第2章谓词逻辑习题及答案.解析

合集下载

谓词逻辑练习及答案讲课稿

谓词逻辑练习及答案讲课稿

谓词逻辑练习及答案第二章谓词逻辑练习一1、指出下列谓词公式中的量词及其辖域,指出各自由变元和约束变元,并回答它们是否是命题:(1)∀x(P(x)∨Q(x))∧R (R为命题常元)(2)∀x(P(x)∧Q(x))∧∃xS(x)→T(x)(3)∀x(P(x)→∃y(B(x,y)∧Q(y))∨T(y))(4)P(x)→(∀y∃x(P(x)∧B(x,y))→P(x))解(1)全称量词∀,辖域 P(x)∨Q(x),其中x为约束变元,∀x(P(x)∨Q(x))∧R是命题。

(2)全称量词∀,辖域 P(x)∨Q(x),其中 x为约束变元。

存在量词∃,辖域 S(x) ,其中 x为约束变元。

T(x)中x为自由变元。

∀x(P(x)∧Q(x))∧∃xS(x)→T(x)不是命题。

(3)全称量词∀,辖域 P(x)→∃y(B(x,y)∧Q(y))∨T(y),其中 x为约束变元,T(y)中y为自由变元。

存在量词∃,辖域B(x,y)∧Q(y),其中y为约束变元。

∀x(P(x)→∃y(B(x,y)∧Q(y))∨T(y))是命题。

(4)全称量词∀,辖域∃x(P(x)∧B(x,y)),其中 y为约束变元。

存在量词∃,辖域P(x)∧B(x,y),其中 x为约束变元。

不在量词辖域中的P(x)中的x为自由变元。

P(x)→(∀y∃x(P(x)∧B(x,y))→P(x))不是命题。

2、对个体域{0,1}判定下列公式的真值, E(x)表示“x是偶数”:(1)∀x(E(x)→┐x=1)(2)∀x(E(x)∧┐x=1)(3)∃x(E(x)∧x=1)(4)∃x(E(x)→x=1)再将它们的量词消去,表示成合取或析取命题公式,鉴别你所确定的真值是否正确。

解(1)∀x(E(x)→┐x=1) 真∀x(E(x)→┐x=1) 可表示成命题公式(E(0)→┐0=1)∧(E(1)→┐1=1)其中E(0)→┐0=1真,E(1)→┐1=1也真,故(E(0)→┐0=1)∧(E(1)→┐1=1)真。

第2章谓词逻辑

第2章谓词逻辑

谓词,当与一个个体相联系时,它刻划了
个体性质;当与两个或两个以上个体相联系时,
它刻划了个体之间的关系。表示特定谓词,称 为谓词常元,表示不确定的谓词,称为谓词变 元,都用大写英文字母,如P,Q,R,…,或 其带上、下标来表示。在本书中,不对谓词变 元作更多地讨论。
对于给定的命题,当用表示其个体的小写
字母和表示其谓词的大写字母来表示时,规定
把小写字母写在大写字母右侧的圆括号( )内。
例如,在命题“张三是位大学生”中,
“张三”是个体,“是位大学生”是谓词,它
刻划了“张三”的性质。设S:是位大学生,c:
张三,则“张三是位大学生”可表示为S(c),或
者写成S(c):张三是位大学生。
又如,在命题“武汉位于北京和广州之间” 中,武汉、北京和广州是三个个体,而“…位
加强了。
例2.1.1 试用量词、谓词表示下列命题: ① 所有大学生都热爱祖国; ② 每个自然数都是实数;
③ 一些大学生有远大理想;
④ 有的自然数是素数。
解 令S(x):x是大学生,L(x):x热爱祖国, N(x):x是自然数,R(x):x是实数,I(x):x有 远大理想,P(x):x是素数。 则例中各命题分别表示为: ①(x)(S(x)L(x)) ②(x)(N(x)R(x))
通常一元谓词表达了个体的“性质”,而 多元谓词表达了个体之间的关系。
n元谓词不是命题,只有其中的个体变元用
特定个体或个体常元替代时,才能成为一个命 题。但个体变元在哪些论域取特定的值,对命 题的真值极有影响。 例如,令S(x):x是大学生。若x的论域为
某大学的计算机系中的全体同学,则S(x)是真
的;若x的论域是某中学的全体学生,则S(x)是 假的;若x的论域是某剧场中的观众,且观众中 有大学生也有非大学生的其它观众,则S(x)是 真值是不确定的。

第二章 谓词逻辑2-1至2-3

第二章 谓词逻辑2-1至2-3

谓词的概念和表示
2-1、谓词的概念和表示
命题是反映判断的句子,一般有主语和谓语两部 分组成。 例如:电子计算机是科学技术的工具。 其中:“电 子计算机”是主语,“是科学技术的工具”是谓语。 主语一般是客体,客体可以独立存在。 用以刻划客体的性质或关系的即是谓词。 例如(1)他是三好学生。 (2)7 是质数。
例如,简单而有名的苏格拉底三段论: 所有的人都是要死的,苏格拉底是人,所以苏格拉底是要死的。 这个显然成立的推理在第一章中是不能进行推证的,比如令P表示: 所有的人都是要死的,Q表示:苏格拉底是人,R表示:苏格拉底是要 死的。于是该推理可以表示为: P∧Q R 但是,用第一章命题逻辑的方法并不能证明该推理成立,因为P∧Q→R 不是重言式。比如当P、Q为T,R为F时,P∧Q→R的真值为F。 苏格拉底三段论在命题逻辑中不能推证的原因是命题公式描述能力的 局限性。比如:“所有的人都是要死的”和“苏格拉底是要死的”这两 个命题所表述的性质都为:“是要死的”,但在命题逻辑中需用两个不 同的命题符号P和R来表示,两个不同的符号显然掩盖了两个命题描述 性质的共同性。这样必须要对命题的内部关系进行深入地研究。
例4: 用 存 在 量 词 表 述 “ 些 人 是 聪 明 的 ” 一 解 : 设 (x) :X是 人 。 (x) :X是 聪 M R 明 的 。 则 上 述 命 题 表为 : 述 (x) (M(x) R(x) )
例:发光的不都是金子。
解:L(X):x是发光的。B(x):x是金子。
(x )(L( x ) B( x ))
例:有些人早饭吃面。 包 解 : M ( x ) : x是 人 。 E ( x ) : x早 饭 吃 面 包 ( x )( M ( X ) E ( x ))

(完整word版)第二章 谓词逻辑

(完整word版)第二章 谓词逻辑

第二章谓词逻辑1.什么叫做客体和客体变元?如何表示客体和客体变元?2.么叫做谓词?3.什么叫做论域?我们定义一个“最大”的论域叫做什么?4.填空题:1.存在量词:记作(),表示( )或者()或者( )。

2.全称量词:记作( ),表示( )或者()或者( )。

5。

什么叫做量词的作用域?指出下面两个谓词公式中各个量词的作用域。

”x(F(x,y)→$yP(y))∧Q(z)∧$xA(x)”x$y”z(A(x,y)→B(x,y,z))∧C(t)6。

什么叫做约束变元?什么叫做自由变元?指出下面公式中哪些客体变元是约束变元?哪些客体变元是自由变元?”x(F(x,y)→$yP(y))∧Q(z)∧$xA(x)7.填空:一个谓词公式如果无自由变元,它就表示一个( )。

8.给出的谓词 J(x):x是教练员, L(x) :x是运动员, S(x) :x是大学生,O(x) :x是年老的,V(x) :x是健壮的,C(x):x是国家选手,W(x) :x是女同志, H(x):x是家庭妇女,A (x,y):x钦佩y。

客体 j:金某人.用上面给出的符号将下面命题符号化。

1.所有教练员是运动员。

2.某些运动员是大学生.3.某些教练是年老的,但是健壮的.4.金教练既不老,但也不是健壮的。

5.不是所有运动员都是教练。

6.某些大学生运动员是国家选手。

7.没有一个国家选手不是健壮的。

8.所有老的国家选手都是运动员。

9.没有一位女同志既是国家选手又是家庭妇女。

10.有些女同志既是教练又是国家选手。

11.所有运动员都钦佩某些教练。

12.有些大学生不钦佩运动员.9。

将下面命题符号化1.金子闪光,但闪光的不一定都是金子.2.没有大学生不懂外语.3.有些液体可以溶解所有固体.4.每个大学生都爱好一些文体活动。

5.每个自然数都有唯一的后继数。

10.令P表示天气好.Q表示考试准时进行。

A(x)表示x是考生.B(x)表示x提前进入考场。

C(x)表示x取得良好成绩.E(x,y)表示x=y.利用上述符号,分别写出下面各个命题的符号表达式。

第2章 谓词逻辑

第2章 谓词逻辑

习题21.在一阶逻辑中将下面命题符号化。

(1)所有的有理数均可表成分数。

Q(x):x是有理数,F(x):x可表成分数∀x(Q(x) →F(x))(2)有的有理数是整数。

Q(x):x是有理数,Z(x):x是整数∃x(Q(x) ∧Z(x))(3)凡偶数均能被2整除F(x):x是偶数,G(x):x能被2整除∀x(F(x) →G(x))(4)存在着偶素数F(x):x是偶数,G(x):x是素数∃x(F(x) ∧G(x))(5)没有不犯错误的人M(x):x是人,G(x):x犯错误﹁∃x(M(x)∧﹁G(x))∀x(M(x) →G(x))(所有的人都犯错误)(6)在北京工作的人未必都是北京人F(x):x在北京工作,G(x):x是北京人﹁∀x(F(x) →G(x))∃x(F(x)∧﹁G(x))(存在着在北京工作的非北京人)(7) 尽管有些人聪明,但未必一切人都聪明。

同课本p36例2.2.2(1)令C(x):x聪明;M(x):x是人。

则命题(7)可符号化为xCx))Mx→∃∧∧⌝∀Mxx()())(((xC)((8) 每列火车都比某些汽车快。

T(x):x是火车,B(x):x是汽车,F(x,y):x比y快。

∀x(T(x) →∃y (B(y)∧F(x,y)))(9)某些汽车比所有的火车慢。

T (x ):x 是火车,B (x ):x 是汽车,F(x,y):x 比y 快。

∃x(B(x) ∧∀y (T (y) →F (y ,x )) )2.指出下列各合式公式中的指导变项,量词的辖域,个体变项的自由出现和约束出现。

(1)),())((y x yH x F x ∃→∀(2)),()(y x G x xF ∧∃(3)),()),(),((y x xH z y L y x R y x ∃∧∨∀∀解:(1) ∃yH (x,y )中,y 为指导变项,∃的辖域为H (x,y ),其中y 是约束出现,x 是自由出现,∀x (F (x ))中,x 是指导变项,∀的辖域为F (x ),x 是约束出现。

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
命题“凡人要死。”符号化为:(x)F (x) ⑵ 令G(x):x是研究生。 命题“有的人是研究生。”符号化为:(x)G(x)
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录

离散数学 第2章习题答案

离散数学 第2章习题答案

第2章习题答案1. 解 (1)设F(x)表示“x犯错误”,N(x)表示“x为人”,则此语句符号化为:⌝∃x(N(x)∧⌝F(x))。

(2)设F(x)表示“x是推理”,M(x)表示“x是计算机”,H(x,y)表示“x能由y完成”,则此语句符号化为:⌝∀x(F(x)→∃ y M(y)∧H(x,y))。

(3)设C(x)表示“x是计算机系的学生”,D(x)表示“x学习离散数学”,则此语句符号化为:∀x(C(x)→D(x))。

(4)因原语句与“一切自然数x,都有一个自然数y,使得y是x的后继数;并且对任意自然数x,当y 和z都是x的后继时,则有y=z”的意思相同,所以原语句可符号化为:∀x(N(x)→∃ y(N(y)∧M(x,y)))∧∀x∀y∀z(N(x)∧N(y)∧N(z)→(M(x,y)∧M(x,z)→( y=z))) 其中N(x)表示x是自然数,M(x,y)表示y是x的后继数。

(5)设S(x,y,z)表示“x+y=z”,则此语句符号化为:∀x∀y∃z S(x,y,z)。

(6)设Z(x)表示“x是整数”,S(x,y)表示“xy=0”,T(x,y)表示“x=y”,则此语句符号化为:∀x∀y(Z(x)∧Z(y)→(S(x,y)→ T(x,0)∨T(y,0)))。

(7)设E(x)表示“x是偶数”,P(x)表示“x是素数”,S(x,y)表示“x=y”,则此语句符号化为:∀x(E(x)∧P(x)→∀y(E(y)∧P(y)→ S(x,y)))。

(8)设E(x)表示“x是偶数”,O(x)表示“x是奇数”,N(x)表示“x是自然数”,则此语句符号化为:⌝∃x(E(x)∧O(x)∧N(x))。

(9)设R(x)表示“x是实数”,Q(x)表示“x是有理数”,Z(x)表示“x是整数”,则此语句符号化为:∃x(R(x)∧Q(x)∧⌝Z(x))。

(10)设R(x)表示“x是实数”,Q(x,y)表示“y大于x”,则此语句符号化为:∀x(R(x)→∃⌝y(R(y)∧Q(x,y)))。

第2章谓词逻辑习题测验及答案

第2章谓词逻辑习题测验及答案

谓词逻辑习题1. 将下列命题用谓词符号化。

(1)小王学过英语和法语。

(2)2大于3仅当2大于4。

(3)3不是偶数。

(4)2或3是质数。

(5)除非李键是东北人,否则他一定怕冷。

解:(1) 令)(x P :x 学过英语,Q(x):x 学过法语,c :小王,命题符号化为)()(c Q c P ∧ (2) 令),(y x P :x 大于y, 命题符号化为)3,2()4,2(P P → (3) 令)(x P :x 是偶数,命题符号化为)3(P ⌝ (4) 令)(x P :x 是质数,命题符号化为)3()2(P P ∨(5) 令)(x P :x 是北方人;)(x Q :x 怕冷;c :李键;命题符号化为)()(x P c Q ⌝→ 2. 设个体域}{c b a D ,,=,消去下列各式的量词。

(1)))()((y Q x P y x ∧∃∀ (2)))()((y Q x P y x ∨∀∀(3))()(y yQ x xP ∀→∀(4)))()((y yQ y x P x ∃→∀,解:(1) 中))()(()(y Q x P y x A ∧∃=,显然)(x A 对y 是自由的,故可使用UE 规则,得到 ))()(()(y Q y P y y A ∧∃=,因此))()(())()((y Q y P y y Q x P y x ∧∃∧∃∀α,再用ES 规则, )()())()((z Q z P y Q y P y ∧∧∃α,D z ∈,所以)()())()((z Q z P y Q x P y x ∧∧∃∀α(2)中))()(()(y Q x P y x A ∨∀=,它对y 不是自由的,故不能用UI 规则,然而,对)(x A 中约束变元y 改名z ,得到))()((z Q x P z ∨∀,这时用UI 规则,可得:))()((y Q x P y x ∨∀∀ ))()((z Q x P z x ∨∀∀⇔ ))()((z Q x P z ∨∀α (3)略 (4)略3. 设谓词)(y x P ,表示“x 等于y ”,个体变元x 和y 的个体域都是}321{,,=D 。

离散数学答案第二章习题解答

离散数学答案第二章习题解答

离散数学答案第二章习题解答第二章谓词逻辑习题与解答1、将下列命题符号化:(1) 所有的火车都比某些汽车快。

(2) 任何金属都可以溶解在某种液体中。

(3) 至少有一种金属可以溶解在所有液体中。

(4) 每个人都有自己喜欢的职业。

(5) 有些职业就是所有的人都喜欢的。

解 (1) 取论域为所有交通工具的集合。

令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。

“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。

(2) 取论域为所有物质的集合。

令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。

“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y xD y L y x M x ∧?→?。

(3) 论域与谓词与(2)同。

“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。

(4) 取论域为所有事物的集合。

令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。

“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→?(5)论域与谓词与(4)同。

“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。

2、取论域为正整数集,用函数+(加法),?(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。

(2) 任何两个正整数都有最小公倍数。

(3) 没有最大的素数。

(4) 并非所有的素数都不就是偶数。

解先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。

离散数学(谓词逻辑)课后总结

离散数学(谓词逻辑)课后总结

第二章谓词逻辑2—1基本概念例题1. 所有的自然数都是整数。

设N(x):x是自然数。

I(x):x是整数。

此命题可以写成∀x(N(x)→I(x))例题2. 有些自然数是偶数。

设E(x):x是偶数。

此命题可以写成∃x(N(x)∧E(x))例题3. 每个人都有一个生母。

设P(x):x是个人。

M(x,y):y是x的生母。

此命题可以写成:∀x(P(x)→∃y(P(y)∧M(x,y))) 2-2 谓词公式及命题符号化例题1. 如果x是奇数,则2x是偶数。

其中客体x与客体2x之间就有函数关系,可以设客体函数g(x)=2x,谓词O(x):x是奇数,E(x):x是偶数,则此命题可以表示为:∀x(O(x)→E(g(x)))例题2 小王的父亲是个医生。

设函数f(x)=x的父亲,谓词D(x):x是个医生,a:小王,此命题可以表示为D(f(a))。

例题3 如果x和y都是奇数,则x+y是偶数。

设h(x,y)=x+y ,此命题可以表示为:∀x∀y((O(x)∧O(y))→E(h(x,y))命题的符号表达式与论域有关系两个公式:一般地,设论域为{a1,a2,....,an},则有(1). ∀xA(x)⇔A(a1)∧A(a2)∧......∧A(an)(2). ∃xB(x)⇔B(a1)∨B(a2)∨......∨B(an)1.每个自然数都是整数。

该命题的真值是真的。

表达式∀x(N(x)→I(x))在全总个体域的真值是真的,因∀x(N(x)→I(x))⇔(N(a1)→I(a1))∧(N(a2)→I(a2))∧…∧(N(an)→I(an))式中的x不论用自然数客体代入,还是用非自然数客体代入均为真。

例如(N(0.1)→I(0.1))也为真。

而∀x(N(x)∧I(x))在全总个体域却不是永真式。

∀x(N(x)∧I(x))⇔(N(a1)∧I(a1))∧(N(a2)∧I(a2)) ∧…∧(N(an)∧I(an))比如x用0.2代入(N(0.2)∧I(0.2))就为假。

离散数学及应用 第3版 第2章 谓词逻辑

离散数学及应用 第3版 第2章 谓词逻辑

2.1个体词、谓词与量词
(3)∃x∀yP(x,y),其中D = {1,2,3},谓词P(x,y) : x = y 解:∃x∀yP(x,y)=∀yP(1,y)∨∀yP(2,y)∨∀yP(3,y)
=(P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3)) ∨(P(3,1)∧P(3,2)∧P(3,3)) =(1∧0∧0)∨(0∧1∧0)∨(0∧0∧1) =0
2.1个体词、谓词与量词
存在量词: 表示存在, 有的, 至少有一个等 x 表示在个体域中存在x 设P (x)是以D为个体域的一元谓词, xP(x) = 0 :对任意的x ∈ D,P(x)取值0 xP(x) = 1 :存在a ∈ D,P(a)取值1
➢ 设D = {a1,···,an}是有限个体域, ∃xP(x) = P(a1)∨P(a2)∨···∨P(an)
所以,∃x∀yP(x,y)与∀y∃xP(x,y)值不相同。
2.1个体词、谓词与量词
例2.3 在谓词逻辑中将下列命题符号化 (1) 人人都爱美; (2) 有人用左手写字 分别取二个不同的个体域 (a) D为人类集合, (b) D为全总个体域 .
(a) (1) 设G(x): x爱美, 符号化为 x G(x) (2) 设T(x): x用左手写字, 符号化为 xT(x)
(b) 设F(x): x为人,G(x): x爱美 T(x): x用左手写字 (1) x (F(x)G(x)) (2) x (F(x)T(x))
这是两个基本公式, 注意它们的使用
2.1个体词、谓词与量词
例2.4 在谓词逻辑中将下列命题符号化
(1) 正数都大于负数
(2) 有的无理数大于有的有理数
注意: 题目中没给个体域, 使用全总个体域

第2章逻辑代数(下):谓词演算 (1)

第2章逻辑代数(下):谓词演算 (1)

第2章逻辑代数(下):谓词演算2.1 谓词演算基本概念2.1.1 个体谓词演算中把一切讨论对象都称为个体(individuals),它们可以是客观世界中的具体客体,也可以是抽象的客体,诸如数字、符号等。

确定的个体常用a,b,c等小写字母或字母串表示。

a,b,c等小写字母或字母串称为个体常元(constants)。

不确定的个体常用字母x,y,z,u,v,w等来表示。

它们被称为个体变元,或变元(variables)。

谓词演算中把讨论对象——个体的全体称为个体域(domain of individuals),常用字母D表示,并约定个体域都是非空的集合。

当讨论对象未作具体指定,而是泛指一切客体时,个体域特称为全总域(universe),用字母U表示。

当给定个体域时,常元表示该域中的一个确定的成员,而变元则可以取该域中的任何一个成员为其值。

表示D上运算的运算符与常元、变元可组成所谓个体项(terms)。

例如,数学中的代数式a2+b,x2c等。

由于在我们讨论的谓词演算中,其变元只能取值个体对象,不能取值函数、命题或谓词,因此,它又常被叫做一阶谓词演算。

2.1.2 谓词2.1.3 量词谓词演算中的量词(quantifiers)指数学中常用的数量词“所有的”(或“每一个”)和“有”(或“存在”),用符号∀和∃来表示,分别称为全称量词和存在量词。

为了用全称量词∀表示个体域中所有(每一个)个体满足一元谓词P,用存在量词∃表示有(存在)个体满足一元谓词P,还需使用变元:∀xP(x) 读作“所有(任意,每一个)x满足P(x)”,表示个体域中所有的个体满足谓词P(x)。

∃x P(x) 读作“有(存在,至少有一个)x满足P(x)”,表示个体域中至少有一个体满足谓词P(x)。

当量词用于一谓词填式或复合的谓词表达式时,该谓词或复合的谓词表达式称为量词的辖域(domains of quantifiers)。

因此,量词的辖域或者是紧邻其右侧的那个谓词;或者是其右侧第一对括号内的表达式。

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

第2章 谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词逻辑推理证明.一、重点内容1. 谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。

谓词是用来刻划个体词的性质或事物之间关系的词. 个体词分个体常项(用a ,b ,c ,…表示)和个体变项(用x ,y ,z ,…表示);谓词分谓词常项(表示具体性质和关系)和谓词变项(表示抽象的或泛指的谓词),用F ,G ,P ,…表示.注意,单独的个体词和谓词不能构成命题,将个体词和谓词分开不是命题.量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”.在谓词逻辑中,使用量词应注意以下几点:(1) 在不同个体域中,命题符号化的形式可能不同,命题的真值也可能会改变.(2) 在考虑命题符号化时,如果对个体域未作说明,一律使用全总个体域.(3) 多个量词出现时,不能随意颠倒它们的顺序,否则可能会改变命题的含义.谓词公式只是一个符号串,没有什么意义,但我们给这个符号串一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公式中的每一个变项都有个体域中的元素相对应.在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是全总个体域。

一般地,使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2. 公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材). 命题的符号化结果都是谓词公式.例如∀x (F (x )→G (x )),∃x (F (x )∧G (x )),∀x ∀y (F (x )∧F (y )∧L (x ,y )→H (x ,y ))等都是谓词公式. 变元与辖域,在谓词公式∀xA 和∃xA 中,x 是指导变元,A 是相应量词的辖域. 在∀x 和∃x 的辖域A 中,x 的所有出现都是约束出现,即x 是约束变元,不是约束出现的变元,就是自由变元. 也就是说,量词后面的式子是辖域. 量词只对辖域内的同一变元有效.换名规则,就是把公式中量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变.代入规则,就是把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号.解释(赋值),谓词公式A 的个体域D 是非空集合,则 (1) 每一个常项指定D 中一个元素; (2) 每一个n 元函数指定D n 到D 的一个函数;(3) 每一个n 元谓词指定D n 到{0,1}的一个谓词;按这个规则做的一组指派,称为A 的一个解释或赋值.在有限个体域下,消除量词的规则为:如D ={a 1,a 2,…,a n },则)(...)()()()(...)()()(2121n n a A a A a A x xA a A a A a A x xA ∨∨∨⇔∃∧∧∧⇔∀谓词公式分类,在任何解释下,谓词公式A 取真值1,公式A 为逻辑有效式(永真式);在任何解释下谓词公式A 取真值0,公式A 为永假式;至少有一个解释使公式A 取真值1,公式A 称为可满足式.3. 前束范式 一个谓词公式的前束范式仍是谓词公式. 若谓词公式F 等值地转化成B x Q x Q x Q k k ...2211那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,x 1,x 2,…,x k 是个体变元,B 是不含量词的谓词公式.每个谓词公式F 都可以变换成与它等值的前束范式. 其步骤如下:① 消去联结词→,↔,⎺∨;② 将联结词⌝移至原子谓词公式之前;③ 利用换名或代入规则使所有约束变元的符号均不同,并且自由变元与约束变元的符号也不同;④将∀x ,∃x 移至整个公式最左边;⑤ 得到公式的前束范式.4.谓词逻辑的推理理论 谓词演算的推理是命题演算推理的推广和扩充,命题演算中的基本等值公式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用. 在谓词演算推理中,某些前提和结论可能受到量词的限制,为了使用这些推理,引入消去和附加量词的规则,有US 规则(全称量词消去规则),UG 规则(全称量词附加规则),ES 规则(存在量词消去规则),EG 规则(存在量词附加规则)等,以便使谓词演算公式的推理过程可类似于命题演算的推理进行.二、实例例2.1 将下列命题符号化:(1) 有某些实数是有理数;(2) 所有的人都呼吸;(3)每个母亲都爱自己的孩子.注意:一般地,全称量词“∀”后,跟蕴含联结词“→”;存在量词“∃”后,跟合取联结词“∧”.解 (1) 设R (x ):x 是实数,Q (x ):x 是有理数。

谓词逻辑习题及答案

谓词逻辑习题及答案

习题21.将下列命题符号化。

(1) 某些实数是有理数。

(2) 每一个有理数都是实数。

(3) 不是每一个实数都是有理数。

(4) 并非所有的素数都不是偶数。

(5) 没有不犯错误的人。

(6) 所有人都会犯错误。

(7) 火车比轮船快。

(8) 有些液体能溶解任何金属。

(9) 金子都会闪光,但闪光的未必是金子。

(10) 存在一些人是大学生。

解答:(1) 设H (x ):x 是实数;P (x ):x 是有理数。

则命题可符号化为:()x ∃(H (x )∧P (x ))。

(2) 设H (x ):x 是有理数;P (x ):x 是实数。

则命题可符号化为:()x ∀(H (x )→P (x ))。

(3) 设H (x ):x 是实数;P (x ):x 是有理数。

则命题可符号化为:⌝()x ∀(H (x )→P (x ))。

(4) 设H (x ):x 是素数;P (x ):x 是偶数。

则命题可符号化为:⌝()x ∀(H (x )→⌝P (x ))。

(5) 设H (x ):x 是人;P (x ):x 会犯错误。

则命题可符号化为:⌝()x ∃(H (x )∧⌝P (x ))。

(6) 设H (x ):x 是人;P (x ):x 会犯错误。

则命题可符号化为:()x ∀(H (x )→P (x ))。

(7) 设H (x ):x 是火车;L (x ):x 是轮船;P (x ,y ):x 比y 快。

则命题可符号化为:()x ∀()y ∀(H (x )∧L (y )→P (x ,y ))。

(8) 设H (x ):x 是液体;L (x ):x 是金属;P (x ,y ):x 能溶解y 。

则命题可符号化为:()x ∃(H (x )∧()y ∀(L (y )→P (x ,y )))。

(9) 设H (x ):x 是金子;P (x ):x 会闪光。

则命题可符号化为:()x ∀(H (x )→P (x ))∧()x ∃(H (x )∧⌝P (x ))。

谓词逻辑-习题参考解答(2)

谓词逻辑-习题参考解答(2)

谓词逻辑习题参考答案与提示1.(1)设W(x):x是工人;c:小张。

原命题可符号化为:⌝W(c)。

(2)设S(x):x是田径运动员;B(x):x是球类运动员;h:他。

原命题可符号化为:S(h)∨B(h)。

(3)设C(x):x是聪明的;B(x):x是美丽的;l:小莉。

原命题可符号化为:C(l)∧B(l)。

(4)设O(x):x是奇数。

原命题可符号化为:O(m)→⌝O(2m)(5)设P(x,y):直线x平行于直线y;G(x,y):直线x相交于直线y。

原命题可符号化为:P(x,y)→⌝G(x,y)。

(6)设O(x):x是老的;V(x):x是健壮的;j:王教练。

原命题可符号化为:⌝O(j)∧⌝V(j)。

(7)设L(x, y):x大于y。

原命题可符号化为:L(5,4)→L(4,6)。

2.(1)存在自然数x,对任意自然数y满足xy=1;a)0 b)0 c)0 d)0(2)对每个自然数x,存在自然数y满足xy=1;a)0 b)0 c)0 d)1(3)对每个自然数x,存在自然数y满足xy=0;a)1 b)1 c)0 d)0(4)存在自然数x,对任意自然数y满足xy=1;a)1 b)1 c)0 d)0(5)对每个自然数x,存在自然数y满足xy=x;a)1 b)1 c)1 d)1(6)存在自然数x,对任意自然数y满足xy=x;a)1 b)1 c)0 d)0(7)对任意自然数x,y,存在自然数z满足x-y=z。

a)1 b)1 c)0 d)03.(1)⌝∃xL(x,0)(2)∀x∀y∀z((L(x,y)∧L(y,z))→L(x,z))(3)∀x∀y((L(x,y)→∃z(L(z,0)∧G(xz,yz)))(4)∃x∀yM(x,y,y)(5)∀x∃yA(x,y,x)4. ∃!xP(x)可用以下具有相同的意义的谓词公式表示∃x(P(x)∧∀y(P(y)→E(y,x)))E(y,x)表示y等于x5. 设R(x):x是兔子;T(x):x是乌龟。

第二章谓词逻辑

第二章谓词逻辑
特性谓词在加入到命题函数中式遵循如下规 则:
(1).对应全称量词,刻划其对应个体域的特性 谓词作为蕴含式的前件加入;
(2).对应存在量词,刻划其对应个体域的特性 危险作为合取项加入。
16/86
2.1 谓词逻辑的基本概念与表示
•例2-5:符号化下列语句。
(1).天下乌鸦一般黑; (2).那位身体强健的,用功的,肯于思考问题的大学
9/86
Hale Waihona Puke 2.1 谓词逻辑的基本概念与表示
•例2-2:符号化如下命题。
P:上海是一个现代化城市; Q:甲是乙的父亲; R:3介于2和5之间; T:布什和萨达姆是同班同学。
• 注意:
(1).谓词中个体词的顺序是十分重要的,不能随意变 更。如前面的F (b, c)与F (c, b)的真值就不同;
(2).一元谓词用以描述一个个体的某种特性,而n元 谓词则用以描述n个个体之间的关系;
19/86
2.1 谓词逻辑的基本概念与表示
2.1.3谓词的语言翻译
设G (x)是关于x的一元谓词,D是其个体域, 任取x0∈D,则G (x0)是一个命题。
(x)G(x)是这样的一个命题:“对任意x, x∈D,G(x)都成立”其真值规定如下:
1对所 x 有 D ,的 都 G( 有 x 1) ( x)G (x) 0否则。
任意的n个项,则f(t1, t2, …, tn)是项; (3).所有的项都是有限次使用(1),(2)得到的。
25/86
2.2 谓词的合式公式及解释
我们定义的项,包括了常量,变量及函数。 例如,x,a,f(x, a),f(g(x, a),b),h(x)均是项。
函数的使用,能给谓词表示带来很大的方便。
5/86

第2章 谓词逻辑-1

第2章 谓词逻辑-1

定义2.1.1:由一个谓词H和n个客体变元组成的表 达式H(x1, x2 , …, xn)称为n元简单命题函数. 由定义可知, n元谓词就是有n个客体变元的命题 函数.当n=0时,称为0元谓词.因此,一般情况下,命题 函数不是命题;特殊情况0元谓词就变成一个命题. 复合命题函数:由一个或几个简单命题函数以及 逻辑联结词组合而成的表达式.
(x) A(x)A(a1)∧A(a2)∧…∧A(an ) (x) A(x)A(a1)∨A(a2)∨…∨A(an )
例6:在谓词逻辑中将下列命题符号化. (1)所有的人都长头发。 (2)有的人吸烟。 (3)没有人登上过木星。 (4)清华大学的学生未必都是高素质的。 解:令 M(x): x是人。(特性谓词) (1) 令F(x): x长头发。则符号化为: (x)(M(x) F(x)) (2) 令S(x): x吸烟。则符号化为: (x)(M(x)∧S(x)) (3) 令D(x): x登上过木星。则符号化为: ┐(x)(M(x)∧D(x))
(4)一般来说,当多个量词同时出现时,它们的顺序不能
随意调换。如: 在实数域上用H(x,y)表示x+y=5,则命题“对于任意的x, 都存在y使得x+y=5”可符号化为: xyH(x,y) ,其真值 为1.若调换量词顺序后为: yx H(x,y) , 其真值为0。 (5) 当个体域为有限集合时,如D={a1, a2 …, an},对任 意谓词A(x),有




所有的人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。 根据常识,认为这个推理是正确的。但是,若用命题逻辑 (Ls)来表示,设P、Q和R分别表示这三个原子命题,则 有 P,QR 然而,(P∧Q)→R 并不是永真式,故上述推理形式又是错 误的。一个推理,得出矛盾的结论,问题在哪里呢? 问题就 在于这类推理中,各命题之间的逻辑关系不是体现在原子 命题之间,而是体现在构成原子命题的内部成分之间,即 体现在命题结构的更深层次上。对此,Ls是无能为力的。 所以,在研究某些推理时,有必要对原子命题作进一步分 析,分析出其中的个体词,谓词和量词,研究它们的形式 结构的逻辑关系、正确的推理形式和规则,这些正是谓词 逻辑(简称为Lp)的基本内容。

高等数学第二章谓词逻辑练习题

高等数学第二章谓词逻辑练习题

一、 选择题1.下列四个公式正确的是①)()())()((x xB x xA x B x A x ∀∧∀⇒∧∀ ②)()())()((x xB x xA x B x A x ∀∨∀⇒∨∀③)()())()((x xB x xA x B x A x ∃∨∃⇒∨∃ ④))()(()()(x B x A x x xB x xA ∧∃⇒∃∧∃A.①③B.①④C.③④D.②④2. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q3. 谓词公式))()(()(x xQ x Q x x xP ⌝∃→⌝∀→∀的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 蕴涵式4. 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x5. 设个体域{,}A a b =,公式()()xP x xS x ∀∧∃在中消去量词后应为 ( )(A) ()()P x S x ∧ (B) ()()(()())P a P b S a S b ∧∧∨(C) ()()P a S b ∧ (D) ()()()()P a P b S a S b ∧∧∨6. 在谓词演算中,下列各式正确的是( )(A) (,)(,)x yA x y y xA x y ∃∀⇔∀∃ (B) (,)(,)x yA x y y xA x y ∃∃⇔∃∃(C) (,)(,)x yA x y x yA x y ∃∀⇔∀∃ (D) (,)(,)x yA x y y xA x y ∀∀⇔∀∀7.下列各式不正确的是( )(A) (()())()()x P x Q x xP x xQ x ∀∨⇔∀∨∀(B) (()())()()x P x Q x xP x xQ x ∀∧⇔∀∧∀(C) (()())()()x P x Q x xP x xQ x ∃∨⇔∃∨∃(D) (())()x P x Q xP x Q ∀∧⇔∀∧8. 设I 是如下一个解释:D ={a,b}, 01 0 1b) P(b,a) P(b,b) P(a,),(a a P 则在解释I 下取真值为1的公式是( ).(A) ∃x ∀yP(x,y) (B)∀x ∀yP(x,y) (C)∀xP(x,x) (D)∀x ∃yP(x,y).9. 设个体变元z y x ,,的论域都为自然数集合,(,,):,P x y z x y z +=(,,),(,):Q x y z x y z R x y x y ⋅=<:,则以下命题中( )是假命题.A .),0,(x x xP ∀B .),,(y y x yP x ∀∃C .),,(x x y yQ x ∃∀D .)0,(x xR ∀10. 下面不是命题的是( )A .()xP x ∀B .()()x P x ∃C .()()()x P x P y ∀∨D .()()(()())x y P x R y ∃∃→11公式()()()()x P x x Q x ∀→∀的前束范式为( )A .()()(()())x y P x Q y ∀∀→B .()()(()())x y P x Q y ∀∃→C .()()(()())x y P x Q y ∃∀→D .()()(()())x y P x Q y ∃∃→12. 公式()(())x P x Q ∀↔⇔( )A .(()())(()())x P x Q Q x P x ∀→∧→∀B .(()())(()())x P x Q Q x P x ∀→∧→∃C (()())(()())x P x Q Q x P x ∃→∧→∀D .(()())(()())x P x Q Q x P x ∃→∧→∃13. ()()(,)x y P x y ∀∃的否定是( )A .()()(,)x y P x y ∀∀⌝B .()()(,)x y P x y ∃∀⌝C .()()(,)x y P x y ∀∃⌝D .()()(,)x y P x y ∃∃⌝14.下列谓词公式与()(()())x A x B x ∀↓等价的是( )A .()()()()x A x xB x ∀↓∀ B .()()()()x A x x B x ∀↑∀C .()()()()x A x x B x ∃↓∃D .()()()()x A x x B x ∃↑∃15.在谓词演算中,()P a 是()xP x ∀的有效结论,其理论依据是( )A .USB .UGC .ESD .EG16. 设个体域是整数集合,P 代表∀x ∀y ((x <y )→(x -y <x )),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是假命题(C) P 是一阶逻辑公式,但不是命题 (D) P 不是一阶逻辑公式二、填空题1. 设全体域D 是正整数集合,确定下列命题的真值:(1) ()x y xy y ∀∃= ( ) (2) ()+x y x y y ∃∀= ( )(3) ()+x y x y x ∃∀= ( ) (4) (2)x y y x ∀∃= ( )2. 谓词公式()((,)())()((,)()())x P x y Q z y R x y z Q z ∀∨∧∃→∀中量词∀x 的辖域是3. 公式()(()(,)()(,))()x P x Q x y z R y z S x ∀→∨∃→中量的自由变量为 约束变量为4. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .5. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为6. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为7. 谓词公式∀x (F (x )→G (x ))∧⌝∀y (F (y )→G (y ))的类型是 .8. 设个体域{1,2},谓词P (1)=1,P(2)=0,Q(1)=0,Q (2)=1,则∀x (P (x )∨Q (x ))的真值是9.只用联结词,,⌝∀→表示以下公式()(()())x P x Q x ∃∧=()(()()())x P x y Q y ∃↔∀=()(()()())y x P x Q y ∀∀∨⌝=三、计算及证明1. 求谓词公式))(())((a f R x Q P x ∧→∀的真值.其中P :4>3,Q (x ):x >1,R (x ):x ≤ 2.f (-3)=1,f (1)=5,f (5)= -3.a :5.个体域D =(-3,1,5).2. 说明公式))(),(()(x xP y x yG x xP ∀→∃→∀是逻辑有效式(永真式).3. 通过等值演算说明下列等值式成立: )()())()((x xQ x xP x Q x P x ∃→∀⇔→∃4. 求谓词公式),,()),(),((z y x zH y x yG y x xF ∃∧∀→∀的前束范式5. 前提:∃xF (x ), ∀x (F (x )→G (x )∧H (x ))结论:∃x (F (x )∧H (x ))6. 构造推理证明))()(()()(x Q x P x x xQ x xP →∀⇒∀→∃.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谓词逻辑习题1. 将下列命题用谓词符号化。

(1)小王学过英语和法语。

(2)2大于3仅当2大于4。

(3)3不是偶数。

(4)2或3是质数。

(5)除非李键是东北人,否则他一定怕冷。

解:(1) 令)(x P :x 学过英语,Q(x):x 学过法语,c :小王,命题符号化为)()(c Q c P ∧ (2) 令),(y x P :x 大于y, 命题符号化为)3,2()4,2(P P → (3) 令)(x P :x 是偶数,命题符号化为)3(P ⌝ (4) 令)(x P :x 是质数,命题符号化为)3()2(P P ∨(5) 令)(x P :x 是北方人;)(x Q :x 怕冷;c :李键;命题符号化为)()(x P c Q ⌝→ 2. 设个体域}{c b a D ,,=,消去下列各式的量词。

(1)))()((y Q x P y x ∧∃∀ (2)))()((y Q x P y x ∨∀∀(3))()(y yQ x xP ∀→∀(4)))()((y yQ y x P x ∃→∀,解:(1) 中))()(()(y Q x P y x A ∧∃=,显然)(x A 对y 是自由的,故可使用UE 规则,得到 ))()(()(y Q y P y y A ∧∃=,因此))()(())()((y Q y P y y Q x P y x ∧∃∧∃∀α,再用ES 规则, )()())()((z Q z P y Q y P y ∧∧∃α,D z ∈,所以)()())()((z Q z P y Q x P y x ∧∧∃∀α(2)中))()(()(y Q x P y x A ∨∀=,它对y 不是自由的,故不能用UI 规则,然而,对)(x A 中约束变元y 改名z ,得到))()((z Q x P z ∨∀,这时用UI 规则,可得:))()((y Q x P y x ∨∀∀ ))()((z Q x P z x ∨∀∀⇔ ))()((z Q x P z ∨∀α (3)略 (4)略3. 设谓词)(y x P ,表示“x 等于y ”,个体变元x 和y 的个体域都是}321{,,=D 。

求下列各式的真值。

(1))3(,x xP ∃(2))1(y yP ,∀ (3))(y x yP x ,∀∀(4))(y x yP x ,∃∃(5))(y x yP x ,∀∃(6))(y x xP y ,∃∀解:(2) 当3=x 时可使式子成立,所以为Ture 。

(3) 当1≠y 时就不成立,所以为False 。

(4) 任意的x,y 使得y x =,显然有y x ≠的情况出现,所以为False 。

(4)存在x,y 使得y x =,显然当1,1==y x 时是一种情况,所以为Ture 。

(5)存在x ,任意的y 使得y x =成立,显然不成立,所以为False 。

(6)任意的y ,存在x ,使得y x =成立,显然不成立,所以为False 。

4. 令谓词)(x P 表示“x 说德语”,)(x Q 表示“x 了解计算机语言C++”,个体域为杭电全体学生的集合。

用)(x P 、)(x Q 、量词和逻辑联接词符号化下列语句。

(1)杭电有个学生既会说德语又了解C++。

(2)杭电有个学生会说德语,但不了解C++。

(3)杭电所有学生或会说德语,或了解C++。

(4)杭电没有学生会说德语或了解C++。

假设个体域为全总个体域,谓词)(x M 表示“x 是杭电学生”。

用)(x P 、)(x Q 、)(x M 、量词和逻辑联接词再次符号化上面的4条语句。

解:(ⅰ)个体域为杭电全体学生的集合时:(1)))()((x Q x P x ∧∃ (2)))()((x Q x P x ⌝∧∃ (3)))()((x Q x P x ∨∀ (4)))()((x Q x P x ∨⌝∀(ⅱ)假设个体域为全总个体域,谓词)(x M 表示“x 是杭电学生”时:(1)))()()((x Q x P x M x ∧∧∃ (2)))()()((x Q x P x M x ⌝∧∧∃ (3))))()(()((x Q x P x M x ∨∧∀ (4))))()(()((x Q x P x M x ∨⌝∧∀5. 令谓词)(y x P ,表示“x 爱y ”,其中x 和y 的个体域都是全世界所有人的集合。

用)(y x P ,、量词和逻辑联接词符号化下列语句。

(1)每个人都爱王平。

(2)每个人都爱某个人。

(3)有个人人都爱的人。

(4)没有人爱所有的人。

(5)有个张键不爱的人。

(6)有个人人都不爱的人。

(7)恰有一个人人都爱的人。

(8)成龙爱的人恰有两个。

(9)每个人都爱自己。

(10)有人除自己以外谁都不爱。

解:a :王平 b :张键 c :张龙(1) )a x xP ,(∀ (2)),(y x yP x ∃∀ (3)),(y x xP y ∀∃ (4)),(y x P y x ⌝∃∀ (5))(x b P x ,⌝∃ (6)),(y x P y x ⌝∀∃ (7))))),(((),((x z z P z x y yP x =→∀∀∧∀∃ωω(8))))()(()(),((y z x z z c P z c P x c P y x y x =∨=→∀∧∧∧≠∃∃, (9)),(x x xP ∀ (10))),((y x y x P y x =↔∀∃ §2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。

(1)))()((y x Q x P x ,→∀ (2))()(y x yQ y x xP ,,∃→∀(3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解: (1)x 是指导变元,x ∀的辖域是),()(y x Q x P →,对于x ∀的辖域而言,x 是约束变元,y 是自由变元。

(2)x,y 都为指导变元,x ∀的辖域是)()(y x yQ y x P ,,∃→,y ∃的辖域是)(y x Q ,;对于x ∀的辖域而言,x,y 都为约束变元,对于y ∃的辖域而言,x 是自由变元,y 是约束变元。

(3)x,y 为指导变元,x ∀的辖域是)())()((z y x xR z y Q y x P y ,,,,∃∨∧∃,y ∃的辖域是)())()((z y x xR z y Q y x P ,,,,∃∨∧,x ∃的辖域是)(z y x R ,,;对于x ∀的辖域而言,x,y 为约束变元,z 为自由变元,对于y ∃的辖域而言,z 为自由变元,y 为约束变元,x 即为约束变元也为自由变元,对于x ∃的辖域而言,x 为约束变元,y,z 是自由变元。

在整个公式中,x,y 即为约束变元又为自由变元,z 为自由变元。

2. 判断下列谓词公式哪些是永真式,哪些是永假式,哪些是可满足式,并说明理由。

(1)))()(())()((y yQ x xP x Q x P x ∀∧∀→∧∀ (2)))()(())()((y yQ x xP x Q x P x ∀∨∀→∨∀ (3))())()((y yQ y yQ x xP ∃∧∃→∀⌝ (4)))()(())()((x xQ y P x Q y P x ∀→→→∀ (5)))()(())()((x xQ x P x Q x P x ∀→→→∀ (6))))()(()((x P y x yQ x P →∀→⌝, (7)))()(()(y x P y x Q y x P ,,,→→解:(1)易知公式是)()(q p q p ∧→∧的代换实例,而 1)()()()(=∧∨∧⌝=∧→∧q p q p q p q p 是永真式,所以公式是永真式。

(2)易知公式是)()(q p q p ∨→∨的代换实例,而 1)()()()(=∨∨∨⌝=∨→∨q p q p q p q p 是永真式,所以公式是永真式。

(3)易知公式是q q p ∧→⌝)(的代换实例,而0)()(=∧⌝∧=∧∨⌝⌝=∧→⌝q q p q q p q q p 是永假式,所以公式是永假式。

(4)易知公式是)()(q p q p →→→的代换实例,而 1)()()()(=→∨→⌝=→→→q p q p q p q p 是永真式,所以公式是永真式。

(5)易知公式是)()(q p q p →→→的代换实例,而 1)()()()(=→∨→⌝=→→→q p q p q p q p 是永真式,所以公式是永真式。

(6)易知公式是))((p q p →→⌝的代换实例,而0))(())((=⌝∧∧=∨⌝∨⌝⌝=→→⌝p q p p q p p q p 是永假式,所以公式是永假式。

(7)易知公式是p q p →→的代换实例,而p q p p q p p q p ∨⌝∧=∨∨⌝⌝=→→)()( 是可满足式,所以公式是可满足式。

§2.3 谓词公式的等价演算与范式习题2.31. 将下列命题符号化,要求用两种不同的等价形式。

(1)没有小于负数的正数。

(2)相等的两个角未必都是对顶角。

解:(1))(x P :x 为负数,)(x Q :x 是正数,),(y x R :x 小于y ,命题可符号化为:)))(),(((y Q x P R y x ∀∀或)))(),(((y Q x P R y x ⌝⌝∃∃(2)略2.设)(x P 、)(x Q 和)(y x R ,都是谓词,证明下列各等价式 (1)))()(())()((x Q x P x x Q x P x ⌝→∀=∧⌝∃ (2)))()(())()((x Q x P x x Q x P x ⌝∧∃=→⌝∀(3)))()()(())()()((y x R y Q x P y x y x R y Q x P y x ,,⌝∧∧∃∃=→∧∀⌝∀ (4)))()()(())()()((y x R y Q x P y x y x R y Q x P y x ,,⌝→∧∀∀=∧∧∃⌝∃ 证明:(1)左边=))()((x Q x P x ∧⌝∀=))()((x Q x P x ⌝∨⌝∀ =))()((x Q x P x ⌝→∀=右边(2)左边 =))()((x Q x P x →⌝∃=))()((x Q x P x ∨⌝⌝∃=))()((x Q x P x ⌝∧∃=右边 (3)左边=)),()()((y x R y Q x P y x →∧⌝∃∃ =)),())()(((y x R y Q x P y x ∨∧⌝⌝∃∃ =))()()((y x R y Q x P y x ,⌝∧∧∃∃=右边 (4)左边=),()()((y x R y Q x P y x ∧∧⌝∀∀ =),())()((y x R y Q x P y x ⌝∨∧⌝∀∀ =))()()((y x R y Q x P y x ,⌝→∧∀∀=右边3. 求下列谓词公式的前束析取范式和前束合取范式。

相关文档
最新文档