有331e x x>. 证明如下:令331e )(x x h x-=,则2e )(x x h x -='. 由(Ⅱ)知,当0>x 时,2e x x>,所以0)(>x h ,所以)(x h 在),0(+∞上单调递增,所以01)0()(>=>h x h ,所以331e x x>. 所以)31ln(3x x >,即x x ln 33ln >+.依次取nn x 1,,23,12+= ,代入上式,则12ln 33ln 12>+, 23ln 33ln 23>+, nn n n 1ln33ln 1+>++. 以上各式相加,有)12312ln(33ln 12312n n n n n +⨯⨯⨯>+++++所以()1ln 33ln )131211(+>++++++n n nn ,所以()n n n n--+>++++3ln 1ln 3131211 ,即()n n n n e 31ln 1312113+>++++ .………(14分)另解:用数学归纳法证明(略)。

湖北省部分高中(大冶一中等校)2015届高三上学期12月调

湖北省部分高中(大冶一中等校)2015届高三上学期12月调

2014-2015学年度湖北省部分高中12月调考高三数学试卷(理科)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、集合1{|(),1},{|2xA x y xB x y ==>-==,则A B =( )A .{|02}x x <<B .{|0x x <C .{|0x x <≤D .{|0x x ≤≤ 2、复数221z i i=++,其中i 是虚数单丝,则复数z 的模为( )A .2 3、已知,sin cos 22a ππθθθ-<<+=,其中01a <<,则tan θ可能是( ) A .2- B .12-C .2或12-D .-1或13- 4、等比数列{}n a 的前n 项和为330,6,nn S a S xdx ==⎰,则公比q 为( )A .1B .12-C .1或12-D .-1或125、函数()f x 是R 上的偶函数,且()(1)1f x f x ++=,当[]1,2x ∈时,()2f x x =-, 则()2005.5f -=( )A .0.5B .1C .1.5D . 1.5-6、等差数列{}n a 中,120032004200320040,0,0,n a a a a a S >+>⋅<为数列{}n a 的前n 项和,若0n S >,则n 的最大值为( )A .2003B .4005C .4006D .40077、一空间几何体的三视图如图所示,则该几何体的体积为( ) A .10 B .20C .30D .40 8、从1,2,3,,20这20个数中任取2个不同的数,则这两个数之和为3,的倍数的概率为( ) A .3295 B .338C .119D .571909、设,x y 满足约束条件13400x y a a x y ⎧+≤⎪⎪≥⎨⎪≥⎪⎩,若231x y z x ++=-的最小值为32,则a 的值为( )A .-1B .1C .-2D .210、设曲线(1)xy ax e =-在点00(,)A x y 处的切线为1l ,曲线(1)xy x e -=-在点01(,)B x y 处的切线为2l ,若存在03[0,]2x ∈,使得12l l ⊥,则实数a 的取值范围是( ) A .(],1-∞ B .1,2⎡⎫+∞⎪⎢⎣⎭C .3(1,)2D .3[1,]2第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

(精校版)湖北省理数卷文档版(有答案)-2015年普通高等学校招生统一考试

(精校版)湖北省理数卷文档版(有答案)-2015年普通高等学校招生统一考试

本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,607i 的共轭..复数..为 A .iB .i -C .1D .1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石D .1365石3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为 A .122B .112C .102D .924.设211(,)X N μσ ,222(,)Y N μσ ,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49 C .45 D .3010.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是 A .3 B .4 C .5 D .6二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应.....题号..的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知向量OA AB ⊥ ,||3OA =,则OA OB ⋅= .12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD = m.14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=;③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)第13题图AB(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线, 且3BC PB =,则ABAC= . 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 第15题图AP BC18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}nc 的前n 项和n T . 19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于 点F ,连接,,,.DE DF BD BE(Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写 出结论);若不是,说明理由;(Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3, 求DCBC的值. 20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(Ⅰ)求Z 的分布列和均值;(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.21.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.第19题图(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若 存在,求出该最小值;若不存在,说明理由.22.(本小题满分14分)已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小;(Ⅱ)计算11b a ,1212b b a a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a = ,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.D 4.C 5.A 6.B 7.B 8.D 9.C 10.B 二、填空题(本大题共6小题,考生需作答5小题,每小题5分,共25分)第21题图111.9 12.2 13.14.(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③ 15.1216.三、解答题(本大题共6小题,共75分) 17.(11分)(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z .由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6.18.(12分) (Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++ , ① 2345113579212222222n n n T -=++++++ . ② ①-②可得221111212323222222n n n n n n T --+=++++-=- ,故n T 12362n n -+=-. 19.(12分)第19题解答图2第19题解答图1 (解法1)(Ⅰ)因为PD ⊥底面A B C D ,所以P D B C ⊥, 由底面A B C D 为长方形,有B C C D ⊥,而PD CD D = ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C = ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥.又PB EF ⊥,DE EF E = ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD的交线.由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥.又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P = ,所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有BD在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=, 则 πtantan 3BDDPF PD=∠=解得λ所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC = (解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE = ,于是0PB DE ⋅= ,即PB DE ⊥.又已知EF PB ⊥,而DE EF E = ,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅= , 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,.(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则π1cos 32||||BP DP BP DP ⋅==⋅ ,解得λ=所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC = 20.(12分)(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.第20题解答图1 第20题解答图2第20题解答图33311(1)10.30.973.p p =--=-=因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为21.(14分)(Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN = ,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k--;同理可得2(,)1212m m Qk k -++.由原点O 到直线PQ 的距离为d =|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k∆=-+≥-, 第21题解答图当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.22.(14分)(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e xx +<.令1x n=,得111e n n +<,即1(1)e n n +<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n nnb b b n a a a =+ ②下面用数学归纳法证明②.(1)当1n =时,左边=右边2=,②成立. (2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+ .当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++ .所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立. (Ⅲ)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++= 111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 12312112122334(1)n b b b b b b b b b n n ++++++≤++++⨯⨯⨯+ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++ 1212n b b b n <+++ 1212111(1)(1)(1)12n n a a a n=++++++ 12e e e n a a a <+++ =e n S .即e n n T S <.。

湖北省荆门市2015届高三元月调研考试数学(理)试题及答案

湖北省荆门市2015届高三元月调研考试数学(理)试题及答案

绝 密 ★ 启用前荆门市2014-2015学年度高三年级元月调研考试数 学(理)本试卷共4页,21题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答卷前,先将自己的学校、班级、姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、考试结束后,请将答题卡上交。

一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{}{}26,30A x N x B x R x x =∈=∈->≤,则A B =IA .{}3,4,5B .{}4,5,6C .{}36x x <≤D .{}36x x <≤ 2.下列命题中,真命题是 A .0x R ∃∈,使得00xe ≤ B .22sin 3(π,)sin x x k k Z x+≠∈≥C .2,2x x R x ∀∈>D .1,1a b >>是1ab >的充分不必要条件3.要得到函数sin 2y x =的图象,只需将函数πsin(2)3y x =-的图象A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π3个单位长度D .向左平移π3个单位长度4.对于函数2(),f x x mx n =++若()0,()0f a f b >>,则函数()f x 在区间(,)a b 内 A .一定有零点 B .一定没有零点 C .可能有两个零点 D .至多有一个零点5.设x R ∈, 对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+ 的上确界. 若,a b R +∈,且1a b +=,则122ab--的上确界为A .5-B .4-C .92D .92-6.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为A.3π2+ B.π+ C .3π2D.5π27.点(,)x y 是如图所示的坐标平面的可行域内(阴影部分且包括边界)的任意一点,若目标函数 z =x +ay 取得最小值的最优解有无数个,则y x a-的最大值是A .23B .25C .16D .148. 在直角坐标平面上,(1,4),(3,1)OA OB ==-u u r u u u r, 且OA uur 与OB uu u r 在直线l 的方向向量上的投影的长度相等,则直线l 的斜率为 A .14-B .25C .25或43- D .529.对于一个有限数列12(,,,)n p p p p =⋅⋅⋅,p 的蔡查罗和(蔡查罗是一位数学家)定义为121()n S S S n++⋅⋅⋅+,其中12(1,)k k S p p p k n k N =++⋅⋅⋅+∈≤≤.若一个99项的数列(1299,,,)p p p ⋅⋅⋅的蔡查罗和为1000,那么100项数列1299(9,,,,)p p p ⋅⋅⋅的蔡查罗和为 A .991B .992C .993D .99910.设双曲线22221(00)x y a b a b-=>>,的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u r u u r u u r ,316λμ⋅=,则双曲线的离心率为 A.3 B.5 C.2D .98二、填空题(本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分) 11.已知函数|1|(1)()3(1)x x x f x x -⎧=⎨>⎩≤,若()2f x =,则x = ▲ .12.由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为 ▲ .13.若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 ▲ .14.在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.如果20N 的力能使弹簧伸长4cm ,则把弹簧从平衡位置拉长8cm (在弹性限度内)时所做的功为 ▲(单第6题图第7题图位:焦耳).15.已知:对于给定的*q N ∈及映射:,*f A B B N →⊆,若集合C A ⊆,且C 中所有元素在B 中对应的元素之和大于或等于q ,则称C 为集合A 的好子集.①对于{}3,,,,q A a b c d ==,映射:1,f x x A →∈,那么集合A 的所有好子集的个数为 ▲ ;②对于给定的q ,{}1,2,3,4,5,6,πA =,映射:f A B →的对应关系如下表:x 1 2 3 4 5 6 π f (x )11111yz若当且仅当C 中含有π和至少A 中3个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集,则所有满足条件的数组(,,)q y z 为 ▲ .三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知向量2(cos,1),,cos )222x x xm n =-=rr ,设函数()f x m n =. (Ⅰ)求()f x 在区间[]0,π上的零点;(Ⅱ)在△ABC 中,角A B C 、、的对边分别是,,a b c ,且满足2b ac =,求()f B 的取值范围. 17.(本小题满分12分)已知等比数列{}n a 满足:28432=++a a a ,且23+a 是42,a a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{a n }是单调递增的,令n n n a a b 21log =,12n S b b =++…n b +,求使5021>⋅++n n n S 成立的正整数n 的最小值.18.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N . (Ⅰ)求证://SB 平面ACM ; (Ⅱ)求证:平面SAC ⊥平面AMN ; (Ⅲ)求二面角D AC M --的余弦值. 19.(本小题满分12分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%. (Ⅰ)若建立函数模型()y f x =制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;第18题图(Ⅱ)现有两个奖励函数模型:1(1)120y x =+;2(2)log 2y x =-.试分析这两个函数模型是否符合公司要求. 20.(本小题满分13分)如图,已知圆E:22(16x y +=,点F ,P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q . (Ⅰ)求动点Q 的轨迹Γ的方程;(Ⅱ)设直线l 与(Ⅰ)中轨迹Γ相交于B A ,两点, 直线OB l OA ,,的斜率分别为12,,k k k (其中0k >).△OAB 的面积为S , 以,OA OB 为直径的圆的面积分别为12,S S .若21,,k k k 恰好构成等比数列, 求12S S S+的取值范围.21.(本小题满分14分) 设函数2()ln a f x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若存在121,[,3]3x x ∈-,使得12()()g x g x M -≥成立,求满足条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]3s t ∈,都有()()sf s g t ≥成立,求实数a 的取值范围.第20题图荆门市2014-2015学年度高三年级元月调研考试数学(理)参考答案及评分标准一、选择题:(每小题5分,10小题共50分)1. B2. D3. B4. C5. D6. A7.B8. C9. D 10. A 二、填空题(每小题5分,5小题共25分)11.1-; 12; 13.3[1,)2; 14.1.6; 15.①5,②(5,1,2). 三、解答题:(本大题共6小题,共75分) 16.因为2(cos,1),,cos )222x x xm n =-=rr ,函数()f x m n =r r g .所以21cos ()cos cos 2222x x x xf x x +=-=-………………………2分11π1cos sin()22262x x x =--=--………………………4分 (Ⅰ)由()0f x =,得π1sin()62x -=. ππ=+2π66x k -∴,或π5π=+2π66x k k Z -∈,π=+2π3x k ∴,或=+2πx k k Z π∈, ………………………6分又[]0,πx ∈,π3x ∴=或π.所以()f x 在区间[]0,π上的零点是π3和π. ………………………8分(Ⅱ)在△ABC 中,2b ac =,所以222221cos 2222a cb ac ac ac B ac ac ac +-+-===≥. 由1cos 2B ≥且(0,π)B ∈,得π(0,],3B ∈从而πππ(]666B -∈-, ……………10分π11sin()(,]622B -∈-∴, π1()sin()(1,0]62f B B =-+∈-∴. ………………12分17. (Ⅰ)设等比数列{}n a 的首项为1a ,公比为.q依题意,有3242(2)a a a +=+,代入23428a a a ++=,可得38a =,………2分2420a a ∴+=,∴213118,20,a q a q a q ⎧=⎪⎨+=⎪⎩解之得12,2q a =⎧⎨=⎩ 或11,232.q a ⎧=⎪⎨⎪=⎩…………4分当12,2q a =⎧⎨=⎩时, 2n n a =; 当11,232.q a ⎧=⎪⎨⎪=⎩时, 612n n a -=. ∴数列{}n a 的通项公式为2n n a =或612n n a -=. …………………6分(Ⅱ)∵等比数列{a n }是单调递增的,∴2n n a =,∴122log 22n n n n b n ==-⋅,∴ 2(12222)n n S n =-⨯+⨯++⋅ ③………………………8分2312[1222(1)22]nn n S n n +=-⨯+⨯++-⋅+⋅④ 由③-④,得2311122222222.n n n n n S n n +++=++++-⋅=--⋅ ………………………10分1250n n S n +∴+⋅>即12250n +->,即1252.n +>易知:当4n ≤时,15223252n +=<≤,当5n ≥时,16226452n +=>≥ 故使1250n n S n ++⋅>成立的正整数n 的最小值为5. ……………………12分18.(选修2一1第109页例4改编) 方法一:(Ⅰ)证明:连结BD 交AC 于E ,连结ME .ABCD Q 是正方形,∴ E 是BD 的中点.M Q 是SD 的中点,∴ME 是△DSB 的中位线. ∴//ME SB . ………………………2分 又ME ⊂平面ACM ,SB ⊄平面ACM ,∴SB //平面ACM . ………………………4分 (Ⅱ)证明:由条件有,,DC SA DC DA ⊥⊥∴ DC ⊥平面SAD ,且AM ⊂平面,SAD ∴.AM DC ⊥ 又∵ ,SA AD M =是SD 的中点,∴.AM SD ⊥ ∴AM ⊥平面.SDC SC ⊂平面,SDC ∴.SC AM ⊥ ……………6分 由已知SC AN ⊥ ∴SC ⊥平面.AMN 又SC ⊂平面,SAC ∴平面SAC ⊥平面.AMN ……………………8分 (Ⅲ)取AD 中点F ,则MF //SA .作FQ AC ⊥于Q ,连结MQ .∵SA ⊥底面ABCD ,∴MF ⊥底面ABCD . ∴FQ 为MQ 在平面ABCD 内的射影. ∵FQ AC ⊥,∴MQ ⊥AC . ∴FQM ∠为二面角D AC M --的平面角. ………………………10分 设SA AB a ==,在Rt MFQ ∆中,11,222a MF SA FQ DE ====,∴tan4aFQM∠==.∴二面角D AC M--的余弦的大小为3.………………………12分方法二:(II)如图,以A为坐标原点,建立空间直角坐标系O xyz-,由SA AB=,可设1AB AD AS===,则11(0,0,0),(0,1,0),(1,1,0),(1,0,0),(0,0,1),(,0,)22A B C D S M.Q11(,0,)22AM=uuu r,()1,1,1CS=--uu r,1122AM CS∴⋅=-+=uuu r uu rAM CS∴⊥uuu r uu r,即有SC AM⊥…6分又SC AN⊥且AN AM A=.SC∴⊥平面AMN.又SC⊂平面,SAC∴平面SAC⊥平面AMN.………………………8分(Ⅲ)Q SA⊥底面ABCD,∴ASuu r是平面ABCD的一个法向量,(0,0,1)AS=u u r.设平面ACM的法向量为(,,)n x y z=,11(1,1,0),(,0,)22AC AM==uur uuu r, 则0,0.ACAMnn⎧⋅=⎪⎨⋅=⎪⎩r uurr uuu r即00,1100.22x yx z++=⎧⎪⎨++=⎪⎩, ∴,.y xz x=-⎧⎨=-⎩令1x=-,则(1,1,1)n=-.……………………10分cos,||||ASASASnnn<>===⋅uu r ruu r r guu r r由作图可知二面角D AC M--为锐二面角∴二面角D AC M--.………………………12分19.(本小题满分12分)(必修一第127页例2改编)(Ⅰ)设奖励函数模型为()y f x=,则该函数模型满足的条件是:①当[]10,100x∈时,()f x是增函数;②当[]10,100x∈时,()5f x≤恒成立;③当[]10,100x∈时,()5xf x≤恒成立.………………………5分(Ⅱ)(1)对于函数模型1(1)120y x=+,它在[]10,100上是增函数,满足条件①;但当80x=时,5y=,因此,当80x>时,5y>,不满足条件②;故该函数模型不符合公司要求.………………………7分(2)对于函数模型2(2)log 2y x =-,它在[]10,100上是增函数.满足条件①∴100x =时max 22log 10022log 55y =-=<,即()5f x ≤恒成立.满足条件②…9分 设21()log 25h x x x =--,则2log 1()5e h x x '=-,又[]10,100x ∈ 11110010x ∴≤≤∴2log 121()0105105e h x '<-<-=,所以()h x 在[]10,100上是递减的,因此 2()(10)log 1040h x h <=-<,即()5xf x ≤恒成立.满足条件③故该函数模型符合公司要求综上所述,函数模型2log 2y x =-符合公司要求. ………………………12分20.(选修2一1第49页习题第7题改编)(Ⅰ)连结QF ,根据题意,|QP |=|QF |,则|QE |+|QF |=|QE |+|QP |=4||EF >= 故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆. ………………………2分设其方程为22221(0)x x a b a b+=>>,可知2a =,c 1b =,……3分所以点Q 的轨迹Γ的方程为2214x y +=. ………………………4分(Ⅱ)设直线l 的方程为m kx y +=,),(11y x A ,),(22y x B由⎪⎩⎪⎨⎧=++=1422y x m kx y 可得0)1(48)41(222=-+++m kmx x k , 由韦达定理有:⎪⎪⎩⎪⎪⎨⎧+-=+-=+222122141)1(4418k m x x k km x x 且0)41(1622>-+=∆m k ………………………6分 ∵21,,k k k 构成等比数列,∴212k k k ==2121))((x x m kx m kx ++,即:0)(221=++m x x km由韦达定理代入化简得:412=k .∵ 0>k ,∴21=k .………………………8分此时0)2(162>-=∆m ,即)2,2(-∈m .又由A O B 、、三点不共线得0m ≠从而((0,2)m ∈.故d AB S ⋅=||2122121||||121km x x k +⋅-+=||4)(2121221m x x x x ⋅-+=||22m m ⋅-= ……………………………………10分 ∵22221212144x x y y +=+=则 =+21S S )(422222121y x y x +++⋅π)24343(42221++⋅=x x π2]2)[(16321221ππ+-+⋅=x x x x 45π=为定值. ……………………12分 ∴S S S 21+⋅=45π||212m m ⋅-5π4≥当且仅当1m =±时等号成立. 综上:12S S S +的取值范围是5π[)4+∞,. ……………………13分21. (Ⅰ)233212()a x af x x x x -'=-+=, 定义域(0,+∞) ……………………1分①当0a ≤时,()0f x '≥,函数()f x 在(0,)+∞上单调递增, …………………2分②当0a >时,()0f x x '⇒≥,函数()f x 的单调递增区间为)+∞.()00f x x '⇒<≤()f x 的单调递减区间为. …………4分 (Ⅱ)存在121,[,3]3x x ∈-,使得12()()g x g x M -≥成立,等价于12max [()()]g x g x M -≥. ……………………5分 考察3222()3,()323()3g x x x g x x x x x '=--=-=-x 13- 1(,0)3- 0 2(0,)323 2(,3)33 ()g x '+ 0- 0+ ()g x8527-递增3-递减8527-递增15……………7分由上表可知min 1285()()()3327g x g g =-==-,max ()(3)15g x g == 12max max min490[()()]()()27g x g x g x g x --==, 所以满足条件的最大整数18M =. ……………………9分 (Ⅲ)当1[,2]3x ∈时,由(Ⅱ)可知,()g x 在12[,]33上是减函数,在2[,2]3上增函数,而183()(2)1327g g =-<=()g x ∴的最大值是1. ……………………………………10分要满足条件,则只需当1[,2]3x ∈时,()ln 1axf x x x x=+≥恒成立, 等价于2ln a x x x -≥恒成立, 记2()ln h x x x x =-,()12ln h x x x x '=--,(1)0h '=.…………11分当1[,1)3x ∈时,10,ln 0,()0x x x h x '-><>即函数2()ln h x x x x =-在区间1[,1)3上递增,当12]x ∈(,时,10,ln 0,()0x x x h x '-<><即函数2()ln h x x x x =-在区间(12],上递减, ∴1,()x h x =取到极大值也是最大值(1)1h =. ………………………13分所以1a ≥. ……………………14分 另解:设()12ln ,()32ln m x x x x m x x '=--=--, 由于1[,2],()32ln 03x m x x '∈=--<,所以()()12ln m x h x x x x '==--在1[,2]3上递减,又(1)0h '=∴当1[,1)3x ∈时,()0,(1,2]h x x '>∈时()0h x '<,即函数2()ln h x x x x =-在区间1[,1)3上递增,在区间(1,2]上递减, ……………13分所以max ()(1)1h x h ==,所以1a ≥. ………………………14分。

湖北省部分高中2015届高三元月调考理综试卷 Word版含答案.pdf

湖北省部分高中2015届高三元月调考理综试卷 Word版含答案.pdf

大冶一中 广水一中 天门中学 仙桃中学 浠水一中 潜江中学 2015届高三元月调考 理科综合试卷 命题学校:天门中学 命题教师:万立华 彭真刚 徐建波 程俊灵 陈星星 肖文峰 审题学校:潜江中学 审题教师: 考试时间:2015年1月7日上午9:00—11:30 试卷满分:300分 注意事项: 1.答卷前,考生务必将自己的学校、考号、班级、姓名等填写在答题卡上。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

以下数据可供解题时参考: 相对原子质量:H—1 C—12 N—14 O—16 Na—23 Al—27 S—32 K—39 Fe—56 Cu—64 一、选择题本题包括13小题,每小题6分,在每小题给出的四个选项中只有一个选项符合题意) 1. 以下关于组成细胞的物质及细胞结构的叙述,不正确的是( ) A.RNA与DNA分子均由四种核苷酸组成,前者不能携带遗传信息 B.C、H、O、N、P是ATP、DNA、RNA共有的化学元素 C.糖蛋白、抗体、限制性核酸内切酶都是具有识别作用的物质 D.蛋白质的空间结构被破坏时,其特定功能就会发生改变2. 某实验室用两种方式进行酵母菌发酵葡萄糖生产酒精。

甲发酵罐中保留一定量的氧气乙发酵罐中没有氧气,其余条件相同且适宜。

实验过程中每小时测定一次两发酵罐中氧气和酒精的物质的量,记录数据并绘成下面的坐标图。

据此下列说法中正确的是( ) A.在实验结束时甲、乙两发酵罐中产生的二氧化碳量之比为65 B.甲发酵罐实验结果表明在有氧气存在时酵母菌无法进行无氧呼吸 C.甲、乙两发酵罐分别在第5小时和第3小时无氧呼吸速率最快 D.该实验证明向葡萄糖溶液中通入大量的氧气可以提高酒精的产量3. 若下图中甲、乙、丙所代表的结构或物质如表中所示,则相应的叙述与图示不符的( ) 选项甲乙丙相应的叙述A植物体一部分愈伤组织植物体若甲离体培养,则过程表示脱分化,过程包括再分化B二倍体花粉单倍体经和过程形成的丙一般含有一个染色体组,通过得到的甲为纯合子C下丘脑垂体甲状腺为促甲状腺激素,表示的激素对甲和乙都能起到反馈调节作用D抗原B细胞浆细胞过程需要糖被的参与,过程是B细胞进行增殖和分化,是分泌到体液中的物质4.玉米的基因型与性别对应关系如下表,已知B、b和T、t分别位于两对同源染色体上。

湖北省黄冈市2015年高三元月质量检测数学理试题 Word版含解析

湖北省黄冈市2015年高三元月质量检测数学理试题 Word版含解析

黄冈市2015年高三年级元月质量检测 理科数学 2015.1第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一个符合题目要求的。

) 1.已知集合{1,2,}M zi =,i 为虚数单位,{3,4}N =,若{4}M N =,则复数z 的共轭复数z 的虚部是 A .4i -B .4iC .4-D .4考点:交集及其运算;复数代数形式的乘除运算.. 专题:集合.分析:由M 与N 交集中的元素为4,得到4为M 中的元素,即可得到结果. 解答:解:∵M={1,2,zi},N={3,4},且M∩N={4}, ∴zi=4,即z=﹣4i ,则复数z 的共轭复数z 的虚部是4, 故选:D .点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.对于一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同的方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则A .123p p p == B .123p p p =< C .231p p p =< D .132p p p =<考点:收集数据的方法..分析:根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论.解答:解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的, 即P1=P2=P3, 故选:A点评:本题主要考查简单随机抽样、系统抽样和分层抽样的性质,比较基础. 3.下列命题中,正确的一个是 A .200,ln(1)0x R x ∃∈+<B .22,2x x x ∀>>C .若q p ⌝是成立的必要不充分条件,则 q p ⌝是成立的充分不必要条件D .若()x k k Z π≠∈,则22sin 3sin x x +≥考点:命题的真假判断与应用..专题:简易逻辑.第4题图分析:A .由于,可得≥0,即可判断出不正确;B .取x=4>2,x2=2x=16,即可否定;C .由于q 是¬p 成立的必要不充分条件,其逆否命题为p 是¬q 成立的必要不充分条件,进而判断出;D .取sinx=﹣,则sin2x+<0,即可否定.解答:解:A .∵,∴≥0,因此不存在x0∈R ,ln (x02+1)<0,不正确;B .取x=4>2,x2=2x=16,因此不正确;C .由于q 是¬p 成立的必要不充分条件,其逆否命题为p 是¬q 成立的必要不充分条件,因此¬q 是p 成立的充分不必要条件,正确;D .∵x≠kπ(k ∈Z ),取sinx=﹣,则sin2x+<0,因此不正确. 故选:C . 点评:本题考查了函数的性质、简易逻辑的判定,考查了推理能力与计算能力,属于中档题. 4.根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是 A .12n n a -= B .2nn a =C .2(1)n a n =-D .2n a n=考点:程序框图..专题:算法和程序框图.分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 解答:解:由程序框图知:ai+1=2ai ,a1=2, ∴数列为公比为2的等边数列,∴an=2n . 故选:B . 点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键,属于基础题.5.将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后, 得到一个偶函数的图象,则ϕ的取值不可能是A .54π-B .4π-C .4πD .34π考点:函数y=Asin (ωx+φ)的图象变换.. 专题:三角函数的图像与性质.分析:化简函数解析式,再利用函数y=Asin (ωx+φ)的图象变换,结合题意,可求得φ的值.解答:解:∵y=sin(x+)cos(x+)=sin(2x+φ),将函数y 的图象向右平移个单位后得到f(x ﹣)=sin(2x ﹣+φ),∵f(x ﹣)为偶函数,∴﹣+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,故选:C.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查正弦函数的对称性,突出考查正弦函数与余弦函数的转化,属于中档题.6.已知O是坐标原点,点(1,1)A-,若点(,)M x y为平面区域12221log(1)0xx yy-+≥⎧⎪≤⎨⎪-≤⎩上的一个动点,则AO OM⋅的取值范围是A.[2,0]-B.[2,0)-C.[0,2]D.(0,2]考点:简单线性规划..专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,设z=•,求出z的表达式,利用z的几何意义,利用数形结合即可得到结论.解答:解:不等式组等价为,作出不等式组对应的平面区域如图:设z=•,∵A(﹣1,1),M(x,y),∴z=•=x﹣y,即y=x﹣z,平移直线y=x﹣z,由图象可知当y=x﹣z,经过点D(0,2)时,直线截距最大,此时z最小为z=0﹣2=﹣2.当直线y=x﹣z,经过点B(1,1)时,直线截距最小,此时z最大为z=1﹣1=0.故﹣2≤z<0,故选:B.点评:本题主要考查线性规划的应用,根据向量数量积的坐标公式求出z的表达式,利用数形结合是解决本题的关键.7.设,n nS T分别是等差数列{},{}n na b的前n项和,若*()21nnS nn NT n=∈+,则56ab=A.513B.919C.1123D.923考点:等差数列的性质..专题:等差数列与等比数列.分析:根据等差数列的前n 项和的特点和,不妨设Sn=n2,Tn=n(2n+1),分别求出a5和b6,再求出.解答:解:由题意得,,Sn、Tn分别是等差数列{an},{bn}的前n项和,所以不妨设Sn=n2,Tn=n(2n+1),所以a5=S5﹣S4=25﹣16=9,b6=T6﹣T5=6×13﹣5×11=23,则=,故选:D.点评:本题考查等差数列的前n项和公式的灵活运用,以及数列的前n项和与数列中项的关系,属于中档题.8.若a和b是计算机在区间(0,2)上产生的随机数,那么函数2()lg(44)f x ax x b=++的值域为R(实数集)的概率为A.12ln24+B.32ln24-C.1ln22+D.1ln22-考点:几何概型..专题:概率与统计.分析:运用函数f(x)=lg(ax2+4x+4b)的值域为R(实数集),求出a,b的范围,再由几何概概型的概率公式,即可得到.解答:解:由已知,a和b是计算机在区间(0,2)上产生的随机数,对应区域的面积为4,因为函数f(x)=lg(ax2+4x+4b)的值域为R(实数集),所以(ax2+4x+4b)能取得所有的正数,所以,解得ab≥1且a>0,对应的区域面积为=(2a﹣lna)|=3﹣2ln2;由几何概型的公式得;故选B.点评:本题考查的知识点是几何概型的意义,关键是要找出(0,2)上产生两个随机数a 和b所对就图形的面积,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.9.已知双曲线﹣=1(b>a>0),直线l过点A(a,0)和B(0,b),若原点O到直线l 的距离为(c为双曲线的半焦距),则双曲线的离心率为()A.23BC.3D.2考点:双曲线的简单性质..专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出直线的方程,运用点到直线的距离公式,得到方程,结合a,b,c的关系和离心率公式,化简整理即可得到3e4﹣16e2+16=0,解方程即可得到离心率,注意条件0<a<b,则有e2>2,注意取舍.解答:解:直线l 的方程为=1,即为bx+ay﹣ab=0,c2=a2+b2,原点O到直线l的距离d==c,即有4ab=c2,即16a2b2=3c4,即16a2(c2﹣a2)=3c4,16a2c2﹣16a4﹣3c4=0,由于e=,则3e4﹣16e2+16=0,解得,e=2或.由于0<a<b,即a2<b2,即有c2>2a2,即有e2>2,则e=2.故选D.点评:本题考查双曲线的性质:离心率的求法,同时考查直线的方程和点到直线的距离公式的运用,考查运算能力,属于中档题和易错题.10.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=,f′(x2)=,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上“双中值函数”,则实数a的取值范围是()A.(1,3)B. (,3)C. (1,)D. (1,)∪(,3)考点:导数的运算..专题:导数的概念及应用.分析:由新定义可知f′(x1)=f′(x2)=a2﹣a,即方程x2﹣2x=a2﹣a在区间(0,a)有两个解,利用二次函数的性质可知实数a的取值范围.解答:解:由题意可知,在区间[0,a]存在x1,x2(a<x1<x2<b),满足f′(x1)=f′(x2)===a2﹣a∵f(x)=x3﹣x2+a,∴f′(x)=x2﹣2x,∴方程x2﹣2x=a2﹣a在区间(0,a)有两个解.令g(x)=x2﹣2x﹣a2+a,(0<x<a)则解得<a<3,∴实数a的取值范围是(,3).故选:B.点评:本题主要考查了导数的几何意义,二次函数的性质与方程根的关系,属于中档题.二、填空题(5×5=25分)11.已知点(1,3),(4,1)A B-,则与向量AB方向相反的单位向量的坐标为。

湖北省武汉市武昌区2015届高三元月调考数学理试卷(扫描版)

湖北省武汉市武昌区2015届高三元月调考数学理试卷(扫描版)

武昌区2015届高三年级元月调研考试理科数学参考答案及评分细则一、选择题: 1.A 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.C二、填空题:11. 0 12. a n =2n ,或a N =2N 13. 214.(Ⅰ)126;(Ⅱ)34579 15. 4 16. 2 三、解答题:17.解:(Ⅰ)因为()a x x x f ++=2cos 2sin 3,所以()a x x f ++=)62sin(2π.因为]2,0[π∈x 时,]67,6[62πππ∈+x ,所以67π=x 时)(x f 的取得最小值a f +-=1)67(π. 依题意,01=+-a ,所以1=a ;…………………………………………………(6分)(Ⅱ)由(Ⅰ)知()1)62sin(2++=πx x f .要使()0≥x f ,即21)62sin(-≥+πx .所以Z ∈+≤+≤-k k x k ,6726262πππππ,即Z ∈+≤≤-k k x k ,26ππππ. 当0=k 时,26ππ≤≤-x ;当1=k 时,2365ππ≤≤x .又],0[π∈x ,故使0)(≥x f 成立的x 的集合是],65[]2,0[πππ .………………………………(11分)18.解:(Ⅰ)设数列{}n a 的公差为d ,依题意,1,d +2,d 64+成等比数列,所以()d d 6422+=+,即022=-d d ,所以0=d 或2=d .因此,当=d 时,1=n a ;当2=d 时,12-=n a n .……………………………………………(6分)(Ⅱ)当1=n a 时,1≥=n T n ,此时不存在正整数n ,使得20151007<n T ; 当12-=n a n 时,()()12121531311+⨯-++⨯+⨯=n n T n)]121121()5131()3111[(21+--++-+-=n n 12)1211(21+=+-=n n n . 由20151007<n T ,得2015100712<+n n ,解得1007<n .故n 的最大值为1006. …………………………………………………(12分)19.解:设x BF AE ==.以D 为原点建立空间直角坐标系,得下列坐标:()0,0,0D ,()0,0,2A ,()0,2,2B ,()0,2,0C ,()2,0,01D ,()2,0,21A ,()2,2,21B ,()2,2,01C ,()0,,2x E ,()0,2,2x F -.(Ⅰ)因为)2,2,(1--=x F A ,)2,2,2(1--=x E C , 所以()()02,2,22,2,11=--⋅--=⋅x x E C F A .所以E C F A 11⊥.………………………………………(4分) (Ⅱ)因为BEF BEF BEF B S BB S V ∆∆-=⨯=323111, 所以当BEF S ∆取得最大值时,三棱锥BEF B -1的体积取得最大值因为()()11122≤--=-=∆x x x S BEF ,所以当1=x 时,即E ,F 分别是棱AB ,BC 的中点时,三棱锥B 1-BEF 的体积取得最大值,此时E ,F 坐标分别为()0,1,2E ,()0,2,1F .设平面EF B 1的法向量为()c b a m ,,=,则()()()()⎪⎩⎪⎨⎧=-⋅=⋅=--⋅=⋅,00,1,1,,,02,1,0,,1c b a c b a E B m 得⎩⎨⎧=-=+.0,02b a c b取1,2,2-===c b a ,得()1,2,2-=m .显然底面ABCD 的法向量为()1,0,0=n . 设二面角B EF B --1的平面角为θ,由题意知θ为锐角. 因为31||||,cos -=⋅>=<n m ,所以31cos =θ,于是322sin =θ. 所以22t a n =θ,即二面角BEF B --1的正切值为22.………………………………(12分)20.解:(Ⅰ)设A 1表示事件“日车流量不低于10万辆”,A 2表示事件“日车流量低于5万辆”,B 表示事件“在未来连续3天里有连续2天日车流量不低于10万辆且另1天车流量低于5万辆”.则P (A 1)=0.35+0.25+0.10=0.70,P (A 2)=0.05,所以P (B )=0.7×0.7×0.05×2=0.049. …………………………………………………(6x分)(Ⅱ)X 可能取的值为0,1,2,3,相应的概率分别为027.0)7.01()0(303=-⋅==C X P ,189.0)7.01(7.0)1(213=-⋅⋅==C X P ,441.0)7.01(7.0)2(223=-⋅⋅==C X P ,343.07.0)3(333=⋅==C X P .X 的分布列为因为X ~B (3,0.7)(12分)21.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,3,42222b a b a c 解得a 2=6,b 2=2.所以椭圆C 的标准方程是12622=+y x . …………………………………………………(4分)(Ⅱ)(ⅰ)由(Ⅰ)可得,F 点的坐标是(2,0).设直线PQ 的方程为x =my +2,将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my +2,x 26+y 22=1.消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-4m m 2+3,y 1y 2=-2m 2+3.于是x 1+x 2=m (y 1+y 2)+4=12m 2+3.设M 为PQ 的中点,则M 点的坐标为)32,36(22+-+m mm .因为PQ TF ⊥,所以直线FT 的斜率为m -,其方程为)2(--=x m y . 当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=. 将M 点的坐标为)32,36(22+-+m m m 代入,得36)2(3222+⋅-=+-m t t m m m .解得3=t . ………………………………………………(8分)(ⅱ)由(ⅰ)知T 为直线3=x 上任意一点可得,点T 点的坐标为),3(m -. 于是1||2+=m TF ,221221221221)()]([)()(||y y y y m y y x x PQ -+-=-+-=]4))[(1(212212y y y y m -++=]324)34)[(1(2222+--+-+=m m m m]324)34)[(1(2222+--+-+=m m m m 3)1(2422++=m m . 所以1)3(241)1(2431||||222222++⋅=++⋅+=m m m m m PQ TF 14)1(4)1(2411)3(2412222222+++++⋅=++⋅=m m m m m 414124122++++⋅=m m 33442241=+⋅≥. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值33.故当|TF ||PQ |最小时,T点的坐标是(3,1)或(3,-1).………………………………………………(14分)22.解:(Ⅰ)由1e )(--=ax x f x ,得a x f x -='e )(.又11)0(-=-='a f ,所以2=a .所以12e )(--=x x f x ,2e )(-='x x f . 由02e )(>-='x x f ,得2ln >x .所以函数)(x f 在区间)2ln ,(-∞上单调递减,在),2(ln +∞上单调递增. ……………………(4分)(Ⅱ)证明:由(Ⅰ)知4ln 112ln 2e)2(ln )(2ln min -=--==f x f .所以4ln 1)(-≥x f ,即4ln 112e -≥--x x,04ln 22e >-≥-x x. 令1e )(2--=x x g x,则02e )(>-='x x g x.所以)(x g 在),0(+∞上单调递增,所以0)0(1e )(2=>--=g x x g x ,即1e 2+>x x .…………(8分)(Ⅲ)首先证明:当0>x 时,恒有331e x x>. 证明如下:令331e )(x x h x-=,则2e )(x x h x -='. 由(Ⅱ)知,当0>x 时,2e x x >,所以0)(>x h ,所以)(x h 在),0(+∞上单调递增,所以01)0()(>=>h x h ,所以331e x x>.所以)31ln(3x x >,即x x ln 33ln >+.依次取nn x 1,,23,12+= ,代入上式,则12ln 33ln 12>+, 23ln 33ln 23>+, nn n n 1ln 33ln 1+>++. 以上各式相加,有)12312ln(33ln 12312n n n n n +⨯⨯⨯>+++++ 所以()1ln 33ln )131211(+>++++++n n nn ,所以()n n n n --+>++++3ln 1ln 3131211 ,即()n n n n e31ln 1312113+>++++ .………(14分)另解:用数学归纳法证明(略)。

2015年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

2015年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑,再在答题卡上对应的答题区域内答题。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.i为虚数单位,607i的共轭复数为A.i B.i-C.1 D.1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石 D.1365石3.已知(1)nx+的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为A.122B.112C.102D.924.设211~(,)X N μσ,222~(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >第4题图9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3010.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立,则正整数n 的最大值是A .3B .4C .5D .6二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅= .12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m.14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NAMA NBMB=; ②2NBMA NAMB-=;③NBMA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)第13题图ABAPBC如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC =.16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩ ( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象 时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T .19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于 点F ,连接,,,.DE DF BD BE(Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是 否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC 的值. 20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(Ⅰ)求Z 的分布列和均值;(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率. 21.(本小题满分14分) 一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处第19题图铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若 存在,求出该最小值;若不存在,说明理由.22.(本小题满分14分)已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n +=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e xf x x =+-的单调区间,并比较1(1)nn +与e 的大小; (Ⅱ)计算11b a ,1212b b a a ,123123b b b a a a ,由此推测计算1212n nb b b a aa 的公式,并给出证明;(Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.第21题图1 第21题图2绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷) 数学(理工类)试题参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.D 4.C 5.A 6.B 7.B 8.D 9.C 10.B 二、填空题(本大题共6小题,考生需作答5小题,每小题5分,共25分) 11.912.2 13.14.(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③ 15.12 16.三、解答题(本大题共6小题,共75分) 17.(11分)π5,2,6A ωϕ===-且函数表达式为()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z .由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 18.(12分)(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=++++++, ①2345113579212222222n n n T -=++++++. ②①-②可得 221111212323222222n n n n n n T --+=++++-=-,故nT 12362n n -+=-. 19.(12分) (解法1)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =, 所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥.又PB EF ⊥,DEEF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线. 由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PDPB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有BD =第19题解答图2第19题解答图1 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 πtan tan3BD DPF PD =∠==, 解得λ 所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC=.(解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B Cλ,(,1,1)PB λ=-,点E是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DEEF E =,所以PB DEF ⊥平面.因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,.(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量; 由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3, 则π1cos32||||BP DP BP DP λ⋅===⋅,解得λ. 所以12DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC=.20.(12分)(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有 2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1)目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200zy x =-+, 当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大, 最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200zy x =-+, 当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大, 第20题解答图1 第20题解答图2第20题解答图33311(1)10.30.973.p p =--=-=最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D .将10001200z x y =+变形为561200zy x =-+, 当6,4x y ==时,直线l :561200z y x =-+在y 轴上的截距最大, 最大获利max 610004120010800Z z ==⨯+⨯=.因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=, 由二项分布,3天中至少有1天最大获利超过10000元的概率为21.(14分) (Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意, 2MD DN =,且||||1DN ON ==所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故00,42x yx y ==-,代入22001x y +=,可得221164x y +=,第21题解答图即所求的曲线C 的方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±, 由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ①又由,20,y kx m x y =+⎧⎨-=⎩ 可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--.当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--; 当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-,当且仅当0k =时取等号. 所以当0k =时,OPQS ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.22.(14分)(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<.令1x n =,得111e n n +<,即1(1)e n n +<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=; 2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=.由此推测:1212(1).n nnb b b n a a a =+ ②下面用数学归纳法证明②.(1)当1n =时,左边=右边2=,②成立.(2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+.当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立. (Ⅲ)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得 123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 12312112122334(1)n b b b b b b b b b n n ++++++≤++++⨯⨯⨯+121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n na a a n =++++++ 12e e e n a a a <+++=e n S .即e n n T S <.。

2015年高考湖北理科数学卷(含解析、答案)word

2015年高考湖北理科数学卷(含解析、答案)word

湖北省教育考试院 保留版权 数学(理工类) 第1页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,607i 的共轭..复数..为 A .i B .i - C .1 D .1-答案:A 解析:6084152607i i 1ii i i i⨯====-,其共轭复数为i .故选(A ). 2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石 D .1365石答案:B解析:这批米内夹谷约为281534169254⨯≈石.故选(B). 3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为 A .122 B .112C .102D .92答案:D解析:因为展开式的第4项与第8项的二项式系数相等,所以37C C n n =,解得10n =.所以根据二项式系数和的相关公式得,奇数项的二项式系数和为1922n -=.故选(D).数学(理工类) 第2页(共6页)4.设211(,)X N μσ ,222(,)Y N μσ ,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥ 答案:C解析:对于选项(A),因为正态分布曲线关于直线x μ=对称,所以12μμ<.所以()()120.5P Y P Y μμ≥>=≥.故选项(A )错误;对于选项(B ),因为X 的正态分布密度曲线比Y 的正态分布密度曲线更“瘦高”,所以12σσ<.所以()()21P X P X σσ≤<≤.故选项(B )错误;对于选项(C),在y 轴右方作与x 轴垂直的一系列平行线,可发现在任何情况下,X 的正态分布密度曲线与x 轴之间围成的图形面积都大于Y 的正态分布密度曲线与x 轴之间围成的图形面积,即对任意正数t ,()()P X t P Y t ≤≥≤.故选项(C) 正确;5.设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 答案:A解析:柯西不等式“数学(理工类) 第3页(共6页)()()()222222212-1231223-1n n n n aa a a a a a a a a a a ++⋯+++⋯+≥++⋯+”等号成立的条件是“-11223n na a a a a a ==⋯=(即12,,,,n a a a …成等比数列)”或“230n a a a ====…”,故p 是q 的充分条件,但不是q 的必要条件.故选(A ).6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-答案:B解析:不妨令()1f x x =+,2a =,则()()()2g x f x f x x =-=-. 则()()sgn sgn g x x =-⎡⎤⎣⎦,排除选项(A ); ()()sgn sgn 1f x x =+⎡⎤⎣⎦是以1+x 与0比较,排除选项(C ),(D ). 故选(B ).7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 A .123p p p << B .231p p p << C .312p p p << D .321p p p <<答案:B解析:在同一平面直角坐标系中,依次作出不等式01,11,,01,22x x y x y y ≤≤⎧+≥-≤⎨≤≤⎩12xy ≤的可行域如下图所示:数学(理工类) 第4页(共6页)则OCDEBACDE S S p 四边形曲边多边形=1,OCDEBOAFDGS S p 四边形曲边多边形=2,3GEOCF OCDES p S =曲边多边形四边形.因为D G F BEG ABO S S S ∆∆∆== ,所以BOAFDG GEOCF BACDE S S S <<曲多形曲多形曲多形边边边边边边. 所以BOAFDGGEOCF BACDE OCDEOCDEOCDES S S S S S <<曲多形曲多形曲多形四形四形四形边边边边边边边边边.即231p p p <<.故选(B ).8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e >答案:D解析:2211a b e +=,2e =.不妨令21e e <,化简得()0b b m m a a m +<>+,得am bm <,得b a <.所以当a b >时,有m a m b a b ++>,即21e e >;当a b <时,有ma mb a b ++<,即21e e <.故选(D ).9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30 答案:C解析:如图,集合A 表示如下图所示的所有红心圆点,集合B 表示如下图所示的所有红心圆点+所有绿心数学(理工类) 第5页(共6页)圆点,集合A B ⊕显然是集合(){},|3,3,,x y x y x y ≤≤∈Z 中除去四个点()()()(){}3,3,3,3,3,3,3,3----之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B ⊕表示如下图所示的所有红心圆点+所有绿心圆点+所有黄心圆点,共45个.故A B ⊕中元素的个数为45 . 故选(C ).10.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是 A .3 B .4 C .5 D .6 答案:B二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题......号.的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知向量OA AB ⊥ ,||3OA =,则OA OB ⋅= .答案:9 解析:由OA AB ⊥ ,得0OA AB =.所以()2O A O B O A O A A B O AO=+=+22039OA =+== .12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .答案:2解析:()()()224cossin 2sin ln 12sin 2cos 1ln 122x x f x x x x x x ⎛⎫=--+=--+ ⎪⎝⎭数学(理工类) 第6页(共6页)()sin 2ln 1x x =-+,令()0f x =,得()sin 2ln 1x x =+.在同一坐标系中作出两个函数sin 2y x =与函数()ln 1y x =+的大致图象如右图所示.观察图像可知,两函数图像有2个交点,故函数()f x 有2个零点.13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD = m.答案:解析:依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得sin sin BC AB BAC ACB =∠∠,即600sin 30sin 45BC =︒︒,所以BC =.在BCD ∆中,30CBD ∠=︒,tan tan30CD BC CBD =∠=︒=AB数学(理工类) 第7页(共6页)14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=;③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③解析:(1)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得r =所以圆C 的方程为()(2212x y -+=.(2)在()(2212x y -+=中,令0x =,得1y =.又由图可知,点A 在下B在上,所以点()1A,()1B .设()()1122,,,,M x y N x y数学(理工类) 第8页(共6页)当直线MN 的斜率不存在时,令()()0,1,0,1,M N -则1NA NB ==, 1.MAMB == 所以.NA MA NBMB=当直线MN 的斜率存在时,设直线MN 的方程为1y kx =,由221,1,y kx x y ⎧=+⎪⎨+=⎪⎩得22(1)1)2(10k x kx +++=,则1212222(12(1,,11k x x x x k k +==++12121212111(1)1(1)BM NB y y kx kx k k x x x x ----+=+=+----21212121222(12222()220,1kkx kx x x k k x x x x k -⨯--+=+=-+==--+. 所以,BM NB k k =-所以,MBA NBA∠=∠BA 是MBN ∠的平分线.由内角平分线定理得,MB MA NBNA=即.NA MA NBMB=故NA MA NBMB =恒成立.当0k =时,可求得1NA NB =.故1NA NB=为定值.所以12,NB MA NAMB-==.故②正确;1NB MA NAMB+==.故③正确. 综上,正确结论的序号是①②③.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线, 且3BC PB =,则ABAC= .数学(理工类) 第9页(共6页)答案:12解析:由切割线定理知2PA PB PC =⋅,且3B C P B =,所以2P A P B =.由弦切角定理知PCA PAB ∠=∠,又APC BPA ∠=∠,所以PAB PCA ∆∆ .所以12AB PA AC PC ==. 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩ ( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .答案:直线l 的极坐标方程()sin 3cos 0ρθθ-=化为直角坐标方程为30x y -=,曲线C 的参数方程1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩两式经过平方相减,化为普通方程为224y x -=,联立2230,4,x y y x -=⎧⎨-=⎩解得2x y ⎧=⎪⎪⎨⎪=-⎪⎩或2x y ⎧=⎪⎪⎨⎪=⎪⎩所以点22A ⎛-- ⎝⎭,22B ⎛ ⎝⎭.所以AB ==APBC数学(理工类) 第10页(共6页)三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(2)将()y f x =图像上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图像. 若()y g x =图像的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6.18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.数学(理工类) 第11页(共6页)(1)求数列{}n a ,{}n b 的通项公式; (2)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 解:(1)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n na nb -⎧=+⎪⎪⎨⎪=⋅⎪⎩(2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++ , ① 2345113579212222222n n n T -=++++++ . ② ①-②可得221111212323222222n n n n n n T --+=++++-=- , 故n T 12362n n -+=-. 19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于 点F ,连接,,,.DE DF BD BE(1)证明:PB DEF ⊥平面.试判断四面体D BEF 是否为鳖臑,若是,写出其每个面的直角(只需写 出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3, 求DCBC的值.数学(理工类) 第12页(共6页)解:(解法1)(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D = ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥.而PC BC C = ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E = ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD的交线. 由(1)知,PB DEF ⊥平面,所以PB DG ⊥.又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P = ,所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=, 则πtantan 3BD DPF PD=∠==解得λ=所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC = 第19题图数学(理工类) 第13页(共6页)解答图2解答图1(解法2)(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE = , 于是0PB DE ⋅=,即PB DE ⊥.又已知EF PB ⊥,而DE EF E = ,所以PB DEF ⊥平面.因(0,1,1)PC =-, 0DE PC ⋅= , 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,.(2)由PD ABCD⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量.若面DEF 与面ABCD所成二面角的大小为π3,则π1cos 32||||BP DPBP DP ⋅===⋅, 解得λ=所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC = 20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品数学(理工类) 第14页(共6页)的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率. 解:(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ ① 目标函数为 10001200z x y =+.当12W =时,①表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,①表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,①表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D .将10001200z x y =+变形为561200zy x =-+,解答图1 解答图2解答图3数学(理工类) 第15页(共6页)3311(1)10.30.973.p p =--=-=当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为21.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若解:(1)设点(,0)(||2)Dt t ≤,00(,),(,)N x y M x y ,依题意,2MD DN = ,且||||1DN ON ==,图1图2解答图数学(理工类) 第16页(共6页)所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为221.164x y +=(2)1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合1)2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.22.(本小题满分14分)已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;数学(理工类) 第17页(共6页)(2)计算11b a ,1212b b a a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (3)令112()nn n c a a a = ,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 解:(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<.令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n nnb b b n a a a =+ ②下面用数学归纳法证明②.1)当1n =时,左边=右边2=,②成立. 2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+ .当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++ .所以当1n k =+时,②也成立.根据1)2),可知②对一切正整数n 都成立. (3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++= 111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 12312112122334(1)n b b b b b b b b b n n ++++++≤++++⨯⨯⨯+ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++数学(理工类) 第18页(共6页)1212n b b b n <+++ 1212111(1)(1)(1)12n n a a a n=++++++ 12e e e n a a a <+++ =e n S .即e n n T S <.。

湖北省七市(州)2015届高三3月联合考试数学(理科word含答案)

湖北省七市(州)2015届高三3月联合考试数学(理科word含答案)

试卷类型:A湖北省七市(州)2015届高三3月联合考试数学(理工类)整理制作:青峰弦月工作室一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.若复数z 满足i iz 42+=,i 为虚数单位,则在复平面内z 对应的点的坐标是 A .(4,2) B .(4,-2) C .(2,4) D .(2,-4) 2.设集合}012|{<--=x x x A ,}0)1(log |{2<-=x x B ,那么“x ∈A ”是“x ∈B ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 3.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1; ③根据散点图求得的回归直线方程可能是没有意义的;④若某项测量结果ξ服从正态分布N (1,2σ),且P (ξ≤4)=0.9,则P (ξ≤-2)=0.1.其中真命题的个数为A .1B .2C 3D .44.已知菱形ABCD 的对角线AC 长为2,则AD ·AC = A .4 B .2 C .1 D .21 5.若某几何体的三视图如右图所示,则此几何体的体积是A .322 B .320C .7D .66.已知函数),0,0)(sin()(πϕπωϕω<<->>+=A x A x f 的部分图象如图所示,为了得到x x g 2sin 3)(=的图像,只需将)(x f 的图像A .向左平移32π个单位长度 B .向左平移3π个单位长度C .向右平移32π个单位长度D .向右平移3π个单位长度7.已知函数)(x f 是定义在R 上的奇函数,当0≤x 时,)1()(x x x f -=,若数列}{n a 满足211=a ,且nn a a -=+111,则)(11a f = A .6 B .-6 C .2 D .-28.甲、乙两位同学约定周日上午在某电影院旁见面,并约定谁先到后必须等10分钟,若等待10分钟后另一人还没有来就离开.如果甲是8:30分到达的,假设乙在8点到9点内到达,且乙在8点到9点之间何时到达是等可能的,则他们见面的概率是A .61 B .41 C .31 D .21 9.过曲线)0,0(1:22221>>=-b a by a x C 的左焦点F 作曲线2222:a y x C =+的切线,设切点为M ,延长FM 交曲线)0(2:23>=p px y C 于点N ,其中曲线C 1与C 3有一个共同的焦点,若点M 为线段FN 的中点,则曲线C 1的离心率为 A .5 B .25 C .5+1 D .215+ 10.设函数)(x f 在[-1,t ]上的最小值为N (t ),最大值为M (t ),若存在最小正整数k ,使得M (t )- N (t )≤k (t +1)对任意t t ∈(-1,b ]成立,则称函数)(x f 为区间(-1,b ]上的“k 阶ξ函数”,若函数)(x f =x 2为区间(-1,4]上的“k 阶ξ函数”,则k 的值为A .4B .3C .2D .1二、填空题(本大题共6小题,每小题5分,共25分。

湖北省荆门市2015届高三元月调研考试数学理试题 Word

湖北省荆门市2015届高三元月调研考试数学理试题 Word

荆门市2014-2015学年度高三年级元月调研考试数 学(理)全卷满分150分。

考试用时120分钟。

【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、函数的应用、三角函数、解三角形、数列、平面向量、立体几何、导数的应用、直线与圆、圆锥曲线、集合、排列组合、命题、简单的线性规划等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1.集合{}{}26,30A x N x B x R x x =∈=∈->≤,则A B =IA .{}3,4,5B .{}4,5,6C .{}36x x <≤D .{}36x x <≤【知识点】集合的运算A1 【答案】【解析】B解析:因为{}{}{}{}260,1,2,3,4,5,6,303A x N x B x R x x x x =∈==∈->=>≤或x<0,所以A B = {4,5,6},则选B .【思路点拨】先明确集合A 中的元素及集合B 中的元素范围,再求交集.【题文】2.下列命题中,真命题是 A .0x R ∃∈,使得00xe ≤ B .22sin 3(π,)sin x x k k Z x+≠∈≥C .2,2x x R x ∀∈>D .1,1a b >>是1ab >的充分不必要条件【知识点】命题A2 【答案】【解析】D解析:因为0xe >,所以A 是假命题,当x=2π-时,22sin 13sin x x+=-<,所以B 错误,当x=2时,222=2,所以C 错误,则只有D 正确,所以选D.【思路点拨】判断命题的真假若直接推导不方便时,可利用特例法进行排除判断. 【题文】3.要得到函数sin 2y x =的图象,只需将函数πsin(2)3y x =-的图象A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π3个单位长度D .向左平移π3个单位长度【知识点】三角函数的图象C4 【答案】【解析】B解析:因为πsin(2)=sin236y x x π⎛⎫=-- ⎪⎝⎭,可知用6x π+换x 即可得到函数y=sin2x 的图象,所以向左平移6π个长度单位,则选B.. 【思路点拨】由函数解析式判断两个函数的图象的左右平移,只需观察x 的变换,结合左加右减进行判断.【题文】4.对于函数2(),f x x mx n =++若()0,()0f a f b >>,则函数()f x 在区间(,)a b 内 A .一定有零点 B .一定没有零点 C .可能有两个零点 D .至多有一个零点 【知识点】函数与方程B9 【答案】【解析】C解析:由二次函数的图象可知,若a,b 在二次函数的两个零点外侧,则有()0,()0f a f b >>,所以函数()f x 在区间(,)a b 内可能有两个零点,所以选C. 【思路点拨】判断二次函数的零点,可结合其图象进行判断.【题文】5.设x R ∈, 对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+ 的上确界. 若,a b R +∈,且1a b +=,则122ab--的上确界为A .5-B .4-C .92D .92-【知识点】基本不等式E6 【答案】【解析】D 解析:因为()121252592222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,所以12292a b --≤-,则选D.【思路点拨】由题意可知上确界即为函数的最大值,利用基本不等式求所给式子的最大值即可.【题文】6.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为 A.3π2+B.π+C .3π2D.5π2【知识点】三视图G2 【答案】【解析】A第6题图解析:由三视图可知该几何体为半个圆锥,其底面面积为211122ππ⨯=,侧面面积为21222ππ⨯=+3π2 A.【思路点拨】由三视图求表面积与体积时,可先通过三视图分析原几何体的特征,再进行求值.【题文】7.点(,)x y 是如图所示的坐标平面的可行域内(阴影部分且包括边界)的任意一点,若目标函数 z =x +ay 取得最小值的最优解有无数个,则y x a-的最大值是A .23B .25C .16D .14【知识点】简单的线性规划E5 【答案】【解析】B【思路点拨】由题设条件,目标函数z=x+ay 取得最小值的最优解有无数个,知取得最优解必在边界上而不是在顶点上,故目标函数中系数必为负,最小值应在左上方边界AC 上取到,即x+ay=0应与直线AC 平行,进而计算可得a 值,最后结合目标函数yx a-的几何意义求出答案即可.【题文】8. 在直角坐标平面上,(1,4),(3,1)OA OB ==-u u r u u ur, 且OA uur 与OB uu u r 在直线l 的方向向量上的投影的长度相等,则直线l 的斜率为 A .14-B .25C .25或43- D .52【知识点】向量的数量积F3 【答案】【解析】C第7题图解析:设直线l 的一个方向向量为()1,v k =,由题意可得OA v OB v v v∙∙=,∴|1+4k|=|-3+k|,解得k=25或43-,故选C . 【思路点拨】可先结合直线的斜率设出直线的方向向量坐标,再利用向量的投影得到斜率的方程,解答即可.【题文】9.对于一个有限数列12(,,,)n p p p p =⋅⋅⋅,p 的蔡查罗和(蔡查罗是一位数学家)定义为121()n S S S n++⋅⋅⋅+,其中12(1,)k k S p p p k n k N =++⋅⋅⋅+∈≤≤.若一个99项的数列(1299,,,)p p p ⋅⋅⋅的蔡查罗和为1000,那么100项数列1299(9,,,,)p p p ⋅⋅⋅的蔡查罗和为 A .991 B .992 C .993D .999【知识点】数列求和D4【思路点拨】理解新定义的含义,结合新定义列出已知和所求,即可得到解答.【题文】10.设双曲线22221(00)x y ab a b-=>>,的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u r u u r u u r ,316λμ⋅=,则双曲线的离心率为 A .3B .5C .2D .98【知识点】双曲线的性质H6 【答案】【解析】A解析:双曲线的渐近线为:y=±b a x ,设焦点F (c ,0),则A (c ,bc a ),B (c ,-bca),P (c ,2b a ),∵OP OA OB λμ=+u u r u u r u u r ,∴(c ,2b a)=((λ+μ)c ,(λ-μ)bc a ),∴λ+μ=1,λ-μ=b c ,解得λ=2c b c + ,μ=2c b c -,又由316λμ⋅=,得2c b c +×2c b c -=316 ,解得2234a c =∴e=c a = A. 【思路点拨】可结合向量关系寻求点的坐标关系,得到a,b,c 的关系再求离心率即可.【题文】二、填空题(本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分) 【题文】11.已知函数|1|(1)()3(1)x x x f x x -⎧=⎨>⎩≤,若()2f x =,则x = ▲ .【知识点】分段函数B1【答案】【解析】-1解析:因为当x >1时,f(x) >3,所以若()2f x =,则1,12x x ≤-=,解得x=-1. 【思路点拨】可先分析分段函数当x >1时的函数值的取值范围,再由所给函数值求自变量的值.【题文】12.由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为▲ .【知识点】直线与圆的位置关系H4 【答案】解析:若切线长最小,则直线上的点到圆心的距离最小,而直线上的点到圆心的距离最小值==.【思路点拨】一般遇到与圆有关的最值问题,通常转化为与圆心的关系进行解答.【题文】13.若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 ▲ . 【知识点】导数的应用B12 【答案】【解析】31,2⎡⎫⎪⎢⎣⎭解析:因为()()()21211'222x x f x x x x+-=-=,由x >0可知函数的极值点只有x=12,若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则1012112a a ⎧≤-<⎪⎪⎨⎪+>⎪⎩,解得312a ≤<,所以实数a 的范围是31,2⎡⎫⎪⎢⎣⎭. 【思路点拨】因为所给函数已知,则可先求出函数的极值点,再结合函数的定义域及极值点得到关于a 满足的条件求解即可.【题文】14.在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.如果20N 的力能使弹簧伸长4cm ,则把弹簧从平衡位置拉长8cm (在弹性限度内)时所做的功为 ▲ (单位:焦耳). 【知识点】定积分B13 【答案】【解析】1.6解析:由F=kl 可知20N 的力能使弹簧伸长4cm,若使弹簧伸长8cm ,由公式可求伸长到8cm 时需40N 的力,由定积分可知有关力与距离的函数F=kl 图像中函数与x 轴在(0,8)围成的面积即为力做的功180.4 1.62W J =⨯⨯= . 【思路点拨】由力与伸长距离的函数关系求得所需的力,再由定积分求得力所做的功.【题文】15.已知:对于给定的*q N ∈及映射:,*f A B B N →⊆,若集合C A ⊆,且C 中所有元素在B 中对应的元素之和大于或等于q ,则称C 为集合A 的好子集.①对于{}3,,,,q A a b c d ==,映射:1,f x x A →∈,那么集合A 的所有好子集的个数为 ▲ ;②对于给定的q ,{}1,2,3,4,5,6,πA =,映射:f A B →的对应关系如下表:若当且仅当中含有和至少中3个整数或者中至少含有中5个整数时,C 为集合A 的好子集,则所有满足条件的数组(,,)q y z 为 ▲ .【知识点】映射 排列组合的应用B11 J2【答案】【解析】①5;②(5,1,2)解析:①因为A 中的每个元素对应的B 中的元素都是1,所以所A 的子集所有元素之和大于等于3,则子集的元素个数最少为3个,所以集合A 的所有好子集的个数为34445C C += ;②由当且仅当C 中含有π和至少A 中3个整数时C 为A 的好子集,知:z+1+1+1大于等于q 且z+1+1+y 大于等于q ,(1)同时,z+1+1小于q 且z+y+1小于q ,(2),又B 包含于正整数集所以y 大于等于1,(3),由上(1)(2)(3)知y=1,∵C 中至少含有A 中5个整数时,得出5大于等于q ,且4小于q .所以q=5,将q=5代入(1)式,得:z 大于等于2 且z 小于3,∴z=2,综上(q ,y ,z )=(5,1,2).【思路点拨】本题主要考查的是映射、排列组合的综合应用,注意分类讨论思想的运用. 【题文】三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 【题文】16.(本小题满分12分)已知向量2(cos ,1),,cos )222x x x m n =-=r r ,设函数()f x m n = .(Ⅰ)求()f x 在区间[]0,π上的零点;(Ⅱ)在△ABC 中,角A B C 、、的对边分别是,,a b c ,且满足2b ac =,求()f B 的取值范围.【知识点】向量的数量积 解三角形C8 F3【答案】【解析】(Ⅰ)π3和π;(Ⅱ)(-1,0]解析:因为2(cos ,1),,cos )222x x x m n =-=r r ,函数()f x m n =r r g .所以21cos ()cos cos 2222x x x xf x x +=-=-………………………2分11π1cos sin()22262x x x =--=--………………………4分 (Ⅰ)由()0f x =,得π1sin()62x -=. ππ=+2π66x k -∴,或π5π=+2π66x k k Z -∈,π=+2π3x k ∴,或=+2πx k k Z π∈, ………………………6分又[]0,πx ∈,π3x ∴=或π.所以()f x 在区间[]0,π上的零点是π3和π. ………………………8分(Ⅱ)在△ABC 中,2b ac =,所以222221cos 2222a cb ac ac ac B ac ac ac +-+-===≥. 由1cos 2B ≥且(0,π)B ∈,得π(0,],3B ∈从而πππ(]666B -∈-, ……………10分π11sin()(,]622B -∈-∴, π1()sin()(1,0]62f B B =-+∈-∴. ………………12分【思路点拨】一般研究三角函数的性质时,通常先化简成一个角的三角函数再进行解答.【题文】17.(本小题满分12分) 已知等比数列{}n a 满足:28432=++a a a ,且23+a 是42,a a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{a n }是单调递增的,令n n n a a b 21log =,12n S b b =++…n b +,求使5021>⋅++n n n S 成立的正整数n 的最小值.【知识点】等差数列 等比数列 数列求和D2 D3 D4 【答案】【解析】(Ⅰ)2n n a =或612n n a -=;(Ⅱ)5解析:(Ⅰ)设等比数列{}n a 的首项为1a ,公比为.q依题意,有3242(2)a a a +=+,代入23428a a a ++=,可得38a =,………2分2420a a ∴+=,∴213118,20,a q a q a q ⎧=⎪⎨+=⎪⎩解之得12,2q a =⎧⎨=⎩ 或11,232.q a ⎧=⎪⎨⎪=⎩…………4分 当12,2q a =⎧⎨=⎩时, 2n n a =; 当11,232.q a ⎧=⎪⎨⎪=⎩时, 612n n a -=. ∴数列{}n a 的通项公式为2n n a =或612n n a -=.…………………6分(Ⅱ)∵等比数列{a n }是单调递增的,∴2nn a =,∴122log 22n n n n b n ==-⋅,∴ 2(12222)n n S n =-⨯+⨯++⋅ ③ ……………8分2312[1222(1)22]n n n S n n +=-⨯+⨯++-⋅+⋅ ④ 由③-④,得 2311122222222.n n n n n S n n +++=++++-⋅=--⋅ ………10分 1250n n S n +∴+⋅>即12250n +->,即1252.n +>易知:当4n ≤时,15223252n +=<≤,当5n ≥时,16226452n +=>≥ 故使1250n n S n ++⋅>成立的正整数n 的最小值为5.……………………12分【思路点拨】遇到与和有关的不等式可考虑先求和再解答,对于数列求和可先明确数列的通项公式,在结合通项公式特征确定求和思路. 【题文】18.(本小题满分12分) 如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N . (Ⅰ)求证://SB 平面ACM ;(Ⅱ)求证:平面SAC ⊥平面AMN ; (Ⅲ)求二面角D AC M --的余弦值.【知识点】平行关系 垂直关系 二面角G4 G5 G11 【答案】【解析】(Ⅰ)略;(Ⅱ)略;解析:方法一:(Ⅰ)证明:连结BD 交AC 于E ,连结ME .ABCD Q 是正方形,∴ E 是BD 的中点.M Q 是SD 的中点,∴ME 是△DSB 的中位线.∴//ME SB . ………………………2分 又ME ⊂平面ACM ,SB ⊄平面ACM ,∴SB //平面ACM . ………………………4分 (Ⅱ)证明:由条件有,,DC SA DC DA ⊥⊥∴ DC ⊥平面SAD ,且AM ⊂平面,SAD ∴.AM DC ⊥又∵ ,SA AD M =是SD 的中点,∴.AM SD ⊥ ∴AM ⊥平面.SDC SC ⊂平面,SDC ∴.SC AM ⊥ ……………6分 由已知SC AN ⊥ ∴SC ⊥平面.AMN第18题图又SC ⊂平面,SAC ∴平面SAC ⊥平面.AMN ……………………8分 (Ⅲ)取AD 中点F ,则MF //SA .作FQ AC ⊥于Q ,连结MQ . ∵SA ⊥底面ABCD ,∴MF ⊥底面ABCD . ∴FQ 为MQ 在平面ABCD 内的射影.∵FQ AC ⊥,∴MQ ⊥AC . ∴FQM ∠为二面角D AC M --的平面角. ………………………10分 设SA AB a ==,在Rt MFQ ∆中,11,2224a MF SA FQ DE a ====,∴tan 4aFQM ∠==. ∴ 二面角D AC M --3. ………………………12分方法二:(II )如图,以A 为坐标原点,建立空间直角坐标系O xyz -,由SA AB =,可设1AB AD AS ===,则11(0,0,0),(0,1,0),(1,1,0),(1,0,0),(0,0,1),(,0,)22A B C D S M .Q 11(,0,)22AM =uuu r , ()1,1,1CS =--uu r ,11022AM CS ∴⋅=-+=uuu r uu r AM CS ∴⊥uuu r uu r ,即有SC AM ⊥…6分又SC AN ⊥且AN AM A = .SC ∴⊥平面AMN . 又SC ⊂平面,SAC∴平面SAC ⊥平面AMN . ………………………8分(Ⅲ) Q SA ⊥底面ABCD ,∴AS uu r 是平面ABCD 的一个法向量,(0,0,1)AS =u u r.设平面ACM 的法向量为(,,)n x y z =,11(1,1,0),(,0,)22AC AM ==uuruuu r, 则0,0.AC AM n n ⎧⋅=⎪⎨⋅=⎪⎩r uur r uuu r 即00,1100.22x y x z ++=⎧⎪⎨++=⎪⎩, ∴,.y x z x =-⎧⎨=-⎩ 令1x =-,则(1,1,1)n =-. ……………………10分cos ,3||||AS AS AS n n n <>===⋅uu r ruu r r g uu r r 由作图可知二面角D AC M --为锐二面角∴二面角D AC M --的余弦值为3. ………………………12分 【思路点拨】证明线面平行于面面垂直通常结合其判定定理进行证明,求二面角时可通过寻求二面角的平面角解答也可以建立空间直角坐标系用空间向量解答. 【题文】19.(本小题满分12分) 某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.(Ⅰ)若建立函数模型()y f x =制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;(Ⅱ)现有两个奖励函数模型:1(1)120y x =+;2(2)log 2y x =-.试分析这两个函数模型是否符合公司要求.【知识点】函数模型及其应用B10【答案】【解析】(Ⅰ)①当[]10,100x ∈时,()f x 是增函数;②当[]10,100x ∈时,()5f x ≤恒成立;③当[]10,100x ∈时,()5xf x ≤恒成立.(Ⅱ)函数模型2log 2y x =-符合公司要求解析:(Ⅰ)设奖励函数模型为()y f x =,则该函数模型满足的条件是:①当[]10,100x ∈时,()f x 是增函数; ②当[]10,100x ∈时,()5f x ≤恒成立;③当[]10,100x ∈时,()5xf x ≤恒成立.………………………5分(Ⅱ)(1)对于函数模型1(1)120y x =+,它在[]10,100上是增函数,满足条件①; 但当80x =时,5y =,因此,当80x >时,5y >,不满足条件②;故该函数模型不符合公司要求.……………7分(2)对于函数模型2(2)log 2y x =-,它在[]10,100上是增函数.满足条件①∴100x =时max 22log 10022log 55y =-=<,即()5f x ≤恒成立.满足条件②…9分设21()log 25h x x x =--,则2log 1()5e h x x '=-,又[]10,100x ∈ 11110010x ∴≤≤∴2log 121()0105105e h x '<-<-=,所以()h x 在[]10,100上是递减的,因此2()(10)log 1040h x h <=-<,即()5xf x ≤恒成立.满足条件③故该函数模型符合公司要求综上所述,函数模型2log 2y x =-符合公司要求.…………12分【思路点拨】本题主要考查函数模型的选择,其实质是考查函数的基本性质,可先将文字语言转化为数学符号语言,再用数学方法定量计算得出所要求的结果. 【题文】20.(本小题满分13分) 如图,已知圆E:22(16x y ++=,点F ,P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q .(Ⅰ)求动点Q 的轨迹Γ的方程;(Ⅱ)设直线l 与(Ⅰ)中轨迹Γ相交于B A ,两点, 直线OB l OA ,,的斜率分别为12,,k k k (其中0k >).△OAB 的面积为S , 以,OA OB 为直径的圆的面积分别为12,S S .若21,,k k k 恰好构成等比数列, 求12S S S+的取值范围. 【知识点】圆 椭圆 直线与圆锥曲线 等比数列H3 H5 H8 D3【答案】【解析】(Ⅰ)2214x y +=;(Ⅱ)5π[)4+∞,解析:(Ⅰ)连结QF ,根据题意,|QP |=|QF |,则|QE |+|QF |=|QE |+|QP |=4||EF >=故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆.……………2分设其方程为22221(0)x x a b a b+=>>,可知2a =,c ==1b =,…3分所以点Q 的轨迹Γ的方程为2214x y +=.…………4分(Ⅱ)设直线l 的方程为m kx y +=,),(11y x A ,),(22y x B由⎪⎩⎪⎨⎧=++=1422y x m kx y 可得0)1(48)41(222=-+++m kmx x k , 由韦达定理有:⎪⎪⎩⎪⎪⎨⎧+-=+-=+222122141)1(4418k m x x k km x x 且0)41(1622>-+=∆m k ………………………6分 ∵21,,k k k 构成等比数列,∴212k k k ==2121))((x x m kx m kx ++,即:0)(221=++m x x km由韦达定理代入化简得:412=k .∵ 0>k ,∴21=k .…………………8分此时0)2(162>-=∆m ,即)2,2(-∈m .又由A O B 、、三点不共线得0m ≠从而(m ∈ . 故d AB S ⋅=||2122121||||121km x x k +⋅-+=第20题图||4)(2121221m x x x x ⋅-+=||22m m ⋅-=…………………………10分 ∵22221212144x x y y +=+= 则 =+21S S )(422222121y x y x +++⋅π)24343(42221++⋅=x x π2]2)[(16321221ππ+-+⋅=x x x x 45π=为定值.…………………12分 ∴S S S 21+⋅=45π||212m m ⋅-5π4≥当且仅当1m =±时等号成立. 综上:12S S S +的取值范围是5π[)4+∞,.……………13分 【思路点拨】求圆锥曲线的轨迹方程若出现定义条件,注意利用定义判断轨迹并求方程,遇到直线与圆锥曲线位置关系问题,一般设出方程,联立方程结合韦达定理建立系数的对应关系,再进行解答.【题文】21.(本小题满分14分)设函数2()ln af x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若存在121,[,3]3x x ∈-,使得12()()g x g x M -≥成立,求满足条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]3s t ∈,都有()()sf s g t ≥成立,求实数a 的取值范围.【知识点】导数的应用B12【答案】【解析】(Ⅰ)当0a ≤时,在(0,)+∞上单调递增,当0a >时,单调递增区间为)+∞,单调递减区间为;(Ⅱ)18;(Ⅲ)1a ≥ 解析:(Ⅰ)233212()a x a f x x x x -'=-+=, 定义域(0,+∞)………………1分①当0a ≤时,()0f x '≥,函数()f x 在(0,)+∞上单调递增,………2分②当0a >时,()0f x x '⇒≥()f x 的单调递增区间为)+∞.()00f x x '⇒<≤()f x 的单调递减区间为.………4分 (Ⅱ)存在121,[,3]3x x ∈-,使得12()()g x g x M -≥成立, 等价于12max [()()]g x g x M -≥.………………5分 考察3222()3,()323()g x x x g x x x x x '=--=-=-…7分由上表可知min 1285()()()3327g x g g =-==-,max ()(3)15g x g == 12max max min490[()()]()()27g x g x g x g x --==, 所以满足条件的最大整数18M =.……………9分(Ⅲ)当1[,2]3x ∈时,由(Ⅱ)可知,()g x 在12[,]33上是减函数,在2[,2]3上增函数,而183()(2)1327g g =-<=()g x ∴的最大值是1.…………………………10分要满足条件,则只需当1[,2]3x ∈时,()ln 1axf x x x x=+≥恒成立, 等价于2ln a x x x -≥恒成立, 记2()ln h x x x x =-,()12ln h x x x x '=--,(1)0h '=.…………11分当1[,1)3x ∈时,10,ln 0,()0x x x h x '-><>即函数2()ln h x x x x =-在区间1[,1)3上递增,当12]x ∈(,时,10,ln 0,()0x x x h x '-<><即函数2()ln h x x x x =-在区间(12],上递减, ∴1,()x h x =取到极大值也是最大值(1)1h =.…………13分所以1a ≥.……………14分另解:设()12ln ,()32ln m x x x x m x x '=--=--,由于1[,2],()32ln 03x m x x '∈=--<,所以在1[,2]3上递减,又(1)0h '=∴当1[,1)3x ∈时,()()12ln m x h x x x x '==--()0,(1,2]h x x '>∈时()0h x '<,即函数2()ln h x x x x =-在区间1[,1)3上递增,在区间(1,2]上递减,…13分所以max ()(1)1h x h ==,所以1a ≥.…………14分【思路点拨】理解函数的单调性与导数的关系是解题的关键,遇到不等式恒成立问题通常转化为函数的最值问题进行解答.。

2015高考真题——数学理科(湖北卷)Word版含答案

2015高考真题——数学理科(湖北卷)Word版含答案

绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷) 数学(理工类) 本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★ 注意事项: 1.答卷前,将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

在试题卷、草稿纸无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

在试题卷、草稿纸无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑答题卡上对应的答题区域内在试题卷、草稿纸上效。

5.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. .的共轭复数为 A. B. C.D.2.我国古代数学名著《数书》有米谷粒分题:粮开仓收粮,有人送来米1534石,谷,抽样取米一把254粒内谷28粒,则这批米内谷约为 A.134石B.169石C.338石D.1365石3.已知的展开式中第项与第项的二项式系数相,则奇数项的二项式系数和为A.B.C.D.4.,,这两个正态分布密度曲线如图所示.下列结论中正确的是 A.B.C., D., 5.设,. 若p:成等比数列,则 A....6.符号函数是增函数, A. B.C. D.7.上随机取两个数,记为事件“”的概率,为事件“”的概率,为事件“”的概率,则 A.B. C.D. 8.将离心率为双曲线的实半轴长和虚半轴长增加长度,得到离心率为双曲线,则A.,B.当时,;当时,C.,D.当时,;当时,.,,定义集合 ,则中元素的个数为 A.B.C.D.10.,表示不超过的最大整数. 若存在实数,使得,,…, 同时成立,则正整数的最大值是 A.B.C.D.二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题) 11.,,则. 12.的零点个数为13.如图,处时测得公路北侧一山顶D在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则 m. 14.如图,圆与轴相切于点,与轴正半轴交于两点且. (Ⅰ)圆的方程为; (Ⅱ)过点任作一条直线与圆相交于;②;③.()选题(请考生在第15、16两题中任选一题作答,请在答题卡指定位置将你所选的题目序号用2B铅笔涂黑.如果全,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲) 如图,PA是圆的切线,A为切点,PBC是圆的割线且,则 16.(选修4-4:坐标系与参数方程) 在直角坐标系xy中以为极点x轴的正半轴为极轴建立极坐标系已知,曲线 ( t为参数) 相交于B两点则三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分1分) 某同学用“五点法”画函数在某一个周期内的图象时,列表并填入部分数据,如下表: 0 0 50 (Ⅰ)请将上表数据,并直接写出函数的解析式;(Ⅱ)图象上所有点向左平行移动个单位长度,得到的图 象. 若图象的一个对称中心为,求的最小值.18.(本小题满分12分) 设等差数列的公差为d,前n项和为等比数列的公比为q.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)时,记,数列的前n项和. 19.(本小题满分12分) 如图在中,底面,,的中点作交于点 ().试判断四面体鳖臑;()面所成二面角的大小为, 求的值.20.(本小题满分12分) 两种奶制品.生产1吨产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天产品的产量不超过产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为 W 12 15 18 P 0.3 0.5 0.2 该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利(单位:元)是一个随机变量. ()的分布列和均值; ()21.(本小题满分1分) 是滑槽的中点,短杆ON可绕转动,通过处铰链与连接,上的可沿,,.当绕处的笔尖画出为原点,所在的直线为轴建立如图2所示的平面直角坐标系. (Ⅰ)求曲线C的方程; (Ⅱ)设动直线与两定直线和分别交于两点.若直线 总与曲线有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若 存在,求出该最小值;若不存在,说明理由. 22.(本小题满分14分) 已知的各项均为正数,e为自然对数的底数.(Ⅰ)求函数的单调区间,并比较与e的大小; (Ⅱ)计算,,,由此的,并给证明; (Ⅲ),数列,的前项和分别记为,, 证明:. 绝密★启用前 2015年普通高等学校招生全国统一考试(湖北卷) 数学(类)试题参考答案一、选择题本大题共10小题,每小题5分,共50分 1.A 2.B 3.D 4.C 5.A 6.B 7.B 8.D 9.C 10.B 二、填空题本大题共6小题,考生需作答5小题,每小题5分,共25分11.912.2 13. 14.(Ⅰ);(Ⅱ)①②③ 15.16. 三、解答题本大题共6小题,共75分17.(Ⅰ)根据表中已知数据,解得. 数据补全如下表: 0 0 5 00 且函数表达式为. (Ⅱ)由(Ⅰ)知,得. 的对称中心为,. 令,解得, . 由于函数的图象关于点成中心对称,, 解得,. 可知,当时,取得最小值. 18.(Ⅰ)由题意有,即 解得或故或(Ⅱ)由,知,,,,. ② ①-②可得 , 故. 19.(解法1)(Ⅰ)因为底面,所以,为长方形,有,而, 所以. 而,所以. 又因为,点是的中点,所以. 而,所以. 而,所以. 又,,所以. 由平面,平面,可知四面体四面体是一个鳖臑,其四个面的直角分别为. (Ⅱ)如图1,在面内,延长与交于点,则是平面与平面的交线. 由(Ⅰ)知,,所以. 又因为底面,所以. 而,所以. 故是面与面所成二面角的平面角设,,, 得, 则 , 解得. 所以面所成二面角的大小为时,. (解法2)(Ⅰ)如图2,以为原点,射线分别为轴的正半轴,建立空间直角坐标系. 设,,则,,点是的中点,所以,, 于是,即. 又已知,而,所以. , , 则, 所以. 由平面,平面,可知四面体即四面体是一个鳖臑,其四个面的直角分别为. (Ⅱ)由,所以是平面的一个法向量; 由(Ⅰ)知,,所以是平面的一个法向量. 面与面所成二面角的大小为,则, 解得. 所以面所成二面角的大小为时,. 20.(Ⅰ)设每天两种产品的生产数量分别为,相应的获利为,则有 (1) 目标函数为. 当时,(1)表示的平面区域如图1,三个顶点分别为.将变形为, 当时,直线:在轴上的截距最大,最大获利. 当时,(1)表示的平面区域如图2,三个顶点分别为. 将变形为,当时,直线:在轴上的截距最大,最大获利. 当时,(1)表示的平面区域如图3,四个顶点分别为将变形为,当时,直线:在轴上的截距最大,最大获利. 故最大获利的分布列为 8160 10200 10800 0.3 0.5 0.2 因此, (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率由二项分布,3天中至少有1天最大获利超过10000元的概率为 21.(Ⅰ)设点,,依题意, ,且, 所以,且 即且 由于当点不动时,点也不动,所以不恒等于0, 于是,故,代入,可得, 即所求的曲线的方程为 的斜率不存在时,直线为或,都有. (2)当直线的斜率存在时,设直线, 由消去,可得. 因为直线总与椭圆有且只有一个公共点, 所以,即. ① 又由可得;同理可得. 由原点到直线的距离为和,可得 . ② 将①代入②得,. 当时,; 当时,. 因,则,,所以, 当且仅当时取等号. 所以当时,的最小值为8. 综合(1)(2)可知,当直线与椭圆在四个顶点处相切时,△OPQ的面积取得最小值8. 22.(Ⅰ)的定义域为,. 当,即时,单调递增; 当,即时,单调递减. 故的单调递增区间为,单调递减区间为. 当时,,即. 令,得,即. ①(Ⅱ);; ② 下面用数学归纳法证明②(1)当时,左边右边,②成立. (2)假设当时,②成立,即. 时,,由归纳假设可得 . 时,②成立. (1)(2),可知②对一切正整数n成立. (Ⅲ)由的定义②,算术-几何平均不等式,的定义及①得 . 即. 第题图 第题图 y N M O D x 第19题图 第15题图 B M A N C T y O x 第14题图 第13题图 第4题图 第19题解答图2 第19题解答图1 第20题解答图1 第20题解答图2 第20题解答图3 第21题解答图。

湖北省部分重点中学2015届高三第一次联考数学(理)试题 Word版含答案

湖北省部分重点中学2015届高三第一次联考数学(理)试题 Word版含答案

湖北省部分重点中学2015届高三第一次联考数学试卷(理)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数11z i=+的共轭复数是( )A .1i --B .1i -+C .1i -D .1i +2、已知实数,x y 满足1212y y x x ≥⎧⎪≥-⎨⎪≤⎩,则目标函数22z x y =+的最小值为( )A.2 C .1 D .53、模几何体的正视图与俯视图都是边长为1的正方形,且体积为12,则该几何体的侧视图可以 是( )4、阅读程序框图,运行相应的程序,输出的结果为( ) A .6 B .-6 C .0 D .185、已知()2(,)f x x bx c b c R =++∈,命题甲:函数()()2log g x f x =的值域为R ;命题乙:0x R∃∈使0()0f x <成立,则甲是乙的( )条件。

A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要6、过双曲线2222:1(0,0)x y C a b a b-=>>上任意一点P 作与实轴平行的直线,交两渐近线于,M N 两点,若23PM PN b ⋅=,则双曲线C 的离心率为( )A .3B .3 D .37、从编号为001,002,,500的500个产品中用系统抽样的的方法抽取一个样本,已知样本编号从小到大依次为007,032,,则样本中最大的编号应该为( )A .483B .482C .481D .4808、已知函数()23420151(0)2342015x x x x f x x x =+-+-++>,则()f x 在定义域上的单调性是( ) A .在()0,+∞单调递增 B .在()0,+∞单调递减C .在(0,1)单调递增,()1,+∞单调递减D .在(0,1)单调递减,()1,+∞单调递增 9、设函数()4sin(31)f x x x =+-,则下列区间中()f x 不存在零点的是( ) A .[]0,1 B .[]2,1-- C .[]3,4 D .[]3,2-- 10、非空数集123{,,,,}n A a a a a =(,0)n n N a *∈>中,所有元素的算术平均数即为()E A ,即()123na a a a E A n++++=,若非空数集B 满足下列两个条件:①B A ⊆;②()()E B E A =,则称B 为A 的一个“包均值子集”,据此,集合{}1,2,3,4,5,6,7的子集中是“包均值子集”的概率是( ) A .15128 B .19128 C .1164D .63128二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,把答案填在答题卡对应的题号的位置上,答错位置,书写不清,模棱两可均不得分。

2015届湖北省部分高中高三元月调考(理)(解析版)

2015届湖北省部分高中高三元月调考(理)(解析版)

大冶一中 广水一中 天门中学 仙桃中学 浠水一中 潜江中学2015届高三元月调考 数学(理科)试卷【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、椭圆、导数、数列、三角函数的性质,立体几何等;考查学生解决实际问题的能力。

一、选择题(本大题共10小题,每小题5分,共50分) 【题文】1.设复数z 满足i i21=+z,则 z =( ) A.i 2+- B.i 2-- C.i 2+D.i 2-【知识点】复数的基本概念与运算L4 【答案】C 【解析】12i i z +=,可得z=212(12)i i i i i ++==2-i, z =2+i 【思路点拨】直接化简复数方程,复数的分子、分母同乘分母的共轭复数,求出复数z 即可.【题文】2.设集合P ={x |⎰>=+-x02006103x dt t t ,)(},则集合P 的非空子集个数是( )A.2B.3C.7D.8【知识点】集合及其运算A1 【答案】B【解析】∵P={x|∫0x (3t 2-10t+6)dt=0,x >0},∴P={2,3} 因为集合A 中有2个元素,所以集合A 子集有22=4个,则集合A 的非空子集的个数是4-1=3. 【思路点拨】先根据定积分求出集合P ,根据集合子集的公式2n (其中n 为集合的元素),求出集合A 的子集个数,然后除去空集即可得到集合A 的非空真子集的个数. 【题文】3.下列结论正确的是( )A.若向量//a b ,则存在唯一的实数λ使得a λb =B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“,a b <0”C.命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 且1-≠x ,则21x ≠D.若命题012<+-∈∃x x x P ,R :,则012>+-∈∀⌝x x x P ,R : 【知识点】命题及其关系、充分条件、必要条件A2 【答案】C湖北省 六校【解析】若向量//a b ,0b ≠,则存在唯一的实数λ使a λb =,故A 不正确; 已知向量a ,b 为非零向量,则“a ,b 的夹角为钝角”的充要条件是“a •b <0,且向量a ,b 不共线”,故不正确;条件否定,结论否定,逆命题,可知C 正确;若命题p :∃x ∈R ,x 2-x+1<0,则¬p :∀x ∈R ,x 2-x+1≤0,故D 不正确.【思路点拨】根据向量共线定理判断A ,向量a ,b 为非零向量,则“a ,b 的夹角为钝角”的充要条件是“,a b <0,且向量a ,b 不共线”,可判断B ,条件否定,结论否定,逆命题可判断C ;命题p :∃x ∈R ,x 2-x+1<0,则¬p :∀x ∈R ,x 2-x+1≤0,可判断D .【题文】4.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( ) A.π36 B.π9 C.π29 D.π827【知识点】空间几何体的三视图和直观图G2 【答案】C【解析】∵俯视图是一个腰长为2的等腰直角三角形,故底面外接圆半径r=2, 由主视图中棱锥的高h=1,故棱锥的外接球半径R 满足:R=221()(2)2+=32, 故该几何体外接球的体积V=43πR 3=92π. 【思路点拨】由已知中的三视图可得该几何体是一个三棱锥,求出底面外接圆半径和棱锥的高,进而利用勾股定理,求出其外接球的半径,代入球的体积公式,可得答案.【题文】5.等比数列{}n a 的前n 项和为n S ,27),...(43211n 2312=+++=-a a a a a a S n ,则6a =( )A.27B.81C.243D.729 【知识点】等比数列及等比数列前n 项和D3 【答案】C【解析】利用等比数列的性质可得,a 1a 2a 3=a 23=27 即a 2=3因为S 2n =4(a 1+a 3+…+a 2n-1) 所以n=1时有,S 2=a 1+a 2=4a 1从而可得a 1=1,q=3所以,a 6=1×35=243 【思路点拨】利用等比数列的性质可得,a 1a 2a 3=a 23=27 从而可求a 2, 结合S 2n =4(a 1+a 3+…+a 2n-1)考虑n=1可得,S 2=a 1+a 2=4a 1从而可得a 1及公比 q ,代入等比数列的通项公式可求a 6 【题文】6.设函数)22,0)(sin(3)(πφπωφω<<->+=x x f 的图像关于直线32π=x 对称,它的周期是π,则( ) A.)(x f 的图象过点)21,0( B.)(x f 的一个对称中心是)0,125(πC.)(x f 在]32,12[ππ上是减函数D.将)(x f 的图象向右平移||φ个单位得到函数x y ωsin 3=的图象 【知识点】三角函数的图象与性质C3 【答案】B【解析】因为函数的周期为π,所以ω=2,又函数图象关于直线x=23π对称, 所以由f(x)=3sin(2x+φ)(ω>0,-2π<φ<2π), 可知2×23π+φ=k π+2π,φ=k π-56π,-2π<φ<2π,所以k=1时φ=6π.函数的解析式为:f(x)=3sin(2x+6π).当x=0时f (0)=32,所以A 不正确.当x=512π时f (x )=0.函数的一个对称中心是(512π,0)B 正确;当12π<x <23π,2x+6π∈[3π,32π],函数不是单调减函数,C 不正确;f (x )的图象向右平移|φ|个单位得到函数y=3sin (ωx+φ-ωφ)的图象,不是函数y=3sin ωx 的图象,D 不正确;【思路点拨】根据三角函数的单调性周期性对称性求出。

2015年高考湖北理科数学试题与答案(word解析版)

2015年高考湖北理科数学试题与答案(word解析版)

2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【年,理1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查. (2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B .(3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式)(A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13nn a q n a -=≥且0n a ≠; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要 (6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =-【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) (A )77 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题) (11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r .【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处D 在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶 在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ3 5π6sin()A x ωϕ+55-(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0 π2π3π2 2πxπ12 π3 7π125π613π12 sin()A x ωϕ+0 5 05-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ②由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.W 12 15 18 P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆杆MN 通过N 处铰链与ON 连接,MN D 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y += (2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点, 所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m mQ k k -++. 由原点O 到直线PQ 的距离为2||1m d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。

湖北省部分高中2015届高三元月数学(理)试题

湖北省部分高中2015届高三元月数学(理)试题

大冶一中广水一中天门中学仙桃中学浠水一中潜江中学2015届高三元月调考数学(理科)试卷命题学校:仙桃中学命题教师:胡生淼审题学校:潜江中学审题教师:杨金锁考试时间:2015年1月6日下午15:00—17:00 试卷满分:150分注意事项:1.答卷前,考生务必将自己的学校、考号、班级、姓名等填写在答题卡上.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.第Ⅰ卷(选择题,共50分)一、选择题(本大题共105分,共50分)1.设复数z满足A.i2+- B.i2-- C.i2+ D.i2-2.设集合P={x|⎰>=+-x206103xdttt,)(},则集合P的非空子集个数是( )A.2B.3C.7D.83.下列结论正确的是( )A.若向量//a b,则存在唯一的实数λ使得aλb=B.已知向量,a b为非零向量,则“,a b的夹角为钝角”的充要条件是“,a b<0”C.命题:若12=x,则1=x或1-=x的逆否命题为:若1≠x且1-≠x,则21x≠D.若命题012<+-∈∃xxxP,R:,则012>+-∈∀⌝xxxP,R:4.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( )A.π36 B.π95.等比数列{}na的前n项和为nS,27),...(43211n2312=+++=-aaaaaaSn,则6a=()湖北省六校,它的周7ax +2y 仅在点(1,0)处取得最小A.(4,2)-B.(4,1)-C.(,4)(2,)-∞-+∞D.8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1下列结论中错误..的个数是 ( ) (1) AC ⊥BE ;(2) 若P 为AA 1上的一点,则P 到平面BEF(3) 三棱锥A -BEF 的体积为定值;(4) 在空间与DD 1,AC ,B1C 1都相交的直线有无数条;(5) 过CC 1的中点与直线AC 1所成角为40°并且与平面BEF所成角为50°的直线有2条. A.0 B.1 C.2 D.3 9.点F 1,F 2,点P 是两曲线的一个公共点,e 1,e 2又分别是两曲线的离心率,若PF 1⊥PF 2, 则22214e e +的最小值为( )D.9 10c >1,存在实数b a ,满足c b a <<<0,使得)()()(b g a f c f ==,则k 的最大值为( )A.2B.3C.4D.5第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.平面向量a与b的夹角为60°,a =(2,0),|a |=1,则|a+2b|= .12.已知tan β=43,sin (α+β)=513,且α,β∈(0,π),则sin α的值为 .13.设正数c b a ,,满足14.已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c ,在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一 次操作.若0p q >>,经过6次操作后扩充所得的数为(1)(1)1mnq p ++-(m ,n 为正整数), 则n m +的值为 .(15,16为选做题,二选一即可)15. 如右图,圆O 的直径AB =8,C 为圆周上一点,BC =4,过C 作圆的切线l ,过A 作直线l 的垂线AD ,D 为垂足,AD 与圆O 交于点E ,则线段AE 的长为 .16.直线lt 为参数),圆c 的极坐标方程为 ,过直线上的点向圆引切线,则切线长的最小值是 .三、解答题(本大题共6小题,共75分)17.(12分)在△ABC 中,角A 、B 、C 对应边分别是a 、b 、c ,c=2,222sin sin sin sin sin A B C A B +-=.(1)若sin sin()2sin 2C B A A +-=,求△ABC 面积;(2)求AB 边上的中线长的取值范围.18.(12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列的前n 项和最大?19.(12分)已知x ∈[0,1](1)求函数f (x (2)设a ≤-1,若[]101,∈∀x ,总存在[]100,∈x ,使得g (x 0)=f (x 1)成立,求a 的取值范围.20.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =1,CD (1)求证:平面PQB ⊥平面PAD ; (2)若二面角M -BQ -C 为30°,设=t ,试确定t 的值.21.(13分)如图,已知点()2,0A -和圆22:4,O x y +=AB 是圆O 的直经,从左到右M 、O 和N 依次是AB 的四等分点,P (异于A 、B )是圆O 上的动点,,PD AB ⊥交AB 于D ,PEED λ= ,直线PA 与BE 交于C ,|CM |+|CN | 为定值.(1)求λ的值及点C 的轨迹曲线E 的方程;(2)一直线L 过定点S (4,0)与点C 的轨迹相交于Q ,R 两点,点Q 关于x 轴的对称点为Q 1,连接Q 1与R 两点连线交x 轴于T 点,试问△TRQ 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.22.(14分)已知函数f (x )=ax a )(a >0) (1)若f (x )≥㏑x 在[1,∞)上恒成立,求a 的取值范围;(2)证明:…n +1)n ≥1);(3)已知S 求S 的整数部分.(ln 20147.6079≈,ln 20157.6084≈)理科参考答案17. 由sinC+sin(B-A)=2sin(2A) => sinBcosA=2sinAcosA(1)若(2)若cosA ≠……………………(6分)……………………(12分) 18. 解:(1)令n=1,得112122a S a ==λ,0)2(11=-a a λ若)(,时,,当则1n0a 0a 2n 00n 1-n n n n 1≥=∴=-=≥==S S S a 两式相减得)(,2n a 2a a a 2-a 21-n n n 1-n n ≥=∴=从而数列{}n a 为等比数列 综上:当0a 0a n 1==时,,当6分)(2所以数列{}n b是单调递减的等差数列(公差为-lg2)6项和最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大冶一中 广水一中 天门中学 仙桃中学 浠水一中 潜江中学2015届高三元月调考 数学(理科)试卷考试时间:2015年1月6日下午15:00—17:00 试卷满分:150分注意事项:1.答卷前,考生务必将自己的学校、考号、班级、姓名等填写在答题卡上.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.设复数z 满足i i21=+z,则 z =( ) A.i 2+- B.i 2-- C.i 2+D.i 2-2.设集合P ={x |⎰>=+-x02006103x dt t t ,)(},则集合P 的非空子集个数是( )A.2B.3C.7D.8 3.下列结论正确的是( )A.若向量//a b ,则存在唯一的实数λ使得a λb =B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“,a b <0”C.命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 且1-≠x ,则21x ≠D.若命题012<+-∈∃x x x P ,R :,则012>+-∈∀⌝x x x P ,R :4.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( )A.π36B.π9C.π29 D.π8275.等比数列{}n a 的前n 项和为n S ,27),...(43211n 2312=+++=-a a a a a a S n ,则6a =( )A.27B.81C.243D.729湖北省 六校6.设函数)22,0)(sin(3)(πφπωφω<<->+=x x f 的图像关于直线32π=x 对称,它的周 期是π,则( )A.)(x f 的图象过点)21,0( B.)(x f 的一个对称中心是)0,125(πC.)(x f 在]32,12[ππ上是减函数D.将)(x f 的图象向右平移||φ个单位得到函数x y ωsin 3=的图象7.已知函数若x ,y 满足约束条件1,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩目标函数z =ax +2y 仅在点(1,0)处取得最小值,则实数a 的取值范围是( ) A.(4,2)-B.(4,1)-C.(,4)(2,)-∞-+∞ D.(,4)(1,)-∞-+∞8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误..的个数是 ( ) (1) AC ⊥BE ;(2) 若P 为AA 1上的一点,则P 到平面BEF 的距离为22; (3) 三棱锥A -BEF 的体积为定值;(4) 在空间与DD 1,AC ,B 1C 1都相交的直线有无数条;(5) 过CC 1的中点与直线AC 1所成角为40°并且与平面BEF 所成角为50°的直线有2条. A.0 B.1 C.2 D.3 9.已知椭圆)0(1:112122121>>=+b a b y a x C 与双曲线)0,0(1:222222222>>=-b a b y a x C 有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,e 1,e 2又分别是两曲线的离心率,若PF 1⊥PF 2, 则22214e e +的最小值为( )A.25 B.4 C.29D.9 10.已知1ln 1)(-+=x x x f ,*)()(N k xkx g ∈=,对任意的c >1,存在实数b a ,满足c b a <<<0,使得)()()(b g a f c f ==,则k 的最大值为( )A.2B.3C.4D.5第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.平面向量a 与b 的夹角为60°,a =(2,0),|a |=1,则|a +2b |= .12.已知tan β=43,sin (α+β)=513,且α,β∈(0,π),则sin α的值为 .13.设正数c b a ,,满足c b a c b a ++≤++36941,则=+++c b a cb 32 .14.已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c ,在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一 次操作.若0p q >>,经过6次操作后扩充所得的数为(1)(1)1mnq p ++-(m ,n 为正整数), 则n m +的值为 .(15,16为选做题,二选一即可)15. 如右图,圆O 的直径AB =8,C 为圆周上一点,BC =4,过C 作圆的切线l ,过A 作直线l 的垂线AD ,D 为垂足,AD 与圆O 交于点E ,则线段AE 的长为 .16.直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+==242222t y t x (其中t 为参数),圆c 的极坐标方程为 )4cos(2πθρ+=,过直线上的点向圆引切线,则切线长的最小值是 .三、解答题(本大题共6小题,共75分)17.(12分)在△ABC 中,角A 、B 、C 对应边分别是a 、b 、c ,c=2,222sin sin sin sin sin A B C A B +-=.(1)若sin sin()2sin 2C B A A +-=,求△ABC 面积;(2)求AB 边上的中线长的取值范围.18.(12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大?19.(12分)已知x ∈[0,1],函数()()a x a x x g x x x f 4321ln 232--=⎪⎭⎫ ⎝⎛+-=,. (1)求函数f (x )的单调区间和值域;(2)设a ≤-1,若[]101,∈∀x ,总存在[]100,∈x ,使得g (x 0)=f (x 1)成立,求a 的取值范围.20.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD (1)求证:平面PQB ⊥平面PAD ; (2)若二面角M -BQ -C 为30°,设=t ,试确定t 的值.21.(13分)如图,已知点()2,0A -和圆22:4,O x y +=AB 是圆O 的直经,从左到右M 、O 和N 依次是AB 的四等分点,P (异于A 、B )是圆O 上的动点,,PD AB ⊥交AB 于D ,PE ED λ=,直线PA 与BE 交于C ,|CM |+|CN | 为定值.(1)求λ的值及点C 的轨迹曲线E 的方程;(2)一直线L 过定点S (4,0)与点C 的轨迹相交于Q ,R 两点,点Q 关于x 轴的对称点为Q 1,连接Q 1与R 两点连线交x 轴于T 点,试问△TRQ 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.22.(14分)已知函数f (x )=ax +1a x-+(1-2a )(a >0) (1)若f (x )≥㏑x 在[1,∞)上恒成立,求a 的取值范围; (2)证明:1+12+13+…+1n >㏑(n +1)+()21n n +(n ≥1); (3)已知S =1111232014+++⋅⋅⋅+,求S 的整数部分.(ln 20147.6079≈,ln 20157.6084≈)理科参考答案6563 13.61314. 21 15. 4 16. 17. 解:①由题意知2221cos 23a b c ab C C π+-= = =由sinC+sin(B-A)=2sin(2A) => sinBcosA=2sinAcosA(1)若cosA=02ABC A S π∆= =(2)若cosA ≠0 b=2a ABCS ∆=……………………(6分)②2CA CB CD +=uu r uu r uu u r222222222222cos3||441cos 4242||14442||34||a b ab a b abCD C a b ab a b ab ab CD abCD CD π++++ == = +-=+++ ==>+ =≤ ∈ Q 故又故故……………………(12分) 18. 解:(1)令n=1,得112122a S a ==λ,0)2(11=-a a λ若)(,时,,当则1n 0a 0a 2n 00n 1-n n n n 1≥=∴=-=≥==S S S a 若时,当,则2n 21a 0a 1≥=≠λn n 2a 2S +=λ,1-n 1-n 2a 2S +=λ两式相减得)(,2n a 2a a a 2-a 21-n n n 1-n n ≥=∴=从而数列{}n a 为等比数列 所以λn1-n 1n 22a a =∙=综上:当0a 0a n 1==时,,当λnn 12a 0=≠时,a ……………………(6分)(2)当)知,由(时,令,1a 1lgb 1000a nn 1==>λ2nlg -22100lg b n n ==所以数列{}n b 是单调递减的等差数列(公差为-lg2) 所以01lg 64100lg 2100lg 6621=>==>∙∙∙>>b b b 当01lg 2100lgb b 777n =<=≤≥时n 所以数列⎭⎬⎫⎩⎨⎧n a 1lg 的前6项和最大。

……………………(12分)19. 解:(Ⅰ)f '(x )=2x -211+x ,令f '(x )=0, 解得:21=x ,x =-1(舍去)……………………2分 列表:可知f (x )的单调减区间是(0,2),增区间是(2,1);……4分 因为41<1-ln 23=ln2-(ln3-1)<ln2, 所以当x ∈[0,1]时,f (x )的值域为[41,ln2]…………………6分 (Ⅱ)g '(x )=3(x 2-a 2)因为a ≤-1,x ∈[0,1]所以g '(x )<0,…………………………8分g (x )为[0,1]上的减函数,g (1)≤g (x )≤g (0),所以g (x )∈[1-4a -3a 2,-4a ]…………………………………………10分 因为当x ∈[0,1]时,f (x )的值域为[41,ln2] 由题意知:[41,ln2]⊆[1-4a -3a 2,-4a ] 所以⎪⎩⎪⎨⎧≥-≤--,,2ln 4413412a a a又a≤-1,得a≤-23。

相关文档
最新文档