交通流量对速度的影响
流量速度密度三者关系

当流体的流量保持不变时,流体的速度与流体的密度成反比关系。
详细描述
在流体流动过程中,如果流体的流量保持恒定,流体的速度越小,流体的密度越大。这是因为密度增 大意味着单位体积内的流体质量增多,而速度减小则意味着单位时间内流过某一截面的流体数量减少 ,因此密度和速度呈反比关系。
速度与密度的线性关系
流量与速度的反比关系
总结词
当管道直径固定时,流量与速度成反比关系。
详细描述
在管道直径固定的情况下,流速的增加会导致流体所受阻力增大,进而限制流 体的流量。这是因为流速的增加会导致流体与管道壁面的摩擦力增大,减少了 流体通过管道的有效截面积,从而减少了流量。
流量与速度的线性关系
总结词
在一定条件下,流量与速度呈线性关系。
THANKS
感谢观看
物流运输的优化
01 运输效率提升
通过对物流运输过程中的路线、车辆和人员等进 行合理规划,降低运输时间和成本,提高运输效 率。
02 货物安全保障
通过优化物流运输管理,确保货物的安全、完整 和及时送达,减少货损和延误现象。
03 资源合理利用
合理配置运输资源,减少空驶和重复运输等浪费 现象,提高资源利用效率。
04
速度与密度的关系
速度与密度的正比关系
总结词
当流体的密度保持不变时,流体的速度与流体的流量成 正比关系。
详细描述
在流体流动过程中,如果流体的密度保持恒定,流体的 速度越大,单位时间内流过某一截面的流量也越大。这 是因为速度的增加意味着单位时间内流过某一截面的流 体数量增多。
速度与密度的反比关系
流量的单位是“立方米/秒”或“辆/小时”,具体取决 于所描述的流体或交通流。
速度的定义
交通流三个参数KQV之间关系解读

图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K,
求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80)
Vf=60 km/h K=N/L=28/0.4=70(veh/km) V=60-3/4*70=7.5(km/h) Q= KV=7.5*70=525(veh/h) Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
线同样是一条抛物线(图7-4)
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 2
k
j
从而
交通流特征与交通信号控制的关系

交通流特征与交通信号控制的关系在我们日常的出行中,交通信号控制着道路上车辆和行人的流动,而交通流特征则是交通运行状态的直观体现。
了解交通流特征与交通信号控制之间的关系,对于优化交通运行、提高道路通行效率、减少交通拥堵以及保障交通安全都具有重要意义。
交通流特征主要包括交通流量、速度、密度、车头时距和车头间距等。
交通流量是指单位时间内通过道路某一断面的车辆数,它反映了道路的繁忙程度。
速度则是车辆在道路上行驶的快慢,通常分为地点车速、行程车速和时间平均车速等。
密度是指单位长度道路上的车辆数,它与交通流量和速度密切相关。
车头时距是指相邻车辆车头通过同一地点的时间间隔,车头间距则是相邻车辆车头之间的空间距离。
交通信号控制是通过设置信号灯的相位、时长和周期等参数,来分配不同方向和类型交通流的通行权。
常见的交通信号控制方式有定时控制、感应控制和自适应控制等。
交通流特征与交通信号控制之间存在着相互影响的紧密关系。
首先,交通流量的大小直接影响着交通信号控制的参数设置。
在交通流量较大的路段,需要较长的绿灯时间来保证车辆能够顺利通过路口,以避免交通拥堵。
相反,在交通流量较小的路段,可以适当缩短绿灯时间,以提高道路资源的利用率。
例如,在早高峰和晚高峰期间,城市主干道的交通流量会大幅增加,此时交通信号控制应调整绿灯时长,增加主干道方向的通行时间,从而缓解交通压力。
交通流速度也是影响交通信号控制的重要因素。
当车辆行驶速度较快时,为了确保安全,需要适当增加信号灯之间的间距,以给驾驶员足够的反应时间。
而在车速较慢的区域,如学校周边或商业区,交通信号控制可以采用较短的周期和更频繁的相位切换,以适应较低的交通流速度。
交通流密度对交通信号控制同样具有重要意义。
在高密度交通流情况下,容易出现交通拥堵和排队现象。
交通信号控制需要更加精细地调整相位和时长,以尽快疏散拥堵的车辆。
例如,可以采用绿波带控制策略,使车辆在连续的几个路口都能遇到绿灯,从而提高通行效率。
第七章 交通流量、速度和密度之间的关系.

7.2 速度—密度的关系
速度一密度对数曲线(小密度)
7.2 速度—密度的关系
广义速度—密度模型
K n V V f (1 ) Kj
n——大于零的实数
当n=1时,该式变为直线关系式
7.3 交通量—密度的关系
数学模型
K V Vf K V f (1 ) Kj Kj Vf
Q KV
第七章
交通流量、速度和密度 之间的关系
7.1 三参数之间的关系
假设交通流为自由流。在长度为L的路段上有连续行 进的N辆车,其速度V,如下图。由三个参数的定义可 知:
V A 1 2 N B
K
N L
L t V
Q
N t
Q
N N L t V
Q
N V L
Q KV
7.1 三参数之间的关系
交通流量、速度、密度三参数关系图
K K2 Q KV KV f (1 ) V f ( K ) Kj Kj
1 V V m Vt 2
1 Qm V f K j 4
7.3 交通量—密度的关系
上图中由坐标原点A向曲线上任一点画矢径,矢 径的斜率表示区段平均车速。而其切线的斜率则表示 交通量微小变化时速度的变化:
7.4 交通量—速度的关系
不同的速度—密度关系式将产生不同的速度—交通量关系式
V K K j (1 ) Vf
V2 Q K j (V ) Vf
7.4 交通量—速度的关系
流量—速度曲线图
7.4 交通量—速度的关系
算例2
已知某公路上畅行速度 Vf 80 km h ,阻塞密度 K j 100辆 / km, 速度—密度关系为直线关系。试问: (1)该路段上期望得到的最大交通量是多少? (2)此时所对应的车速是多少?
交通流三个参数K Q V之间关系

过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
上式是二次函数关系,可用一条抛物线表示,如 图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
参考文献
第七章 交通流量、速度和密度之间的关系

hd 1000 K
阻塞密度值Kj
K j 1000 hd 1000 8.05 124 辆 km
B点 D点
由图上可知点B的交通量为1800辆,密度为30辆/ km, 速度为60km/h。 D点表示拥挤情况,D点流量为1224辆/h,密度为106.6 辆/h,速度为11.6km/h。
7.2 速度—密度的关系
速度一密度对数曲线(大密度)
7.2 速度—密度的关系
指数模型
当交通密度小时,Underwood提出的指数模型比较
符合实际:
V V f (1 e
Kj Km
)
K m ——为最大交通量时的密度,辆/km;
E ——自然对数的底数;
K Kj
此模型的缺点是当
时,V≠0。
7.2 速度—密度的关系
速度一密度对数曲线(小密度)
7.2 速度—密度的关系
广义速度—密度模型
K n V V f (1 ) Kj
n——大于零的实数
当n=1时,该式变为直线关系式
7.3 交通量—密度的关系
数学模型
Vf Kj K ) Kj
Q KV
V Vf
K V f (1
交通流量、速度、密度三参数关系图
7.2 速度—密度的关系
直线关系模型
1933年,Greenshields提出了KV单段式直线关 系模型:
V a bK
当车流密度很大或很小时不适宜使用此模型。
7.2 速度—密度的关系
V f =77.4 A 60 车头间距 h d (m) 15 12 9 30 B Vm=38.7 32.2 Q m =KmVm C D K m=62 0.78 1.24 1.86 3.73 E K j=124
交通量、速度、密度之间的关系

k
m
适用条件: 密度较小时
四、广义模型
k V Vf (1 ) kj
第三节 交通流量-密度之间的关系
V Vf
一、数学模型 格林希尔兹模型导出
Vf K K Vf(1 - ) Kj Kj
Kj V Vmln( ) K
V Vf k
上式是二次函数关系, 可用一条抛物线表示, 如图7-7;
三、算例
第四节 速度—流量之间的关系
一、数学模型 以速度—密度直线模型为基础:
二、特征描述
三、算例
相互制约
速度和密度反应交通流从路上获得的服务 质量,流量可度量车流的数量和对交通设
施的需求情况。
此三参数之间的基本关系为:
Q V K
式中:Q——平均流量(辆/h); V ——空间平均车速(km/h); K—平均密度(辆/km)
公式推导:
N K L
L t V
N N N Q V KV L t L V
V a bK
a、b待定常数: # K=0,V=Vf a=Vf b=Vf/Kj
V=0, K=Kj
Vf K V Vf K Vf(1 - ) Kj Kj
适用条件:密度适中时
二、对数关系
Kj V Vmln( ) K
适用条件:密度较大, 交通拥挤
三、指数关系
V Vf k
交通流量速度密度三个参数是描述交通流基本特征的主要参数三个参数之间相互联系相互制约反应交通流从路上获得的服务质量可度量车流的数量和对交通设施的需求情况
第七章 交通流量、速度、 密度之间的关系
第七章 交通流量、速度、 密度之间的关系
公路工程 四次反比定律

公路工程四次反比定律
公路工程中的四次反比定律是指以下四个关系:
1. 供需关系:公路的交通流量与道路的供给量成反比关系。
即交通流量越大,道路供给量越小,交通状况越拥堵。
2. 速度和密度关系:公路上的车辆密度与车辆的平均速度成反比关系。
即车辆密度越大,车辆的平均速度越慢。
3. 车速和通行能力关系:公路上的车辆通行能力与车辆的平均速度成反比关系。
即车辆平均速度越快,车辆通行能力越大。
4. 车速和旅行时间关系:公路上的车辆平均速度与旅行时间成反比关系。
即车辆平均速度越快,旅行时间越短。
这些反比关系在公路工程规划和设计中非常重要,可以帮助工程师预测和评估道路的交通状况,以及提供合理的交通管理和规划建议。
城市快速路及主干路路段的车速与交通量的关系

城市快速路及主干路路段的车速与交通量的关系城市越来越现代化,路边的车越来越密、越来越多,客观需求中对城市主干路的要求越来越高。
但是市区内行人及商业点非常多,那么在城市一些非重要点比如二环以外建立一些直达城市南北的城市快速公路是非常必要的,既有利于城市的发展,加快现代化建设,也有利于实现四个现代化的发展。
主干路是城市的骨干,是建造城市的必须品,连接城市的各个区域,随着车辆的发展,主干路也越来越智能化、系统化。
标签:城市快速路;主干路;路况;车流量;通行能力1 城市快速路与主干路一切与实际出发,以理论系统为指导,借鉴国内外的成功的交通案例作为参考,利用交通仿真模型完善城市的主干道路,进而与城市快速路相结合,这是一个城市发展起来的必要条件。
城市快速路是指城市道路中设有中央分隔带,具有四条以上的车道,全部或部分采用立体交叉与控制出入,供车辆以较高的速度行驶的道路。
可以说一个城市的发展离不开快速路与主干路的结合,贯穿城市的南北及交通要道。
现在随着科技的发展,道路越来越高科技化,一天车流量那么多,那么行人的安全,红绿灯的标识,路况的标识,车的速度,都是密不可分的。
在国际上交通流运行状态的定性定量特征即为交通流特性。
交通量、行车速度、车流密度是表示交通流特性的三个基本特征。
以三个参数代表之间的关系为Q=V*K Q=流量(pcu/h)V=平均车速(km/h)K=车流平均密度(puc/km)以数学二维图形表示速度—流量模型、速度—密度模型及车流量—密度模型来表示他们两者之间的关系这都是代表单段模式,都是假设的,其中的车流量还要计算道路所在地是否是商业街,是否是重要的,是否在知名地附近。
现在一般都采用调查仪来侧聊车流量及速度,其他调查仪还有摄像机、声震带、三脚架、雷达测速仪等等。
不过在比较大的城市,交通比较拥挤的地方,都会建设有“天桥”等建筑物供行人路过,极大的加快了车流量的穿过和人流量。
2 车速与城市快速路和主干路现代的社会,好车越来越多,道路的质量,路况有明显的提高,随着智能化、系统化的发展,车速有较大的提高,方便人们出门访友、旅游、工作的时候快速达到目的地。
05交通工程学 第五讲 交通流理论-流密速三参数基本关系

Traffic Engineering
叶彭姚 博士
交通运输与物流学院 西南交通大学 2011.3
第五讲 交通流理论
-流密速三参数基本关系 §5-1 交通流特性 §5-2 概率统计模型 §5-3 排队论模型 §5-4 跟驰模型 §5-5 流体动力学模拟
交通流理论概述
交通流理论是交通工程学的理论基础;
拥挤区 不拥挤区 Vm 速度V(Km/h) E
A
Vf
4.1 交通流特性
4.1.3 间断流特征
1. 信号间断处交通流特征
1 车头时距 2 3 4 5 6 7 8
h
t1
t2
t3
t4
t5
车队中的车辆
4.1 交通流特性
4.1.3 间断流特征
2. 关键变量及其定义
饱和车头间距 饱和交通量比率(饱和流率) 启动损失时间:Σ超时 净损失时间:最后一辆车越过停车线至下一 次绿灯启亮之间的时间。
Qm 流量Q(辆/h)
B
Vc=Vm VD D
流量(辆/h)
不拥挤区 A Km 拥挤区 E
Kj
密度K(辆/km)
4.1 交通流特性
4.1.2 连续流特征
2. 数学描述
3)流量与速度的关系 (利用Greenhields线性模型)
Qm 流量Q(辆/h) B Kc=Km D C
KD
流量(辆/h)
它是运用物理学和数学的方法来描述交通特性 的理论,它用分析的方法阐述交通现象及其机 理,使我们能更好地理解交通现象及本质;
研究交通流理论的意义 ——把握交通流运动机理与规律,科学地分析 交通设施设计效果与运营管理系统
第七章 交通流量、速度和密度之间的关系

解:1.最大流量为:
Qm
Vf K j 4
80 100 4
2000 veh / h
2.当交通流量为最大时,速度为: Vm Vf 2 802 40km/ h
结论
• 综上所述,按格林希尔茨的速度-密度模型、流量 -密度模型、速度-流量模型可以看出,Qm 、Vm和 Km (流量 ·速度关系曲线图)是划分交通是否拥 挤的重要特征值。
交通工程电子教程
第七章 流量、速度和密度之间的关系
第三节 交通量——密度的关系
根据Greenshield模型和交通流基本关系可得到:
Q
v
f
K
K K
2 j
交通工程电子教程
第七章 流量、速度和密度之间的关系
从流量——密度关系可得以下主要特征:
1)密度为0时,流量为0;密度增大,流量增加;密度达最 佳密度时,流量最大;密度继续增大,流量变小;密度达 到阻塞密度时,流量为0。
对流量——密度关系模型求导并令其为0可得:
Km=Kj/2 Vm=Vf/2 Qm=VfKj/4 2)密度小于最佳密度时,表示交通不拥挤;密度大于最佳 密度时,表示交通拥挤。
交通工程电子教程
第七章 流量、速度和密度之间的关系
解:因为 hd 1000/ K
由P99曲线图7-6可得阻塞密度为:
K j 1000 / hh 1000 / 8.05 124 veh / km
V=a-bk
(7-1)
当K=0时,V值可达到理论最高速度Vf,代入(7-1)得: a=Vf
当密度达到最大值时,车速V=0,代入(7-1)得:
b=Vf/Kj 将a,b代入(7-1)得:
V=Vf(1-K/Kj)
交通工程电子教程
交通流三参数之间的关系

适合于所有稳定的交通流
最大流量 Qm 临界速度 (critical density )vm 临界密度 (critical density )Km 阻塞密度 (jam density )Kj 自由流速度 (free-flow speed)Vf
22、、交停通车流三场参布数局之间原的则关系
交通流三参数之间的关系
2 、交通停流车三场参数布之局间原的则关系
(1) 连续流和间断流 (2) 流量-速度-密度之间的关系 (Q-V-K 关系) (3) 速度-密度之间的关系 (V-K 关系) (4) 流量-密度之间的关系 (Q-K 关系) (5) 流量-速度之间的关系 (Q-V 关系)
22、、交停通车流三场参布数局之间原的则关系
?试用格林希尔茨线性模型求该路段在密度为 30辆 /Km 时的路段平均交通量。该道路的最大交通量 为多少?对应的速度和密度值是多少?
200
400
600
800
q (pcu /h /lane )
速度—密度线性关系模型与实测结果对比
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (b) Grenberg (对数)模型
V
?
Vm
ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (c) Underwood (指数)模型
) /h
50
m
v(k 40
30
20 0
南京市:龙蟠南路路段
)
ne
/la
2min Underwood 2min Greenberg
(pcu/h
5min Underwood
交通流量、速度和密度之间的关系

.
第一节 三参数之间的关系
假设交通流为自由流,在长度为 L 的路段上有 连续前进的 N 辆车,其速度为V,则:
L路段上的车流密度为: K = N L
A
N号车通过A断面所用的时间为:t = L
V
N号车通过A断面的交通流量为:Q =
N t
整理:
NNN
Q= t
=
L
=
直线关系模型
V=a-bK =Vf -V Kfj K=Vf(1-K Kj )
.
V=a-bK =Vf -V Kfj K=Vf(1-K Kj )
K=0,V=Vf
V
Vf
K=Kj,V=0
?状态
Vm=38.7
交通量最大
Qm=KmVm=24 00
K. m=62
?状态
Kj K
二、对数关系模型——车流密度很大
V
V
=Vm
l
n(Kj K
)
K
.
三、指数模型——车流密度很小
V
Kj
V =Vf (1-e Km )
K
模型缺 K 点 Kj时 : V , 0 当 ,需修正
.
四、广义速度-密度模型
V
=Vf
(1-
K Kj
)n
n是大于零的实数,当n=1时,为线性关系 式
.
第三节 交通流量-密度的关系
数学模型
K
K2
Q=K= VKfV (1-Kj )=Vf(K-Kj )
阻塞密度Kj 即车流密集到所有车辆无法移动时 的速度
畅行速度Vf 即车流密度趋于零,车辆可畅行无阻 时的平均速度
.
一、直线关系模型——车流密度适中
公路通行能力的测算和车速——流量关系的建立

公路通行能力的测算和车速——流量关系的建立张剑飞【交通部公路规划设计院北京100010】摘要:本文采用理论分析与实测数据验证相结合的方法,对不同等级道路的通行能力及不同车型的车速与流量关系进行了较深入的研究,并建立了相应的于公路运输的宏观分析,对用于交通工程分析也有着较好的参考数学模型,可应用价值。
关键词:公路通过能力车速流量关系研究1 简介在公路投资分析和交通工程中,经常要用到道路通行能力及车速——流量关系,国外对不同的道路及交通特性条件下车速与交通量及通行能力的关系做过大量的的研究,其中最有影响的莫过于1965年出版的美国《道路通行能力手册》(HighwayCapacity Manual,简称HCM)以及后来的1985年修订本。
最近,世界银行又在印度尼西亚开展了一项大规模的公路通行能力研究,其研究结论中不少与HCM 的结论相似。
国内在这方面也开展过一些研究,交通部公路科研所完成了双车道公路通行能力研究,交通部公路规划设计院与全国5个省的交通部门协作完成《山区公路技术经济指标》(以下简称《指标》)研究等,《指标》的研究建立了山区低等级公路的车速——流量关系。
但从总体上说,这方面研究无论是在深度还是在广度上均是有限的。
1994~1995年,交通部和世界银行联合委托我院及澳大利亚的RUSTPPK公司和蔡摩根公司一道开展了“公路投资优化和可行性方法改善研究”工作,用理论分析与实测数据验证相结合的办法,对不同道路等级的通行能力及不同车型的车速——流量关系做了比较深入的研究,并建立了相应的数学模型。
本文将介绍这一研究的主要成果。
应当指出,这里建立的车速——流量关系及公路通行能力主要是针对可行性研究中的测算车辆运营成本而建立的,它的应用范围主要是宏观分析。
如果用于交通工程分析,则模型还应更细一些,如道路的局部几何条件等均应考虑在内。
2 公路和车辆分类2.1公路的分类我国公路目前分为两大类:汽车专用公路和普通公路。
公路交通量通行能力和车速、流量关系的分析

公路交通量通行能力和车速、流量关系的分析第一章交通量的概述及应用第一节交通量观测的定义在一定时间、一定期间或连续期间内,对通过公路某一断面各种类型车辆数量的观测记录工作。
交通量观测应由养路道班或组织专人进行;连续观测,由县以上公路部门负责。
交通量观测,分为间隙式和连续式两种。
按预先确定的观测日期,对交通量进行定期地统计观测的,是间隙式观测;全年按小时连续不断的对交通量进行统计观测的是连续式观测。
其观测方法,是用人工或仪器将通过规定观测断面的各种类型车辆分别记录在表格或计数器具上,每小时终了时,将记录结果进行整理并登记于规定的表格上。
在观测时间的安排上,连续式观测站的观测时间可以从建站时开始观测,连续不断,长期进行。
间隙式观测,为了尽量减少观测资料的偶然性,每月应于五日、二十日观测2次,每个观测日连续观测24小时,一般应为当日晨6时起至次日晨6时止。
在确定观测日时,应尽量避开法定节假日,各观测站若偶遇地方性集会等到,仍可照常观测,但应在附注栏内说明。
在交通量稀少的路段或北方寒季节,在积累充分资料的情况下,可只测白天12至16小时的交通量,但需计入推算的夜间交通量。
第二节交通量的表达方式1.日交通量(1)年平均日交通量(Average Annual Day Traffic-AADT):一年中,在指定地点的平均每日交通量,称为年平均日交通量。
Q—某天通过指定点的车辆数(2)年平均工作日交通量 (Average Annual Weekday Traffic-AAWT) (3)平均日交通量(ADT):(1)在少于一年的某个时间段内,在指定地点的平均每日交通量,称为平均日交通量。
(4)平均工作日交通量:在少于一年的某个时间周期内(一个季度、一个月或一周),在指定地点所有工作日的平均每日交通量,称为平均工作日交通量。
2.小时交通量(1)高峰小时交通量:在一天的24小时内,小时交通量的差异很大,最大交通量常发生在早晚上下班拥挤时刻。
第七章交通流三参数之间的关系

式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。
设计速度与限制速度的关系

设计速度与限制速度的关系介绍设计速度和限制速度是道路规划和交通安全中重要的概念。
设计速度是指道路设计时所考虑的车辆在正常行驶条件下的期望速度,而限制速度是指在实际使用中所限制的车辆行驶的最高速度。
本文将深入探讨设计速度与限制速度之间的关系,并对两者的影响因素和应用进行分析。
设计速度的确定设计速度是在道路规划和设计初期确定的,一般考虑以下因素: 1. 道路等级:不同等级的道路对车辆行驶速度有不同的要求。
高速公路通常设计速度较高,而城市道路的设计速度较低。
2. 道路类型:在平直、曲线和坡道等不同类型的道路上,车辆的行驶速度也会有所变化。
例如,在曲线处设计速度需要降低,以确保车辆行驶安全。
3. 地形和地貌:山区、平原和沿海地区等地形和地貌会对设计速度产生影响。
例如,在山区道路设计中,由于存在坡度、切坡和大曲率曲线等因素,设计速度较低。
4. 道路条件:道路宽度、路面材料、其它交通设施等也会影响设计速度的确定。
一般来说,较宽的道路和良好的路面条件可以提高设计速度。
5. 交通流量:设计速度还需要考虑道路的通行能力和交通流量。
如果道路通行能力较低或交通流量较大,设计速度可能会相应调整。
限制速度的确定限制速度是实际使用中对车辆行驶速度所做出的限制。
它由以下因素决定: 1. 道路法规:各国的道路交通法规规定了不同道路类型和交通情况下的最高限速。
例如,在城市道路中,限制速度通常为50公里/小时,而在高速公路上,限制速度可能达到80公里/小时或更高。
2. 交通标志和标线:交通标志和标线在道路上指示了车辆行驶的限制速度。
例如,限速标志和车道线的设置可以告诉驾驶员何时减速或超车。
3. 道路状况:道路状况会对限制速度产生影响。
例如,修路时的施工区域、交通事故现场和道路维护区域等都可能设置临时限速。
4. 自适应限速系统:一些现代汽车配备了自适应限速系统,可以根据车辆当前行驶的道路和交通状况自动调整限速。
这有助于提高驾驶员安全意识和道路行驶效率。
交通流量对速度的影响

交通流量对速度的影响有的国家是靠右⾏驶的交通规则,有的国家是靠左⾏驶的交通规则。
⽆论是那种交通规则,⽬前各国都是保持各⾃的习惯不曾改变,在本篇⽂章中,就让我们⽤数学的⽅法告诉⼤家,到底是是靠右⾏驶的交通规则好还是靠左⾏驶的交通规则有点多。
⼀、问题重述问题A:除⾮超车否则靠右⾏驶的交通规则在⼀些汽车靠右⾏驶的国家(⽐如美国,中国等等),多车道的⾼速公路常常遵循以下原则:司机必须在最右侧驾驶,除⾮他们正在超车,超车时必须先移到左侧车道在超车后再返回。
建⽴数学模型来分析这条规则在低负荷和⾼负荷状态下的交通路况的表现。
你不妨考察⼀下流量和安全的权衡问题,车速过⾼过低的限制,或者这个问题陈述中可能出现的其他因素。
这条规则在提升车流量的⽅⾯是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。
在⼀些国家,汽车靠左形式是常态,探讨你的解决⽅案是否稍作修改即可适⽤,或者需要⼀些额外的需要。
最后,以上规则依赖于⼈的判断,如果相同规则的交通运输完全在智能系统的控制下,⽆论是部分⽹络还是嵌⼊使⽤的车辆的设计,在何种程度上会修改你前⾯的结果?⼆、问题分析从题⽬要求中我们能很明确的知道解决这个问题必须从三个⽅⾯⼊⼿。
问题⼀:建⽴⼀个建⽴数学模型来分析除⾮超车否则靠右⾏驶这条规则在低负荷和⾼负荷状态下的交通路况的表现。
我们可以考察⼀下流量和安全的权衡问题,车速过⾼过低的限制,或者这个问题陈述中可能出现的其他因素。
这条规则在提升车流量的⽅⾯是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。
问题⼆:在⼀些国家,汽车靠左⾏驶是常态,那么是否只需对我们的⽅案稍作修改,就可以⽤在靠左⾏驶交通规则的国家中呢?,或者需要⼀些额外的需要。
问题三:⽆论是靠右⾏驶,还是靠左⾏驶,都依赖于⼈的判断,如果相同的交通运输完全在智能系统的控制下,不管在部分⽹络还是嵌⼊式⽤的车辆的设计,在何种程度上会修改你前⾯的结果?三、建⽴模型3.1.问题1:交通右⾏的规则在交通流量⾼负荷和低负荷路况下的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有的国家是靠右行驶的交通规则,有的国家是靠左行驶的交通规则。
无论是那种交通规则,目前各国都是保持各自的习惯不曾改变,在本篇文章中,就让我们用数学的方法告诉大家,到底是是靠右行驶的交通规则好还是靠左行驶的交通规则有点多。
一、问题重述问题A:除非超车否则靠右行驶的交通规则在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最右侧驾驶,除非他们正在超车,超车时必须先移到左侧车道在超车后再返回。
建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。
你不妨考察一下流量和安全的权衡问题,车速过高过低的限制,或者这个问题陈述中可能出现的其他因素。
这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。
在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。
最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果?二、问题分析从题目要求中我们能很明确的知道解决这个问题必须从三个方面入手。
问题一:建立一个建立数学模型来分析除非超车否则靠右行驶这条规则在低负荷和高负荷状态下的交通路况的表现。
我们可以考察一下流量和安全的权衡问题,车速过高过低的限制,或者这个问题陈述中可能出现的其他因素。
这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。
问题二:在一些国家,汽车靠左行驶是常态,那么是否只需对我们的方案稍作修改,就可以用在靠左行驶交通规则的国家中呢?,或者需要一些额外的需要。
问题三:无论是靠右行驶,还是靠左行驶,都依赖于人的判断,如果相同的交通运输完全在智能系统的控制下,不管在部分网络还是嵌入式用的车辆的设计,在何种程度上会修改你前面的结果?三、建立模型3.1.问题1:交通右行的规则在交通流量高负荷和低负荷路况下的表现。
3.1.1问题的提出高速公路专供汽车高速行驶,交通量远高于普通公路。
也就是说,高速公路是通过高速来大幅度提高通行能力的。
因此,保证高速公路高效运行是高速公路建设和运营的基本要求。
众所周知,中国、美国等国家车辆是靠右行驶的,而一些国家车辆是靠左行驶的,对于靠左右行驶,每个国家都有它的优特指出。
我们知道,车速与安全有密切的关系,车速越高,行驶危险性就越高,发生事故时严重程度也越大。
尽管高速公路道路条件良好,在交通管理及设施方面也是尽可能保障行车安全,但高速公路较高的车速还是会带来潜在的安全问题。
根据交通流理论,只有在最佳车速时才能获得最大的交通量。
该最佳车速应该接近道路的设计时速。
而高速公路会面临高负荷或低负荷交通量,既要遵循右行原则,又要保证高速公路大流量的要求及足够高的行车速度,就需要权衡安全性、车流量和车速之间的关系。
在行车安全的诸多交通环境因素中,高速公路交通流量的增大,往往导致高速公路长时间的拥堵,干扰了交通流的正常运行,降低了道路的通行能力。
一些研究资料表明,美国对交通量和事故件数关系的统计,事故件数随着日平均交通量的增加而增加。
所以,针对交通流对安全产生的影响分析,以交通安全为前提,研究交通状况与车速的关系。
3.1.2模型假设与符号声明3.1.3模型的建立3.1.3.1高速公路低负荷时车速-流量关系模型交通公路车流的认识★自由流速度自由流速度是指密度为零时交通流的理论速度[1],或者说是驾驶员在不受其他车辆干扰、根据道路线形和环境所提供的道路条件自由行驶的车辆速度。
自由流速度是交通流流量速度模型中的一个关键指标,也是确定双车道公路运行质量的重要指标。
★自由流车速分析一般认为,当同向车流(同一车道) 的车头时距大于8m时,道路上的车辆可任意选择行驶速度,即行驶的自由度较高, 此时的交通流状况为自由流状态,即低负荷状态。
处于自由流状态车辆的加权平均运行速度即为自由流速度[2]。
速度与流量的关系◆经典的速度- 流量曲线理想道路交通条件下的速度--流量关系规律一般如图1所示, 当交通流较小的时候, 行驶车辆不受其他车辆的影响, 驾驶员根据车况、驾驶水平及道路几何特性自由行驶, 这时的交通流状态为自由流状态。
随着交通量的增加, 车辆行驶受到限制, 车速开始稳态下降, 直至交通流达到通行能力, 车辆以相同的车速行驶。
交通量进一步加大, 车速明显下降, 直至停止。
◆双车道公路速度- 流量关系的建立双车道公路与其他等级公路的主要区别在于超车机会。
双车道公路的超车机会取决于双向的流量和车速的分布, 当超车视距不满足时, 所有准备超车的车辆形成一个车队, 其行驶车速受车队中车速最慢的车辆控制,因此, 在道路通行能力尚未达到时, 不同车型车辆的行驶速度即趋于一致, 此时的行驶速度定义为收敛车速,此时的交通量即为收敛交通量。
当交通量达到通行能力的时候, 所有车辆以饱和车速行驶。
在连续的公路交通流中,流量V 、速度U 及密度K 之间的关系有如下关系:V UK = (1)假设密度K 与流量V 呈线性关系,便可推导出速度U 与流量V 的二次抛物关系模型:2()j U V K U U =- (2) 理论上说,当交通流量达到最大时m V 时,交通流平均速度m U 为零流速度的U 0的一半,而这时的最大的流量m V 就是道路通行能力,即下图所示为理论的交通流—车速模型[3~4]。
Fig.1 U-V 典型模式 1.3.1.3不同国家的限速管理一些国家针对降低或提高限速值交通量、交通事故的影响进行了分析。
英国研究者将限速值从 100km/h 降低到80km/h, 交通流速度下降 4km/h, 交通事故下降 14%;美国调查了 40个州的数据, 将限速值从 89km/h 增加到105km/h, 绝大多数洲的交通事故增加, 事故的严重程度也有增加。
此外, 澳大利亚、瑞士等国家也做了大量的调查试验。
总的来说, 随着限速值的降低, 交通事故发生概率或交通事故严重程度通常会减小; 随着限速值的增加, 交通事故数量通常会增加, 交通事故造成的后果通常会更严重。
针对上述问题, 限速可以从两方面考虑:一是合理制定最高车速, 减少交通事故;二是减少同一时刻同一路段的速度离散性, 减少交通冲突, 从而降低交通事故。
1.3.2高速公路流超负荷时车速-流量关系模型当某时段内路段上的交通需求量超过该时段内的通行能力时, 该时段内通过与通行能U(零流车速的一半) 通过, 剩余车力相同的车辆数, 按标准化的车速模型, 这些车辆以m辆也按此车速排队通过, 但增加了排队时间, 直至排队疏散. 那么, 该时段内到达的所有U, 也就是说,车速--流量模型应该车辆( 车辆数大于通行能力) 的平均通过速度应小于m是 S 型曲线, 如图2所示.UVtraffic capacityFig.2 实用的车速—流量模型V C>)时, 车辆的排队积累与消散过程如图3所当路段到达车辆数超过通行能力(/1示。
当单位时间T内到达的车辆数TV超过该时段T能通过的通行能力TC时, 在该时段T 内到达的车辆排队积累, 至T时段末排队最长, 最长排队长度为TV-TC。
假设T时后到达的车辆只能在T时段内到达的排队车辆后等候通行, 并不影响前面车辆, 在排队消散过程中不发生因车流不稳定而造成的阻塞, 则在整个排队消散过程中, 路段上的交通流以U通过( 标准模型中流量为通行能力时所对应的车速) .mTVT X T T l tFig.3 交通需求量大于通行能力时的排队积累与消散图设在T时段内到达的排队车辆的消散总时间为d, 则在T时段内到达的车辆总数为TV N =所有在T 时段内到达的车辆总延误(图 3中阴影三角形面积)为TVd D 21= 由图3中的相似三角形可得:TCTV TV d T d -= CV V d d T -=+ )1(-=CV T d (3) 所有在T 时段内到达车辆通过路段的平均延误时间为1/2121-===C V T TV TVd ND d (4)在T d +时间内实际行驶距离为 m TU l =所有在T 时间内到达的车辆的平均行驶速度为CV U C V U d T l U m /1/120+=+=+= (5) 用式(5) 预测/1V C >时的路段行驶车速往往是偏大的, 如当/2V C =时, 预测的平均车速仍有零流车速的33% .造成偏大的原因是假设了在整个排队消散过程中车流以 U m 匀速通过, 但实际上交通量以通行能力通过时, 已是不稳定车流, 任何道路与交通条件的影响都会引起更大的延误, 甚至阻塞. 因此, 需对式(5) 进行修正, 由于交通流稳定状况与交通负荷有关, 通常的做法是对交通负荷( /V C ) 引进 2 个系数, 将式(5) 修正为βα)/(10C V U U += (6) 1.3.3公路任意负荷交通流车速--流量通用模型针对上述超负荷量模型,即对于交通负荷大于 1的路段行驶车速/1V C >时, 需用式(6) 进行预测. 由于用不同的模型预测, 在/1V C =附近, 预测车速不连续。
实际上, 路段通行能力并不是非常严格的, 它可以是一个区间, 在交通量达到通行能力的前后速度变化不会太大,通过分析发现, 可以对式(6) 的 S 曲线与二次抛物线、指数曲线进行拟合, 对式(6) 进行修正, 用修正后的连续模型来预测各种交通负荷下的路段车速, 既可大大简化预测模型, 也可以保证/1V C =时车速的连续性,修正后的车速--流量模型为:βγα)/(10C V U U S+= (7)通过对模型所对应的曲线拟合确定,表1为通过对实测模型在/1V C ≤数据段进行曲线拟合后确定的各参数. 在拟合过程中发现,γ是控制参数, 当γ= 1 时, 标准化模型和 S 曲线模型在流量达到通行能力时相等并且速度等于 U 0的一半, 所以γ=1是 2个模型同化的控制点. 当β取常数时, 标准化模型、S 曲线模型在/1V C ≤段拟合程度较差, 通过模拟发现, 要使 S 曲线能与二次抛线( 标准化模型) 很好拟合,β是/V C 的非线性函数, 表示为332⎪⎭⎫ ⎝⎛+=C V ααβ (8)可通过标准化模型和 S 曲线模型在/1V C ≤段的拟合确定. 因此,高速公路任意交通负荷下的车速--流量通用模型为3321)/(1⎪⎭⎫ ⎝⎛+=+=C V C V U U Sααβαβ(9)1.4模型的求解Speed (km/h)Traffic load V/CFig.4 高速公路车速—流量曲线图得出结论:通过分析的最基本模型, 我们知道,许多中外学者都提出了不少研究成果, 但多数局限于对非饱和状态下交通流的速度分析, 而此模型对于任意交通负荷量可使用。