下部结构设计计算
浅谈桥梁下部结构设计计算
黑龙江交通科Байду номын сангаас
HEIONGJANG I L l JAOTONG J KE I
No 1 ,0 8 . 120
( u o1 ) S m N .7 7
浅 谈 桥梁 下部 结构 设计 计算
刘 高 友
( 贵州省黔西南州方程建筑总公司 ) 摘 要: 从几个方面介绍 了桥梁下部结构的设计 和计算 。 文献标识码 : c 文章编号 :0 8— 3 3 2 0 ) 1— 0 0— 1 10 3 8 ( 0 8 1 0 8 0
关键词 : 桥梁下部 ; 结构设计 ; 算 计 中图分类号 :4 2 5 u 4 .
1 盖梁内力计算 配钢筋 , 同时 , 水平钢 筋与竖 向钢筋搭接处应点焊成 网格状。 () 1 当荷载对称布置时 , 照杠杆法进行计算 。 按 () 2 埋置式桥台 土压力一 般是 以原地 面或 一般 冲刷线 () 2 当荷载偏 心布 置时 , 照偏 心受压 进行计 算 , 按 两种 起计算的 , 对较差土质 , 需要进行验算 , 确定是否考虑地面以 布载情况 的内力取 大值控制设计 。这种算 法仅为两 种布载 下台后深层 土对桩水平力 的影 响。台后一定要选用透水 、 强 状况下 的内力计算 , 不是各截 面最不 利状况 的内力计 算 , 计 度高 、 稳定性好的材料 , 否则渗水后摩擦角及粘结力下降 , 自 算所得 内力存在不安全 的因素。内力计算 的正确方 法应该 重增加 , 台后实际受土压力 远远 大于设计值 , 使桥 台产生 滑 先画出截面内力影 响线 , 再对影 响线用杠杆法及偏心法进行 移 、 失稳 。 最不利横 向布载, 求出各截 面内力最 大、 最小值 , 内力包 根据 () 3 桥头路基 沉降、 滑动 验算。首先 , 基沉降过大 、 路 桥 络图进行结构配筋。盖梁 的抗弯配筋主要 由裂缝宽度控制 。 头跳车 、 台背和梁端过早损坏 , 加大竖 向土压力及负摩 阻力 , 剪力设计对混凝土与箍筋承担剪力 比例作 了明确规定 , 这样 造成桥台盖梁开裂 及 桩基 不均匀 下沉 、 面开裂及 路基 渗 路 梁体往往需要设 置大量斜剪力 钢筋 , 给梁 内布筋带来 困难 , 水 , 促使路基失稳 。其次 , 由于路 基滑动使 桥 台所承受 的水 配筋 时经常通过多设箍筋 , 凝土与箍筋 承担更多 比例 的 让混 平土压力 已远大于计 算值 , 于桥头高路基 和处于改河 、 对 填 剪力 , 配筋 自由度更大。盖梁 配筋要 注意 “ 使 强剪弱弯 ”大 沟段或路基外不远处有沟、 , 河的, 更要注意深层滑动的验算。 部分梁体的破坏是由于剪力不足造成的, 对抗弯钢筋满足要 4 桩筋及桩长设计注意事项 求即可, 但对抗剪钢筋一般 留有 富余 , 这样偏于安全。 () 1对于桩基各截面的配筋 , 从理论上来说应根据桩内弯 2 桥墩内力计算 矩包络图进行计算布置。通常是根据最大负弯矩处进行配筋 , 墩桩顶的最 大竖 向力 计算非 常简单 , 里不再叙 述 ; 这 墩 从桩顶一直伸到最大负弯矩一半处 以下一定锚固长度位置, 减 桩顶水平力计算 , 运用柔性 墩理论 中的集成 刚度法 , 将桥 面 少一半配筋再一直伸至弯矩为零 以下一定锚 固长度位置 , 再以 汽车制动力及梁体混凝土 收缩 、 徐变 、 、 温差 地震产生 的水平 下为素混凝土, 对于软基, 桩主筋最好穿过软土层。 力在全联墩台进行 分 配 , 后根 据不 同组 合 的墩桩 顶水平 最 () 2 软土地质条 件下 的桥梁 桩基计 算不 能简单 的采用 力、 弯矩及对应墩桩顶竖 向力进 行桩基各截面内力计算 。 常规计算方法 , 而应根据实 际的受力特点加以分析 。就计算 () 1 对于横 向陡边坡 上 的桥 墩设 计 , 一墩位 2个 ( 方法而言 , “ 同 3 用 假设 有效 桩长 ”计 算桩 的最 大弯矩及弯矩零 , 个) 墩柱存在较悬殊的无支长度 差异 , 因刚度差 异造成桥 墩 点进行配筋的常规方法 , 在软 土地质条 件下应慎重采用 , 以 横桥向受力分配的不均匀 。设计 时在考 虑柔性墩 纵 向力 的 免造成最大弯矩及弯矩零点位置判断的错误, 导致配筋长度 分配的同时, 还应进行力的横桥 向分析。 的不足 。 () 2 在山岭区连续大纵坡路段, 如采用柔性墩结构, 因 () 3 在桩基变形较大的情况下 , 计算应 同时考虑桩土特 车辆长期单 向行驶造成 的桥 梁累积 变位是设计 必须考 虑的 性及受力条件 , 以整体体系来分析桩 的受力模式。当桩基水 问题。增加桥梁的刚度是 提高桥梁变位 的有效措施 , 必须 平变形量超 出“ ” 的限制 范 围时 , 但 m法 地基 土抗力系 数 m值 以增加投资为代价 , 以在设计 中应综合考虑 。 所 宜采用实测值 。由于“ ” m 法基本 假定 与大变形量 桩基受力 3 桥 台内力计算 模式存在偏差 , 也可以考虑其 它更接 近于该类桩基受力模式 桥台除了受与桥墩相似的荷载之外 , 向荷载还增加 了 竖 的计算方法进行对 比计算 。 土压力 、 负摩阻力 、 搭板 自重 等荷 载 ; 水平 荷 载增 加 了土压 () 4 山岭重丘 区的桥墩多处 于基岩裸 露的陡边坡上 , 桩 力, 其影 响复杂 , 设计时需注意以下几点 : 基多为嵌 岩桩 。陡边坡 上嵌岩桩 的嵌岩深度 必须考虑两个 () 1 内力计算 应注 意 的问题 。① 软土 地基 上带基 桩 的 方面的内容 : 一是能起 到嵌 岩作用 的嵌岩深度 ; 二是岩石能 钢筋混凝土薄壁桥 台土压力计算 按深层 考虑 。② 软基路段 满足嵌固受力 要求 所必须 的水平 宽度 。嵌 岩深度 的确定对 桥台应尽量设置为与路 线正交 的形式 , 减小 台身长度 , 在适 结构的安全性和经 济性具有 非常重要 的意义 。 当的位置设置伸缩缝 , 以缩短 受拉 区长度 , 小 台身砼 的收 5 结束语 减 在桥梁总体设计 中 , 下部结构 的形式选择对整个设计方 缩变形量 , 抑制台身的竖 向、 向裂缝 的发生 。③ 在桥 台的 斜 承台或基础顶面应设置一定数量 的支撑梁 , 削减基础及下部 案 的确定有着较大影 响。确定 桥梁下 部结构应遵循安 全耐 满足使用 的要求 , 同时造 价较低 , 维修养 护方便 , 与周围 结构 的 自由长度 , 降低结构 自身的弯矩 , 提高结构承载能力。 久 、 桥梁 下部 结构 的设 计与结 构受 ④软基段落的中、 小桥, 台前台后均应进行一定长度的软基 景观相协调等 原则 。另 外 , 处理过渡 , 免因为桥头软基滑移或 由施工过程不对称 加载 力 、 避 水文、 地质构造等密切相 关 , 同时应考虑 地震 、 影响 温度 引发的其他附加荷载对 桥台及桩基产生挤压 , 造成 桥台水平 力等作用 。这就需要设计者 善于结合 工程实 际不 断探 索和 开裂。⑤在薄壁墩台的拉应力 区 , 配置受 拉钢 筋 , 是 总结 , 应 尤其 提高下部结构 的设计质 量及使用效果 , 使其选 择与布 在靠近台身底部 (/ 14~13 H附近 , /) 要根据实际受力情况增 设 能够更加合理 、 经济 。
高烈度区桥梁下部结构设计与分析
高烈度区桥梁下部结构设计与分析【摘要】本文主要研究高烈度区桥梁下部结构设计与分析。
在介绍了研究的背景和目的。
接着在详细讨论了高烈度区桥梁下部结构设计的要求和分析方法,以及桥墩、桥台和基础的设计。
在对高烈度区桥梁下部结构设计与分析进行了综述,并展望了未来的研究方向。
这篇文章旨在为高烈度区桥梁下部结构设计提供指导,并为未来的研究提供参考。
通过本文的研究,可以更好地保障高烈度区桥梁的安全性和稳定性,提高其抗震性能,为工程建设提供有力支撑。
【关键词】关键词:高烈度区、桥梁、下部结构、设计、分析、桥墩、桥台、基础设计、研究背景、研究目的、综述、未来研究方向1. 引言1.1 研究背景在桥梁工程中,桥梁下部结构起着支撑和传力的重要作用,因此其设计和分析显得尤为重要。
尤其是在高烈度地区,桥梁下部结构的设计更需要注重抗震能力,以确保在地震等极端情况下的稳定性和安全性。
在过去的几十年里,随着桥梁工程的快速发展和建设需求的增加,人们对高烈度区桥梁下部结构设计与分析的研究也得到了越来越多的关注。
由于地震等自然灾害的不可预测性和破坏性,高烈度区桥梁下部结构设计和分析仍然存在一定的挑战,需要不断地进行深入研究和探索。
本文将针对高烈度区桥梁下部结构设计与分析进行系统性的探讨和总结,以期为相关领域的研究提供一定的参考和借鉴,进一步完善和改进桥梁下部结构设计和分析的方法和技术,提高其在高烈度地区的抗震性能和安全性。
1.2 研究目的研究目的包括以下几个方面:探究高烈度区桥梁下部结构设计的重要性以及其在抗震性能方面的作用,为今后类似工程项目提供参考和指导;分析不同设计要求下的桥梁下部结构设计方案,比较其各自的优缺点,为工程设计提供技术支持;针对不同高烈度地震区域的特点,研究适用于不同条件下的桥梁下部结构设计方法和技术,以确保结构的安全可靠性;通过对桥梁下部结构设计要求、分析方法和具体设计方案的探讨,总结出一套系统的设计理念和方法,并为未来类似研究提供参考和借鉴。
下部结构计算书
下部结构计算书第3章下部结构计算3.1设计资料1.设计标准及上部构造设计荷载:公路—I级;桥面净空:净—9+2×1.0标准跨径:25m;主梁全长:24.92m;计算跨径:24.00m 上部构造:预应力钢筋混凝土T形梁;2.材料钢筋:盖梁主筋采用HRB335,其它均采用R235钢筋;混凝土:盖梁采用C45,墩柱采用C30,系梁及钻孔灌注桩用采C25;3.桥墩尺寸考虑原有标准图,选用如图3-1所示结构尺寸图3-1 桥墩结构尺寸(尺寸单位:cm)4.设计依据《公路桥涵地基与基础设计规范》(JTG D63-2007)。
3.2盖梁计算3.2.1 荷载计算1.上部结构永久荷载见表3-12.盖梁自重及作用效应计算见表3-2(1/2盖梁长度,见图3-2)图3-2 盖梁尺寸(尺寸单位:cm)备注:q1+q2+q3+q4+q5=489.3KN3.可变荷载计算(1)可变荷载横向分布系数计算:荷载对称布置时用杠杆原理法,非对称布置时用偏心受压法。
①公路—I级a.单车列,对称布置时,见图3-3所示:?1??2??3??6??7??8?0;?4??5??(0.9?0.1)?0.5b.双车列,对称布置时,见图3-4所示:12?1??2??7??8?0;?3??6??0.59?0.295;?4??5??(0.41?0.79?0.21)?0.705 ④⑤①10.91110.7110.71114号0.911115号0.289②0.0891号0.63号10.44号10.63号③④⑤1212①2号②1③0.4图3-3 单列车对称(尺寸单位:cm) 图3-4 双列车对称(尺寸单位:cm)c.单车列,非对称布置时,见图3-5所示:由?i?1eai?,已知:N?8,e?4.6,2n2a22?a2?2?(1.125?3.3752?5.6252?7.8752)?212.625,?1??18184.6?7.87514.6?5.625?0.295;?20.247212.6258212.62514.6?1.1254.6?3.375?0.149 ?0.198;?4??8212.625212.6254.6?1.12514.6?3.375?0.101 ?60.052212.6255212.6254.6?5.62514.6?7.875?0.003 ?8-0.045212.6255212.625 ?3??18?55d.双车列,非对称布置时,见图3-5所示:已知:N=8,e=3.05,22?a2?2?(1.125?3.3752?5.6252?7.8752)?212.625,则:?1???3??18183.05?7.87513.05?5.625?0.238;?20.206212.6258212.6253.05?3.37513.05?1.125?0.173;?40.141212.6258212.6253.05?1.12513.0?53.375?0.109?60.077212.6258212.6253.05?7.87513.05?5.625?0.012;?70.044212.6258212.625 ?5??18?8??18e.三车列,非对称布置时,见图3-5所示:已知:N=8,e=1.5,22?a2?2?(1.125?3.3752?5.6252?7.8752)?212.625,则:?1??11.5?7.87511.5?5.625?0.181;?20.165 8212.6258212.62511.5?3.37511.5?1.125?0.149;?40.133 8212.6258212.62511.5?1.12511.5?3.375?0.117?60.1018212.6258212.625 ?35???8??11.5?7.87511.5?5.625?0.085;?70.069 8212.6258212.625图3-5 (尺寸单位:cm)f.三车列,对称布置时,见图3-6所示:?1??8?02 1?3??6??(0.72?0.48)?0.78?0.4682?2??7??0.78?0.28?0.109;?4??5??(0.1?0.9?0.52)?0.78?0.593 12①0.7781号3号10.97810.60②③④⑤0.4000.6010.9780.7780.2220.0224号5号图3-6 三车列对称布置(尺寸单位:cm)②人群荷载a.两侧有人群,对称布置时,见图3-7所示:?1??8?0.94 ;?2??7?0.06;?3??4??5??6?0b.单侧有人群,非对称布置时,见图3-7所示:已知:N=8,e=7.75,22?a2?2?(1.125?3.3752?5.6252?7.8752)?212.625,则:?13??1818187.75?7.87517.75?5.625?0.412;?20.330212.6258212.6257.75?3.37517.75?1.125?0.248;?40.166212.6258212.6257.75?1.12517.75?3.375?0.084?60.002212.6258212.625?5???8??187.75?7.87517.75?5.625?-0.162;?7-0.080 212.6258212.625图3-7 人群荷载(尺寸单位:cm)(2)按顺桥向可变荷载移动情况,求支座可变荷载反力的最大值,见图3-8所示图3-8 支座可变荷载反力(尺寸单位:m) ①公路—I级双孔布载单列车时:B?24?2?7.8?206.7?393.9kN 2双孔布载双列车时:2B?2?393.9?787.8kN双孔布载三列车时:3B?3?393.9?1181.7kN单孔布载单列车时:B?24?7.8?206.7?300.3kN 2单孔布载双列车时:2B?2?300.3?600.6kN单孔布载三列车时:3B?3?300.3?900.9kN②人群荷载,见图3-9所示1单孔满载时(一侧):B2?3.45??24?41.4kN 2双孔满载时(一侧):B1?B2?41.4kN;B1?B2?82.8kN图3-9 人群荷载(尺寸单位:m)(3)求可变荷载横向分布后各梁支点反力(计算的一般公式为Ri?B?i),见表3-3(4)各梁永久荷载、可变荷载反力组合计算见表3-4,表中均取用各梁的最大荷载,其中冲击系数为:1+μ=1+0.29=1.294.双柱反力Gi的计算,见图3-10,所引用的的各梁反力见表3-4图3-10双柱反力Gi计算(尺寸单位:cm)由表3-5可知,非对称荷载时立柱反力最大,则按荷载组合⑦时控制设计,此时G1?4849.846kNR1R2R3R4R53.2.2 内力计算1.恒载加活载作用下各截面的内力(1)弯矩计算截面位置见图3-10所示,按图3-10给出的截面位置,各截面弯矩计算式为:M1?1?0;M2?2??R1?0.6;M3?3??R1?1.4;M4?4??R1?2.25?G1?0.85;M5?5??R1?7.875?R2?5.625?R3?3.375?R4?1.125?G1?6.475各种荷载组合下的各截面弯矩计算见表3-6,注意的是,表中内力计算未考虑施工荷载的影响。
公路桥粱下部结构设计方法探讨
公路桥粱下部结构设计方法探讨摘要:下部结构是公路桥梁的主体。
不仅工程量大,涉及的知识和技术种类也较多。
科学合理的子结构设计不仅是保证工程质量的重要手段,也是降低施工成本、提高工程效益的关键。
因此,加强公路桥梁下部结构的设计研究是十分必要的。
关键词:公路桥粱;下部;结构设计;方法导言:桥梁下部结构是桥梁承载能力的体现,是桥梁整体结构的关键部分。
因此,设计师更需要优化最先进的桥梁设计理念,遵循安全、耐用、满意的原则。
根据通行要求、造价低、养护成本低、施工方便、工期短的原则,对桥梁周围土体结构、水文资料、水流速度、河床特性等进行采集分析,并进行相关试验。
完成设计与上层结构一致的设计,形成完整统一的下层承重结构。
笔者根据多年的工作经验,分析了公路桥梁下部结构的设计要点和施工注意事项。
1公路桥台结构选型1.1轻型桥台轻型桥台的主要特点是重量轻、体积小,利用钢筋混凝土的抗弯能力减小桥台体积石工。
从而达到减小基台体积和质量的目的。
此类桥台多为直立薄壁结构,有箱型、扶壁型、支撑墙型等。
前墙间距控制在2.5-3.5m。
此外,还包括支撑梁灯台,多用于独跨或小跨度桥梁,通过在桥台之间或桥台与桥墩之间设置支撑梁进行固定,以保证支座的设计。
线下采用地脚螺栓连接桥台与上部结构,形成四铰框架结构,在端台后被动土压力作用下,承受共同受力,保持整体稳定。
1.2重力式桥台根据桥梁跨度、桥台高度和场地地形选择桥台类型。
重力式桥台包括U型结构、预埋式桥台和直式桥台等。
如果下部结构是为铁路桥梁设计的,也可以采用其他类型,如T形桥台。
以U型基台为例,这类基台主要包括台身、台帽、基础和侧壁从平面上看呈U字形。
桥台结构简单,基础受力面积大,受力小,稳定性和可靠性强,但同时砌体体积过大,易内部积水,积水结冰膨胀,导致基台开裂。
1.3预埋式基台预埋式基台的基台主体嵌入在基台前的斜坡中,无需另建侧墙,基台帽两端的耳墙为直接连接到路堤。
常见的结构有直立式、斜卧式等。
砌体结构设计计算
一、结构平面布置1、该楼结构平面布置图如图1所示:2、确定板、支撑梁的截面尺寸①板厚:双向板板厚:h=3900/50=78㎜,选取h=100㎜②支撑梁:截面高度:h=(1/10~1/15)L0=(1/10~1/15)×6600=(660~440)㎜,取h=500㎜截面宽度:b=(1/2~1/3)h=(1/2~1/3)×500=(250~167)㎜取b=250㎜其中,梁伸入墙240mm。
墙厚240mm。
另,构造柱的设置:构造柱的设置见图。
除此以外,构造柱的根部与地圈梁连接,不再另设基础。
在柱的上下端500mm 范围内加密箍筋为φ6@150。
圈梁设置:各层、屋面均设置圈梁,外纵墙和内纵墙也做圈梁。
二、结构内力的计算(一)双向板楼盖的计算1、板恒荷载,活荷载的计算:30mm厚水磨石地面:0.65KN/㎡20mm厚混合砂浆抹灰:0.02×17KN/㎡=0.34 KN/㎡100mm厚钢筋混凝土:0.1×25 KN/㎡=2.5 KN/㎡故g k=0.65+0.34+2.5 KN/㎡=3.49 KN/㎡则恒荷载设计值:g=1.2×3.49 KN/㎡=4.19 KN/㎡教室活荷载设计值:q1=1.4×2.0KN/㎡=2.8 KN/㎡走廊、楼梯、厕所活荷载设计值:q2=1.4×2.5 KN/㎡=3.5 KN/㎡由于取1米板带为计算单位,则教室板活荷载设计值为:g+q1=4.19+2.8=6.99 KN/㎡走廊、楼梯、厕所的板活荷载设计值为:g+q2=4.19+3.5=7.69 KN/㎡2、梁恒荷载、活荷载的计算①:L1梁荷载设计值:恒荷载设计值g:由板传来: 4.19×3.90mkN/=16.34mkN/梁自重: 1.2×0.25×(0.5-0.1)×25mkN/=3.00mkN/梁侧抹灰: 1.2×0.02×(0.5-0.1)×2×17kn/m=0.33mkN/所以恒荷载设计值:g=16.34+3.00+0.33=19.67mkN/活荷载设计值q:由板传来: q=1.4×2.0×3.90mkN/=10.92mkN/则p=g+q=30.59mkN/②L2梁荷载设计值:恒荷载设计值g:由板传来: 4.19×3.60mkN/=15.08mkN/梁自重: 1.2×0.25×(0.5-0.1)×25mkN/=3.00mkN/梁侧抹灰: 1.2×0.02×(0.5-0.1)×2×17kn/m=0.33mkN/恒荷载设计值:g=15.08+3.00+0.33=18.14mkN/活荷载设计值q:由板传来: q=1.4×2.0×3.60m kN /=10.08m kN / 则p=g+q=28.22m kN / 3、双向板的内力计算(1)B1是两邻边固定、两邻边简支的板 长边与短边之比269.13900660012<==l l ,按双向板计算。
桥梁下部结构设计图文详解
一、桥涵水文基础知识跨水域桥梁,满足洪水宣泄要求。
桥梁基本尺寸,包括桥孔长度、桥面标高、基础埋深等的确定,必须考虑设计使用年限内可能发生的最大洪水,包括其流量、流速及水位等因素。
1大、中桥设计流量推算设计流量的推算,要按《公路工程水文勘测设计规范》的要求,根据所掌握的资料情况,选择适当的计算方法。
对于大、中河流,具有足够的实测流量资料时,主要采用水文统计法。
而缺乏实测流量资料时,则多采用间接方法或经验公式计算。
计算时要注意水文断面与桥位的关系,正确推算桥位处的设计流量和设计水位。
2小桥涵设计流量推算桥涵一般都缺乏观测资料。
因此相关部门制定了各种小流域流量计算公式和相应的图表作参考,设计时,应以多种计算方法予以比较。
常用的方法:形态调查法、暴雨推理法和直接类比法。
暴雨推理公式是直接根据设计规定频率P推求出对应的洪峰流量Qp,此方法计算出的Qp即是拟建小桥涵处设计流量。
形态调查法和直接类比法仅推出了形态断面处或原有小桥涵位处的流量Q‘p故须向拟建小桥涵位处折算成设计洪峰流量Qp。
在条件许可情况下,宜用几种方法计算互相核对比较,并通过加强调查研究、积累资料、进行科学实验,找出适合本地区的计算方法,结合实际情况确定计算公式和有关的参数。
3桥位选择的一般规定(1)调查和勘测。
对复杂的大桥、特大桥应进行物探和钻探;考虑现状,征求有关部门的意见,经全面分析认证,确定推荐方案。
(2)在整体布局上与铁路、水力、航运、城建等方面规划互相协调配合;保护文物、环境和军事设施等;照顾群众利益,少占良田,少拆迁。
(3)高速公路、一级公路的特大、大、中桥桥位线形应符合路线布设要求。
原则上应服从路线走向;桥、路综合考虑;注意位于弯、坡、斜处的桥梁设计和施工的难度。
(4)对水文、工程地质和技术复杂的特大桥位、应在已定路线大方向的前提下、根据河流的形态特征、水文、工程地质、通航要求和施工条件以及地方工农业发展规划等,在较大范围内作全面的技术、经济比较确定。
城市高架桥梁的下部结构设计方法与要点
城市高架桥梁的下部结构设计方法与要点摘要:我国道路建设最近几年发展非常迅速。
随着我国城市化大力发展,人口和物质等资源在城市得到了高度的集中,为了提供市民生活和生产的良好环境,交通运输质量必须提高。
关键词:城市高架桥梁;下部结构设计引言我国道路建设的快速发展使我国其它行业发展迅速。
对于城市轨道高架桥梁开展设计的过程当中,应当对其景观效果所产生的影响进行考虑,尽可能地使高架桥梁与附近的环境相得益彰,从而形成一种相对较好的视觉冲击。
1高架桥下部结构设计原则(1)安全与使用原则。
髙架桥梁的设计建造仍然以安全和使用作为最基本原则,高架桥梁下部结构的设计需要能够承载桥跨结构的各种不利荷载作用,同时可能下部结构直接在部道路中,其防车撞安全需要得到保障。
(2)生态景顧则。
高架桥梁设计的美观性也体现在下部结构设计构造型式上,例如桥墩造型特点,需要体现与周边城市环境的协调统一,避免采用重型桥墩显得笨拙,而采用轻型构造桥墩又需要体现力感给人以安全稳定印象。
(3)减少城市用地原则。
城市用地紧张,地价很高,要求城市交通基础设施尽量不要占用太多的城市土地资源,因此设计的高架桥梁下部结构形式也需要尽量减少对土地占用,避免采用多柱式桥墩。
2城市高架桥梁下部结构概念设计城市高架桥梁的抗震设计中,应结合交通系统的特点,确定合理的下部结构尺寸。
与市政桥梁相比,梁部较窄,上部结构恒载竖向力较小,轨道交通桥梁下部结构需承受通过轨道结构传递的轨道力,且桥墩刚度有一定要求,故同等桥宽时轨道交通下部结构尺寸较大;与铁路相比,交通设计速度较低,刚度要求偏低,交通梁部截面相比铁路偏小,梁部恒载小,故下部结构较铁路也更纤细,交通桥墩刚度介于市政公路、铁路桥梁之间。
3城市高架桥梁下部结构比选与设计针对双柱式桥墩而言,一般使用预应力混凝土盖梁,但是盖梁的预应力钢束一共分为:架梁之前的第一次张拉与架梁之后的第二次张拉。
施工准备与工序相对较为繁杂且时间也相对较长。
桥梁下部结构选型与设计
桥梁下部结构选型与设计作者:吴鹏飞来源:《山东工业技术》2015年第10期摘要:桥梁下部结构是桥梁整体的重要组成部分,因此,下部结构的选型与设计直接关系到整个桥梁工程的造价、周期和质量。
为了充分保障通行车辆人员的安全,需要选择合理的下部结构形式,并在设计上下功夫。
关键词:桥梁;下部结构;选型;设计0 前言随着经济建设力度的加大,桥梁建设规模也越来越大,并在交通运输中发挥重要的作用,在整个桥梁工程中,下部结构起着重要的支撑作用,因此,其结构选型与设计到位与否,直接关系到桥梁的稳定性和正常使用。
本文将简单叙述几种常见的桥梁下部结构,并在此基础上其选型与设计重点。
1 桥梁下部结构选型桥梁下部结构指上部结构与地基之间的连接部分,负责传递由上至下的负荷,在下部结构选型与设计过程中,首先需要考虑的问题就是地质结构、水文流速、河床性质等因素对下部结构的影响,桥梁下部结构选型的主要依据即是上述影响因素。
1.1 桥台桥台结构形式分为轻型桥台、埋置式桥台、钢筋混凝土薄壁桥台三种。
轻型桥台台身为直立的薄壁墙,两侧有挡墙,其最大的特点是体积小,比较适合小跨径桥梁,可与轻型桥墩搭配使用,常见的稳定方法是在桥台下部设置钢筋混凝土支撑梁,利用锚栓连接上部结构与桥台,形成一个四铰框架系统。
埋置式桥台主体所承受的土压最小,台身由混凝土和片石组成,适用于路基填土高度大于5m的桥梁,可以将台身埋进锥形护坡内来增强稳定性[1]。
钢筋混凝土薄壁桥台构造最为复杂,施工难度也最大,钢筋用量较多,适用于填土较低或河床较窄的软底地基,一般通过在竖直小墙和扶壁之间设置台顶,并将其作为桥梁支撑结构。
1.2 桥墩桥墩结构形式分为轻型桥墩和重力式桥墩两种,轻型桥墩又可分为构架式桥墩、空心桥墩、桩柱式桥墩、薄壁式桥墩四种,这四种轻型桥墩的最大特点是基础工作量小,施工进度较快,但是适用的桥梁类型不同。
构架式桥墩对地基的要求较小,适合的范围也较宽,空心桥墩表面与重力桥墩类似,是一种中空的桥墩种类,主要适用于高桥梁建设,桩柱式桥墩为就地灌注混凝土而成,施工难度较小,薄壁式桥墩借助桥跨结构来连接刚性桥墩与柔性桥墩,并以此形成一种相对静定的结构,此时的刚性桥墩能够承受大部分的水平力,并改善柔性桥墩的受力。
桥梁下部结构通用图计算书
目录第一局部工程概况及根本设计资料1 1.1 工程概况11.2 技术标准与设计规11.3 根本计算资料1第二局部上部构造设计依据3 2.1 概况及根本数据32.1.1 技术标准与设计规32.1.2 技术指标32.1.3 设计要点42.2 T梁构造尺寸及预应力配筋42.2.1 T梁横断面42.2.2 T梁预应力束52.2.3 罗望线T梁构造配筋与部颁图比拟52.3 构造分析计算52.3.1 活载横向分布系数与汽车冲击系数52.3.2 预应力筋计算参数52.3.3 温度效应及支座沉降62.3.4 有限元软件建立模型计算分析6第三局部桥梁墩柱设计及计算73.1 计算模型的拟定73.2 桥墩计算分析73.2.1 纵向水平力的计算73.2.2 竖直力的计算83.2.3 纵、横向风力93.2.4 桥墩计算偏心距的增大系数 103.2.5 墩柱正截面抗压承载力计算113.2.6 裂缝宽度验算123.3 20米T梁墩柱计算123.3.1 计算模型的选取123.3.2 15米墩高计算133.3.3 30米墩高计算173.4 30米T梁墩柱计算223.4.1 计算模型的选取223.4.2 15米墩高计算223.4.3 30米墩高计算273.4.4 40米墩高计算313.5 40米T梁墩柱计算353.5.1 计算模型的选取353.5.2 15米墩高计算363.5.3 30米墩高计算40第四局部桥梁抗震设计464.1 主要计算参数取值464.2 计算分析464.2.1 抗震计算模型464.2.2 动力特性特征值计算结果47 4.2.3 E1地震作用验算结果49 4.2.4 E2地震作用验算结果49 4.2.5 延性构造细节设计504.3 抗震构造措施53第一局部工程概况及根本设计资料1.1 工程概况省余庆至安龙高速公路罗甸至望谟段,主线全长77.4公里,工程地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、构造耐久、施工方便、维修便利及施工标准化等因素。
桥梁下部结构设计计算论文
桥梁下部结构设计计算探讨摘要:桥梁下部结构设计计算对桥梁结构的安全和使用功能影响十分显著,合理的结构设计使桥梁上、下部结构协调一致,轻巧美观。
本文以吉林省长春市两横两纵快速路桥梁下部结构为例,围绕桥梁下部结构的选型、设计、计算及影响桥梁稳定的若干因素等方面展开阐述,可供参考。
关键词:桥梁下部;结构设计;计算abstract: the substructure of bridge design and calculation has influence on bridge structure safety and using function, reasonable structural design makes the bridge substructure, coordinated, lightweight appearance. this paper takes jilin province changchun two horizontal and two vertical expressway bridge substructures for example, described around the bridge lower structure type selection, design, calculation and the effect of some factors such as the bridge stability aspects, for reference.key words: substructure; structure design; calculation 中图分类号:u433.2 文献标识码:a文章编号:1 工程概况桥梁下部结构直接承担着传递上部荷载的作用,其结构设计、计算等在整个桥梁设计中占有关键性的位置。
本文以吉林省长春市两横两纵快速路桥梁下部结构为例,桥梁下部概况如下:盖梁采用双墩柱小悬臂盖梁,盖梁截面采用变截面矩形截面,截面尺寸1.5×1.5~1.5×0.5m;桥墩采用双柱式桥墩(无系梁),桥墩截面采用圆形截面,直径1.7米;承台尺寸8×6×1.5 m ;桩基采用双排桩,每排3根,间距2m,桩径1m。
桥台、桥墩选择
在桥梁设计的过程中,下部结构的考虑是否得当,对工程造价、工程质量及后期使用影响较大,介绍了几种常见的桥梁下部结构形式,分析了不同结构形式的受力的特点,对桥梁墩、台的形式选择及结构设计中的一些问题进行了初步探讨。
关键词:桥梁下部结构;结构选型;设计与计算1 桥台结构型式选用1.1轻型桥台轻型桥台的特点是,台身体积较小,台身为直立的薄壁墙,台身两侧设有翼墙(用于挡土),可以将侧墙做成斜坡。
在两桥台下部设置钢筋混凝土支撑梁,上部结构与桥台通过锚栓连接,构成四铰框架结构系统,并借助两端台后的土压力来保持稳定。
1.2钢筋混凝土薄壁桥台薄壁轻型桥台常用的形式有悬臂式、扶壁式、撑墙式、及箱式等。
这种桥台是由带扶壁的前墙和侧墙以及水平底板构成。
挡土墙由前墙和间距为2.5~3.5m的扶壁组成。
1.3埋置式桥台埋置式桥台常用形式为肋板式桥台、桩柱式桥台和框架式桥台。
是将台身埋在锥形护坡中,这样桥台所受的土压力大为减小,桥台的体积也就得到相应减小。
但是由于台前护坡是用片石(或混凝土)作表面防护的一种永久性设施,存在着被洪水冲毁而使台身裸露的可能,故设计时必须进行强度和稳定性验算。
2 桥墩结构型式选用2.1柱式桥墩带盖梁单排桩柱式桥墩是用能承受弯矩的盖梁来代替实体式桥墩上的墩帽,当采用群桩基础时,需在桩顶设置承台,使各桩共同受力,并通过它使柱与桩相连(一般适用于简支梁桥或先简支后连续的连续梁桥)。
2.2重力式实体桥墩靠自身恒载(包括桥垮结构恒载)来平衡外力(偏心力矩)和保证桥墩的稳定(抗倾覆稳定和抗滑稳定)。
因此污工体积较大,阻水面积增大,抗冲击力较差,不宜用在流速大并挟有大量泥沙的河流。
对地基承载力的要求高。
墩身多做成实体式的,不配钢筋,多用块石或片石混凝土砌筑。
2.3钢筋混凝土薄壁墩钢筋混凝土薄壁墩又可分为单肢薄壁墩和双肢薄壁墩两种形式。
前者墩身重量较轻,可节约污工材料,适用于地质条件较差时的简支梁桥上;后者适用于墩梁固结的连续刚构桥上(多用于互通式立交的跨线桥上)。
YJK地下室计算
YJK地下室计算地下室的结构计算首先需要确定地下室的设计荷载。
设计荷载一般包括垂直荷载(如建筑自重、楼层荷载)、水平荷载(如风荷载、地震荷载)和温度荷载等。
根据设计荷载,可以计算出地下室的垂直和水平受力情况,包括地下室的抗拉、抗压、抗弯和抗剪承载力等。
在地下室的结构计算中,常用的方法包括弹性分析和塑性分析。
弹性分析是指假设地下室的结构在荷载作用下仍然处于弹性阶段,可以使用弹性力学原理和有限元分析方法来计算地下室的应力、应变和位移等。
塑性分析是指考虑结构破坏的可能性,即结构处于塑性阶段,可以根据材料的塑性特性和破坏准则来计算地下室的极限荷载和破坏模式。
地下室的计算还需要考虑土壤的力学性质和相互作用。
土壤的力学性质包括土壤的抗剪强度、压缩性和侧向支撑能力等。
在地下室的结构计算中,需要考虑土壤的水平和垂直支撑作用,以及地下室结构和土壤之间的相互作用。
常用的土壤-结构相互作用分析方法包括两者之间的界面模型和直接计算模型。
除了结构计算,地下室的计算还需要考虑地下室的防水和排水设计。
地下室的防水设计包括防水层材料的选择、施工方法和施工质量的控制,以及地下室内外的排水系统和雨水收集系统的设计。
地下室的排水设计需要考虑地下室的地下水位和地下水流动的影响,以确保地下室的排水系统能够有效地排除地下水和表面水。
在进行地下室计算时,还需要考虑地下室的施工方法和施工顺序。
地下室的施工方法包括明挖法、盖板法和顶板法等,每种施工方法都有其优点和适用的条件。
施工顺序可以有不同的选择,根据地下室的结构特点和施工条件,确定最合适的施工顺序,以确保地下室的施工进度和质量。
综上所述,YJK地下室计算是一个综合性的工程计算,它需要考虑地下室的结构稳定性、安全性和可靠性,以及土壤的力学性质和相互作用,防水和排水设计,施工方法和施工顺序等因素。
只有通过科学严谨的计算和评估,才能确保地下室的设计和施工质量,保证地下室的使用安全。
桥涵工程结构设计与计算方法
桥涵工程结构设计与计算方法桥涵工程是指建设在河流、穿越山谷或其他地形复杂地带的工程,用于提供通行和运输的通道。
桥涵的结构设计与计算方法十分重要,它直接关系到工程的安全性和可靠性。
本文将介绍桥涵工程结构设计与计算方法的主要内容。
一、桥涵的结构设计原则在进行桥涵工程结构设计时,需要遵循以下原则:1. 适应地理环境:结构设计应根据桥涵所处的地理环境,选择合适的设计方案。
例如,对于山区的桥涵工程,应考虑地震和滑坡等自然灾害的影响。
2. 结构安全:保证桥涵结构的安全性是设计的首要原则。
在进行结构计算时,需要考虑桥涵能够承受的最大荷载和力的作用方式,在此基础上确定结构的尺寸和材料。
3. 水力条件:桥涵作为水流的通道,需要考虑水流的水力条件。
根据水流的流速和流量,确定桥涵的形状和尺寸,以确保水流能够顺利通过。
4. 施工可行性:结构设计还需要考虑施工的可行性。
选择合理的结构形式和工艺,以便施工方便、快捷。
二、桥涵的结构计算方法桥涵的结构计算是确定桥涵结构尺寸和材料的基础。
常用的桥涵结构计算方法包括以下几种:1. 弯曲计算:在桥涵的设计中,我们需要考虑桥涵的弯曲情况。
根据桥涵的跨度和形状,以及所受的荷载情况,进行弯曲计算,确定桥涵的截面尺寸和材料。
2. 剪切计算:桥涵在受剪时,需要考虑剪力的作用。
通过剪切计算,确定桥涵的截面形状和尺寸,以保证结构的稳定性。
3. 抗压计算:抗压计算是为了确定桥涵在受压条件下的承载能力。
根据桥涵的尺寸和材料的强度特性,进行抗压计算,以确保桥涵在受压时不会发生破坏。
4. 抗拉计算:抗拉计算是为了确定桥涵在受拉条件下的承载能力。
根据桥涵的尺寸和材料的强度特性,进行抗拉计算,以确保桥涵在受拉时不会发生破坏。
5. 冲刷计算:对于桥涵工程来说,冲刷是一个重要的考虑因素。
通过冲刷计算,确定桥涵底部的抵抗冲刷的能力,以确保桥涵在水流中能够稳定地存在。
6. 水力计算:桥涵作为水流的通道,需要进行水力计算。
浅谈《桥易》(BridgeEasy)程序计算桥梁下部结构
浅谈《桥易》(BridgeEasy)程序计算桥梁下部结构王佳歆蒋元军曹景(天津市市政工程设计研究院天津300051)摘要:《桥易》是天津市政工程设计研究院谢宝来工程师近年来以Microsoft Office Excel 程序为载体,基于最新版本设计规范自主开发的桥梁下部结构计算软件,本文结合作者对《桥易》程序的长期使用,总结出一些个人的心得,谨供大家共同探讨研究。
关键词:《桥易》桥梁下部结构设计软件工作效率1 引言桥梁下部结构计算大致可分为:高程计算、桩长计算、结构配筋计算等几部分。
过去我们至少要用三个程序来完成上述所有计算,而自从《桥易》程序研发完成后,所有下部结构计算均可以在一个程序下完成,不但方便设计人查阅信息,避免了以往辗转于多个程序的困扰,而且还做到了相关信息相互引用,便于自校,大大提高了工作效率,减少了劳动时间,增加了计算准确程度。
每个设计师的工作方式、方法、习惯都不尽相同,本文作者通过自己长期使用《桥易》程序进行桥梁下部结构设计总结出些许自己的技巧和心得,特在此与大家分享。
2 桥梁下部结构计算工作流程用《桥易》程序进行桥梁下部结构计算工作分为:资料收集、建立计算模板、高程计算、桩长和结构配筋计算、构件表格生成以及计算数据输出等六个步骤。
对应使用《桥易》软件中:“下部结构计算程序”、“墩柱高程计算程序”和“构件表格生成程序”等程序。
2.1 资料收集与建立计算模板资料收集包括:对道路专业相关资料的收集、对桥梁总体信息的收集、对桥梁基本数据的收集、对上部结构反力的收集和对桥梁钻孔地质资料的收集。
有了以上这些资料我们就可以对一个桥梁项目的下部结构有了一个总体和笼统的了解,并可以将这些资料信息输入到计算模板中去了。
道路资料相关信息包括里程桩号、纵断面文件、地面线文件和超高文件等信息;桥梁总体信息包括桥梁的墩号、分跨、结构形式、桥宽和梁高等信息;上部结构反力包括静载、活载、车道数和偏载等信息。
桥梁下部结构设计——毕业设计
桥梁下部结构设计——毕业设计一、背景和意义现代化的交通建设离不开许多重要的组成部分,其中桥梁就是最为常见的交通建筑物之一。
桥梁是道路交通的重要组成部分,桥梁的安全性、稳定性和耐久性是交通行业中一个重要的研究方向。
在桥梁下部结构设计中,研究桥墩、基础等结构的设计和稳定性分析,主要目的是保证桥梁的安全性和运行的稳定性,同时提高桥梁的使用寿命和减少维护成本。
桥梁下部结构是桥梁结构的重要组成部分,其设计好坏直接关系到整座桥梁的使用寿命和安全性。
因此,设计一个稳定可靠的桥梁下部结构,不仅能够保证交通的安全和畅通,而且也能为国家的经济发展贡献力量。
二、桥梁下部结构的设计原则桥梁下部结构的设计,需要考虑的因素非常多,在进行具体的设计之前,需要先明确设计原则。
这些原则可以帮助设计师确保桥梁下部结构的稳定性和安全性。
1、承受荷载能力:桥梁下部结构需要经过充分的荷载计算和评估,确保其能够承受桥梁的所有荷载,包括静荷载和动荷载。
2、合理的标准化:桥梁下部结构设计需要遵循国家和地方的标准,保证其设计的合理性和规范性。
3、稳定性和安全性:桥梁下部结构设计需要考虑到流过的水流、河床变化和地质条件等因素,并对其稳定性和安全性进行评估。
4、减少对环境的影响:桥梁下部结构设计需要尽量减少对周围环境的影响,包括水文环境、生态环境、道路交通等方面。
5、设计的经济性:桥梁下部结构设计需要具有合理的造价、工期和资源利用效率,以尽可能地减少建设成本。
三、桥梁下部结构的类型桥梁下部结构主要包括桥墩、桥台和基础三部分。
不同类型的桥梁下部结构有不同的结构形式和设计方法,下面简单介绍一下常见的几种类型。
1、墩式桥梁下部结构:墩式桥梁下部结构常见于中小跨度桥梁上,是指桥墩作为桥梁上部结构(比如梁和板)的支撑物。
墩式桥梁下部结构的墩身可以是不规则形状的、多边形状的或圆柱形的,具体的形式可以根据设计要求和土质条件来确定。
2、腿式桥梁下部结构:腿式桥梁下部结构一般用于桥梁在双岸距离很远的地方,其特点是在桥梁两侧各建一台,通过桥墩将两台连接成一体。
桥梁下部结构验算
群荷载、冲击力、离心力的一种或几种 + 制动力、摩阻力、温度作用、流水压力、
竖密岩石地基
流冰压力、风压力的一种或几种+偶然作
用中的船只或漂流物的撞击力;
岩石,密实的碎石土,密实的
(VI)恒载+地震力
砾、粗、中砂,老粘性土,
[σ0]≥300kPa 的一般粘性土 中密的碎石土,中密的砾、粗、
中砂,200kPa≤[σ0] <300 kPa 的一般粘性土
12.2 桥梁墩台的计算
12.2.1 重力式桥墩
1.作用(荷载)及其组合
在第一章总论里,已经对公路桥涵设计所用的作用(荷载)及其组合作了详细介绍,本 节仅结合桥墩计算所应考虑的内容予以阐述。
桥墩计算中考虑的永久作用为: ·上部结构的恒重对墩帽或拱座产生的支承反力,包括上部构造混凝土收缩及徐变作用; ·桥墩自重,包括在基础襟边上的土重; ·预加力,例如对装配式预应力空心桥墩所施加的预加力; ·基础变位作用,对于奠基于非岩石地基上的超静定结构,应当考虑由于地基压密等引 起的支座长期变位的影响,并根据最终位移量按弹性理论计算构件截面的附加内力; ·水的浮力,基础底面位于透水性地基上的桥梁墩台,当验算稳定时,应考虑设计水位 的浮力;当验算地基应力时,可仅考虑低水位的浮力,或不考虑水的浮力。基础嵌入不透水 性地基的桥梁墩台不考虑水的浮力。作用在桩基承台底面的浮力,应考虑全部底面积。对桩 嵌入不透水地基并灌注混凝土封闭者,不应考虑桩的浮力,在计算承台底面浮力时应扣除桩 的截面面积。当不能确定地基是否透水时,应以透水或不透水两种情况与其他作用组合,取 其最不利者。 桥墩计算中考虑的可变作用为:
的活载布置计算的,故产生的拱脚弯矩很小,可以忽略不计;
M t , M t′ ——温度变化引起的拱脚弯矩;
桥梁重量计算
桥梁重量计算
一般的桥梁计算分为两个部分,上部结构及下部结构,在小的设计院中一座桥梁从上部到下部都是由一个设计师完成的,在大中型设计院中可能会出现两个设计师或多个设计师流水线式的作业。
首先应该计算上部结构的恒载(自重,桥面铺装,装饰性构件,护栏及栏杆等)然后再和规范中规定的活荷载按照承载能力极限状态进行组合,这里面涉及到各种分项系数就不细说了,分项系数都是通过大量的现场实际调查和数学概率分析得来的,可参照《极限状态设计理论》。
(其中涉及到桥梁的横向分布系数,比较难理解,不细说)
根据上部结构荷载的组合值运用材料力学、结构设计原理、桥梁工程的知识配筋并进行承载力验算。
一块梁板的体积乘以2500千克/每立方米计算。
根据上部结构传递到桥梁支座上的反力验算下部结构。
桥梁的上部结构,下部结构,基础,墩台构造和设计
一、桥梁建筑概况 (一)桥梁在交通事业中的地位 1. 各种道路工程的关键节点 ——里程不长、难度高、造价大、工期长 2. 城市立体交通的主要构成 ——立体交叉、高架道路
杭州湾大桥工程总长36000m,其中桥长35673m
日本明石海峡大桥(吊桥)跨径达到1990米
二、桥梁的组成
(2)桥墩:设置在桥梁中间的支承结构物。 作用:支承桥跨结构。 (3)基础:将桥梁结构的反力传递到地基。 作用:承担桥墩和桥台传下来的全部荷载。 3. 支座:在桥跨结构与桥墩或桥台的支承 处所设置的传力装置。 作用:传递作用(荷载),并保证上部结 构按设计要求能产生一定的变形。
3. 基本附属设施 (1)桥面构造: 桥面铺装(或称行车道铺装)、排水 防水系统、栏杆(或防撞栏杆) 、伸 缩缝、灯光照明。 (2)伸缩缝 (3)锥形护坡、导流堤等。
桥梁全长: ——桥梁两端两个桥台的侧墙或八字墙
后端点之间的距离。对于无桥台的桥 梁为桥面系行车道的全长。 桥梁高度: ——指桥面与低水位之间的高差。
桥下净空高度: ——设计洪水位或计算通航水位至桥跨
结构最下缘之间的距离。 桥梁建筑高度: ——是桥上行车路面至桥跨结构最下缘
之间的距离。 拱桥的矢高和矢跨比:
力混凝土空心板桥跨径在20米以下。
(五)斜板桥的构造特点 1. 整体式斜板桥 方案一: 主钢筋:按主弯距方向的变化配置
分布钢筋:与支承边平行 方案二: 主钢筋:在两钝角之间,与支承边垂直 ,在靠
近自由边处则平行与斜跨径方向布置,直至与中 间部分主筋完全衔接为止; 分布钢筋——与支承边平行。
桥、人行桥、运水桥(渡槽)、 其 它专用桥梁。 7. 按跨越方式 固定式的桥梁、开启桥、浮桥、漫水桥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某桩柱式桥墩钻孔灌注桩摩擦桩的设计一、设计资料1. 设计标准以及上部构造 设计荷载:公路—Ⅰ级; 桥面净宽:净—11+2×1.5m ;标准跨径:13b l m =,梁长9.96m ,计算跨径9.7m ; 上部构造:钢筋混凝土实心板梁桥。
2.水文地质条件各土层地质情况及有关钻孔灌注桩桩基设计参数见附表一。
3.材料钢筋:盖梁主筋用HRB335钢筋,其他均用R235钢筋; 混凝土盖梁、墩柱用C30,系梁及钻孔灌注桩用C25。
4.桥墩尺寸二、盖梁计算 (一)恒荷载 1. 一孔主梁恒载集度(kN/M ) 梁长(m ) 自重(kN )1~18号 12.7712.6 2252.632. 其他恒载计算盖梁自重:1137.8625946.5()c N V kN γ==⨯= 墩身自重:2219.2225480.42()c N V kN γ==⨯= 细粮自重:3312.625315()c N V kN γ==⨯=3. 单根桩顶承受的恒载(二)活载计算 1. 顺桥向活载计算 a. 单孔单列汽车10B = 2/210.59.7/2198.8249.73(kN)k k B q l P =+=⨯+=120249.73249.73()B B B kN =+=+= b. 双孔单列汽车110.59.7/250.93()B kN =⨯= 210.59.7/2198.8249.73()B kN =⨯+= 1250.93249.73300.66()B B B kN =+=+=c. 单孔单侧人群10B = 2/2 3.529.7/233.95()r B q bl kN ==⨯⨯= 12033.9533.95()B B B kN =+=+= d. 双孔单侧人群12 3.529.7/233.95()B B kN ==⨯⨯= 1233.9533.9567.9()B B B kN =+=+= 2. 三柱支反力横向分布计算 汽车非对称布载: a.汽车单列非对称布载1230.746,0.254,0ηηη=== b. 汽车双列非对称布载 1230.54,0.46,0ηηη=== c. 汽车三列非对称布载1230.334,0.666,0ηηη=== d. 汽车四列非对称布载1230.126,0.874,0ηηη=== 汽车对称布载:1230,1,0ηηη===132946.53152198.21480.421633.66()23N N N N N kN ++++=+=+=主恒e. 人群单侧布载1231.066,0.066,0ηηη==-= d. 人群双侧布载1231.066,0.132, 1.066ηηη==-= 3. 活载计算a. 汽车及人群双孔布载产生的最大支反力,即产生最大墩柱垂直力。
(1 1.3221μ+=)b. 汽车及人群单孔布载产生的最大偏弯矩,即产生最大墩柱弯矩。
(见附表)三、钻孔桩计算钻孔灌注桩直径为1.40m ,用C25混凝土,HRB335级钢筋。
灌注桩按m 法计算,m 值为。
桩身混凝土受压弹性模量42.810h E Mpa =⨯。
(一)荷载计算每根桩承受的荷载为:1.作用于桩顶的恒载反力:1633.66()N kN =恒2. 灌注桩每延米自重:(已扣除浮力) 3. 可变荷载反力:a. 双孔可变荷载反力:11590.02()N kN =(公路—Ⅰ级) 1144.76()N kN '=(人群荷载、双侧)b. 单孔可变荷载反力:21320.67()N kN =(公路—Ⅰ级) 295.7()N kN '=(人群荷载、双侧) 4. 作用于地面处桩顶上的外力:max 1633.661590.02144.763368.44()N kN =++=(双孔)min 1633.661320.6795.73050.03()N kN =++=(单孔) 41311.36 6.6911.96443.01()M kN m =+++=⋅ (二)桩长计算 假设桩长底到达⑦层土,灌注桩最大冲刷线以下的桩长为h ,则:桩身周长: 1.45 4.55()u m π=⨯=21.41520.08(/)4q kN m π=⨯⨯=[]7112a ik i p ri R u q l A q ==+∑[]{}0022(3)r a q m f k h λγ=+-桩端截面面积: 冲刷线以下土层厚度:28.27i l m = 清底系数:00.80m = 修正系数:0.7λ=桩端土的承载力基本容须值: 随深度的修正系数:2 2.5k =桩端以上土层的加权平均值:219.54109.54(/)kN m γ=-= []19.093190.88a R h =+需要[]aR N >∑则: 16.63h m > 故取28h m =,即地面以下桩长32.68m 。
8.4132.683368.443643.28()N kN =⨯+=∑ []aR N >∑,故桩的轴向承载力能满足要求。
四、桩的内力计算 1. 桩的计算宽度b1(1)0.9(1.41) 2.16()f b k d m =+=⨯+=2. 桩的变形系数α2(1)2(1.41) 4.8()m h d m =+=⨯+=2211 1.25(1/)1 1.25(1 3.10/4.8)0.84m h h γ=--=-⨯-= 12(1)0.84 4.5(10.84)15 6.18m m m γγ=+-=⨯+-⨯=72.810c E kPa =⨯440.491 1.40.189I m =⨯=0.32732.6810.69 2.5ah =⨯=>故为弹性桩。
3. 作用在局部冲刷线处的基本组合值:[]0160a f kPa=220.7 1.54()p A m π=⨯=[][]14.551357.37 1.540.80.7200 2.59.54(3)2a R h =⨯⨯+⨯⨯⨯+⨯⨯-[]19.09283190.883725.65()a R kN =⨯+=()3368.44 1.54159.548.413368.44N h h =+⨯-=+∑0.327α===00.7(1.4 1.10.7(1.445 1.1 5.4)48.26()H H H kN =+=⨯⨯+⨯=风制动)()0 1.40.6(1.4 1.1 1.4)1.4413.540.6 1.4256.05 1.111.36 6.69 1.411.96816.00()M M M M M kN m =+++=⨯+⨯⨯+⨯++⨯⎡⎤⎣⎦=⋅风人汽制动4. 单位“力”作用在局部冲刷线处的,桩柱在该处产生的变位计算10.694ah =>,取4ah =。
5. 局部冲刷线处变位计算:6. 局部冲刷线以下深度各截面内力计算:2272400.3270.42336100.37100.16710EIX α-=⨯⨯⨯⨯=⨯ ()72400.3270.42336100.123100.17010EI α-Φ=⨯⨯⨯-⨯=-⨯4433330.167100.17010816147.58M A B C D =⨯-⨯++由表可知:最大弯矩设计值860.2137()d M kN m =⋅, 1.223241Z m =()()34430337344341 2.4410.3270.42336100.16410HH B D B D EI A B A B δα--=⨯=-⨯⨯=⨯()()344300227344341 1.6250.3270.42336100.03610MHHMA D A D EI AB A B δδα--==⨯=-⨯⨯=⨯()()344307344341 1.7510.3270.42336100.01310MM A C A C EI A B A B δα--=⨯=-⨯⨯=⨯004400048.260.164108160.036103.76HH HM X H M δδ--=+=⨯⨯+⨯⨯=<()()0044000248.260.036108160.013100.12310MH MM H M δδ---Φ=-+=-⨯⨯+⨯⨯=-⨯220000333303030303231Z M H M EI X A B C D EIX A EI B M C H D EI EI αααααααΦ⎛⎫=+++=+Φ++ ⎪⎝⎭01148.26147.580.327H α=⨯=桩身弯矩计算表7. 轴向力组合计算五、桩顶水平位移计算()00120X h h ∆=-Φ++∆()()()3320122112212111111232M H nh h nh h h h h nh h h E I E I ⎡⎤⎡⎤∆=++•++++⎣⎦⎢⎥⎣⎦外 式中 : 则有:水平位移容许值[]15.8>9.9∆==,符合要求。
1.2 1.40.8 1.41.21633.66 1.41590.020.8 1.4144.764348.55()d N N N N kN =++⨯=⨯+⨯+⨯⨯=人恒汽()127471141144.25,045 2.2547.252.8100.049 1.20.284101.20.541.4413.5411.96256.0511.36692.91h m h H kN E I E I n EI M kN m ===+==⨯⨯⨯=⨯====+++=⋅外()()()33072747.2510.54 4.2500.54 4.250 4.2500.284103692.9100.54 4.2520 4.250.0012620.28410⎡⎤∆=⨯++⨯⨯⨯+⎢⎥⨯⎣⎦⎡⎤++⨯⨯⨯+=⎣⎦⨯⨯()()0012022220.37100.12310 4.2500.1261010.99109.9X h h mm----∆=-Φ++∆=⨯+⨯++⨯=⨯=六、桩身配筋计算1. 按偏心受压构件进行配筋计算 截面设计: 偏心矩: 偏心矩增大系数:0 2.130.1980.422()e m η=⨯=主筋采用HRB335级钢筋。
配筋率:承载力:ξ A B C D ρ Nu 0.40.86670.54140.47491.88010.00044910009当0.4ξ=,计算纵向力u N 略大于设计值N 。
0.0004<0.005,故取0.005ρ=。
所需钢筋面积:2220.0057007696.90()s A r mm ρππ==⨯=钢筋配筋如图所示。
主筋选用16根公称直径为25的HRB335钢筋,实际的配筋率箍筋采用螺旋箍筋R235级,直径8mm,螺旋筋的间距200S mm =。
0860.21370.1984348.55d d Me m N ===21200211()1400/128.161()0.620.9514000.198/(0.70.880.7) 1.42.13p l e h hηζζ=+=+⨯⨯⨯⨯+⨯=0100.1980.2 2.70.2 2.70.620.70.880.7e h ζ=+=+⨯=+⨯01281.150.011.150.010.951.4l h ζ=-=-⨯=0440.7()0.7(28)28.16()0.327p l l m α=+=⨯+=00()()cd sd f Br A e f C e Dgrηρη-=⋅-11.570042228042261628.7517.33422616B AC D B A C D -=⋅--=-222270011.57002805635000137200000u cd sdN Ar f C r f A C A C ρρρ=+=⨯+⨯=+227854/0.0051700s A r ρππ===某桩柱式桥墩钻孔灌注桩端承桩的设计一、设计资料1. 设计标准以及上部构造 设计荷载:公路—Ⅰ级; 桥面净宽:净—14+2×2m ;标准跨径:20b l m =,梁长9.96m ,计算跨径9.7m ; 上部构造:钢筋混凝土实心板梁桥。