RAID技术基础知识分析
了解电脑的硬盘RAID技术
![了解电脑的硬盘RAID技术](https://img.taocdn.com/s3/m/a93cb448591b6bd97f192279168884868662b849.png)
了解电脑的硬盘RAID技术RAID(Redundant Array of Independent Disks)是一种用于存储数据的技术,通过将多个硬盘组合在一起,提供更高的数据可靠性和性能。
本文将介绍电脑硬盘RAID技术的基本原理、不同级别的RAID以及其应用场景。
一、RAID技术的基本原理RAID技术的基本原理是将多个硬盘组合成一个逻辑盘组,通过数据的分布和备份来提高数据的安全性和性能。
其中最常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0通过将数据分散存储在多个硬盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份机制,一旦其中一个硬盘损坏,所有数据都将丢失。
RAID 1是一种镜像技术,将数据同时写入两个硬盘,提供冗余备份以提高数据的可靠性。
当其中一个硬盘损坏时,系统可以自动切换到另一个硬盘,保持数据的完整性。
RAID 5通过将数据和奇偶校验码分散存储在多个硬盘上,提高了数据的读写性能,并且具有一定的冗余备份机制。
当其中一个硬盘损坏时,可以通过奇偶校验码恢复数据。
RAID 10是将RAID 1和RAID 0结合起来的技术,通过将数据复制到多个硬盘并分散存储,同时提供了数据的冗余备份和读写性能的提升。
二、不同级别的RAID和应用场景1. RAID 0:适用于需要高速数据读写的应用,如数据处理、视频编辑等。
由于没有冗余备份机制,不适用于对数据可靠性要求较高的场景。
2. RAID 1:适用于对数据可靠性要求较高的场景,如企业数据库、文件服务器等。
由于需要将数据同时写入两个硬盘,磁盘的使用效率较低。
3. RAID 5:适用于需要相对较高的性能和一定冗余备份的场景,如中小型企业的文件存储、邮件服务器等。
由于需要存储奇偶校验码,写入性能相对较低。
4. RAID 10:适用于对数据性能要求较高且对数据可靠性要求较高的场景,如大型数据库、虚拟化环境等。
由于需要将数据复制到多个硬盘,存储成本较高。
raid知识点
![raid知识点](https://img.taocdn.com/s3/m/e581323c5bcfa1c7aa00b52acfc789eb162d9e42.png)
raid知识点
RAID是Redundant Array of Inexpensive 的缩成,称为廉价冗余磁盘阵列。
原理是利用数组方式来做磁盘组,配合数据分散排列的设计,提升数据的安全性。
其中磁盘阵列是有很多便宜、容量较小、稳定性较高、速度较慢的磁盘组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能
目前RAID技术大致分为两种:基于硬件的RAID技术的硬RAID和基于软件RAID技术的软RAID.
软件RAID:是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成raid阵列。
硬件RAID:是在服务器的bos界面进行RAID级别的配置,然后内核通过RAID适配器把RAID识别为sd接口的硬盘。
Raid的学习和基础知识
![Raid的学习和基础知识](https://img.taocdn.com/s3/m/5fce102f17fc700abb68a98271fe910ef02dae73.png)
Raid的学习和基础知识1 什么是RAID,RAID的级别和特点;什么是RAID呢?全称是“A Case for Redundant Arrays of Inexpensive Disks (RAID)”,在1987年,由加州大学伯克利大学发表的论文而来,其实就是这个标题的缩写就是RAID;中译为“磁盘阵列”;RAID就是把几个物理磁盘组合在一起成为一个大的虚拟物理磁盘,主要目的和用途主要有:把若干小容量物理磁盘组成一个大容量虚拟存储设备(以前的物理磁盘的容量都比较小);提高物理存储效率(读、写),或提供冗余以提高数据存储的安全性。
根据应用方向的不同,RAID也分不不同级别,有LINEAR、RAID0、RAID1、RAID5、RAID10、RAID4、RAID6、MULTIPATH。
常用的有RAID0、RAID1、RAID5、RAID10(其实就是0+1)、LINEAR1.1 什么是硬件RAID和软RAID;RAID 还分为硬件RAID 和软件RAID,硬件RAID是通过RAID 卡来实现的,而软件RAID是通过软件来实现的;在企业级应用领域,大部份都是硬件RAID。
而软件RAID由于性价比高,大多被中小型企业所采用;硬件RAID是通过RAID卡把若干同等容量大小的硬盘,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘容量不一致,以最小容量的硬盘为基础;他的成员是整个硬盘;软RAID是软把若干同等容量大小的硬盘或分区,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘或分区容量不一致,以最小容量的硬盘或分区为基础。
软RAID的成员是整个硬盘或分区;RAID 总的来说还是应用在生产型项目领域中,一般在商用办公或个人娱乐应用并未被大规模采用。
raid技术详解
![raid技术详解](https://img.taocdn.com/s3/m/cee46077f56527d3240c844769eae009581ba25a.png)
raid技术详解(raid大全)一、RAID 概述1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文“A Case of Redundant Array of Inexpensive Disks”中提出了 RAID 概念[1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。
由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。
随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘,“廉价”已经毫无意义。
因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用“独立”替代“廉价”,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。
但这仅仅是名称的变化,实质内容没有改变。
RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,已经得到了非常广泛的应用。
RAID 主要利用数据条带、镜像和数据校验技术来获取高性能、可靠性、容错能力和扩展性,根据运用或组合运用这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。
D. A. Patterson 等的论文中定义了 RAID1-RAID5 原始 RAID 等级, 1988 年以来又扩展了 RAID0 和 RAID6 。
近年来,存储厂商不断推出诸如 RAID7 、 RAID10/01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。
目前业界公认的标准是 RAID0-RAID5 ,除 RAID2外的四个等级被定为工业标准,而在实际应用领域中使用最多的 RAID 等级是RAID0 、 RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。
raid(独立冗余磁盘阵列)基础知识
![raid(独立冗余磁盘阵列)基础知识](https://img.taocdn.com/s3/m/ec8044c8f71fb7360b4c2e3f5727a5e9856a27d5.png)
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。
RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。
RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。
常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。
RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。
然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。
RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。
RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。
然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。
RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。
当一个磁盘发生故障时,可以通过校验信息恢复数据。
然而,RAID 5的写入性能相对较低。
RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。
RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。
然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。
RAID基础知识总结
![RAID基础知识总结](https://img.taocdn.com/s3/m/a0ea020cc381e53a580216fc700abb68a982ad9c.png)
RAID基础知识总结a1.数据条带 (Data Stripping)原理:将数据分⽚保存到多个磁盘,多个数据分⽚共同组成⼀个完整的数据副本。
数据安全性:不提供数据安全保护。
任何⼀个数据条带损坏都会导致整个数据不可⽤,增加了数据发⽣丢失的概率。
故障修复:⼀旦数据损坏将⽆法恢复。
读写I/O:具有更⾼的I/O并发粒度,当访问数据时,可以同时对位于不同磁盘上的数据进⾏读写操作。
成本:要根据数据特征和需求选择合适的分块⼤⼩,在数据存取随机性(块寻址时间)和并发处理能⼒之间进⾏平衡,以争取尽可能⾼的整体性能。
a2.镜像 (Mirroring)原理:将数据复制到多个磁盘。
数据安全性:提供完全的数据冗余能⼒,当⼀个数据副本不可⽤时,外部系统仍可正常访问另⼀副本。
故障修复:不需要额外的计算和校验,故障修复⾮常快。
读写I/O:可以从多个副本并发读取数据,提供更⾼的读I/O性能;但不能并⾏写数据,写多个副本会导致⼀定的I/O性能降低。
成本:备份时间⼏乎为零;但⾄少需要双倍的存储空间。
a3.数据校验 (Data Parity)原理:利⽤冗余数据进⾏数据错误检测和修复,要在写⼊数据同时进⾏校验计算,并将得到的校验数据存储在RAID成员磁盘中。
数据安全性:可以检测数据错误,当其中⼀部分数据出错时,可以对剩余数据和校验数据进⾏反校验计算,重建丢失的数据。
故障修复:⽐镜像技术复杂得多且慢得多。
读写I/O:数据校验需要从多处读取数据并进⾏计算和对⽐,会影响系统性能。
成本:节省⼤量冗余开销;但由于每次数据读写都要进⾏⼤量的校验运算,对计算机的运算速度要求很⾼,必须使⽤硬件RAID控制器。
a4.缓存 (Cache)原理:作为写,⼀般存储阵列只要求写到cache就算完成了写操作,所以,阵列的写是⾮常快速的,在写cache的数据积累到⼀定程度,阵列才把数据刷到磁盘,可以实现批量的写⼊,⾄于cache数据的保护,⼀般都依赖于镜像与电池(或者是UPS)。
《RAID技术基础培训》(V1.0)
![《RAID技术基础培训》(V1.0)](https://img.taocdn.com/s3/m/8eea0fa2afaad1f34693daef5ef7ba0d4a736dd4.png)
故障处理步骤
检查硬盘状态、备份重 要数据、更换故障硬盘。
预防措施
定期检查硬盘健康状况、 及时更新固件和驱动程 序。
性能优化
性能瓶颈
磁盘I/O性能、RAID卡性能、系统资源占用等。
优化方法Байду номын сангаас
调整RAID级别、增加缓存容量、优化系统配置。
性能监控工具
RAID卡管理工具、系统性能监控软件等。
THANKS
提高I/O性能
通过将数据分散存储在多个磁盘上, RAID可以并行处理多个I/O请求,显 著提高磁盘的I/O性能。
高可用性
RAID技术可以提供24x7的不间断服 务,因为当某个磁盘发生故障时,系 统可以自动切换到备用磁盘。
易于扩展
RAID可以通过增加磁盘数量来轻松 扩展存储容量。
缺点
01
02
03
04
盘的I/O负载。
个数据集的丢失。
数据校验
数据校验是一种检测数据错误的方法,通过 使用特定的算法对数据进行计算,生成一个 校验值,然后将这个校验值存储在特定的位 置。
RAID系统通常使用XOR算法进行数据校 验,XOR算法可以检测单个比特位的错误 ,并且可以检测出多个比特位的错误。
当数据读取时,会重新计算校验值并与存储 的校验值进行比较,如果两者不一致,则说 明数据存在错误,需要进行修复或者重新读 取。
性能优化
通过并行处理和数据分散,RAID可以显著提高数据库的查询和 更新速度。
数据恢复
在数据库故障情况下,RAID可以快速恢复数据,减少停机时间。
虚拟化环境
1 2
资源池化
RAID技术可以将多个物理磁盘组合成一个逻辑 磁盘,为虚拟机提供连续的存储空间。
存储基础知识(RAID及磁盘技术).. 共50页
![存储基础知识(RAID及磁盘技术).. 共50页](https://img.taocdn.com/s3/m/8c45e713be1e650e52ea999e.png)
RAID6 P+Q
• RAID6 P+Q会根据公式计算出P和Q的值,当有 两个数据同时丢失时,仍可以计算出原数据
条带1 条带2 条带3 条带4 条带5
RAID 0 RAID 1 RAID 2 RAID 3 RAID 4 RAID 5 RAID 6
数据条带化,无校验 数据镜像,无校验 海明码错误校验及校正(不常用) 数据条带化读写,校验信息存放于专用盘(不常用) 单次写数据采用单个硬盘,专用盘存放校验数据(不常用) 数据条带化,校验信息分布式存放 数据条带化,分布式校验并提供两级冗余
高可用性
磁盘利用率较高(N-1),没有固定的校验盘,奇偶校验信息均匀分
布在阵列所属的所有磁盘中
随机读写性能高允许在同一组内并发进行多个写操作
• 缺点
异或较验影响存储性能
应用 文件及应用服务器 数据库服务器 Web, E-mail 局域网服务器
RAID6(Double parity drive)高级数据保护
• CPU运算速度飞速 提高,数据读写速 度不应该成为计算 机系统处理的瓶颈
Total request execution time
速度 N x 单块硬盘的速度
RAID基本概念 ——条带
大数据块写入RAID时会被分成多个数据块并行写入多块硬盘, 这些大小一致的数据块就称为条带。同时数据读取时会并行从 多块硬盘读取条带数据,最后完整输出。
存储基础知识
RAID技术
RAID基本概念——定义
RAID (Redundant Array of Independent Disks)即独立磁盘冗 余阵列,RAID技术将多个单独的物理硬盘以不同的方式组合成一个逻辑 硬盘,从而达到提升存储容量、读写性能和数据安全性的目的。根据不 同的组合方式可以分为不同的RAID级别
raid(独立冗余磁盘阵列)基础知识
![raid(独立冗余磁盘阵列)基础知识](https://img.taocdn.com/s3/m/7f66c4e5d05abe23482fb4daa58da0116d171f72.png)
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。
二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。
常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。
1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。
2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。
当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。
然而,RAID 1并没有提高数据的读写性能。
3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。
奇偶校验位用于恢复损坏的数据。
RAID 5的读写性能较高,并且具有冗余备份功能。
然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。
4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。
RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。
三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。
RAID技术详解
![RAID技术详解](https://img.taocdn.com/s3/m/1124c8deb9d528ea81c779cc.png)
第1章RAID技术详解自从计算机问世以来,存储技术就伴随着计算机的发展而飞速发展,但从重要性和影响力方面来说,没有哪项存储技术的发明能够与RAID相提并论,RAID技术理念引发了数据存储的重大变革,也成为现在虚拟化存储技术的奠基石。
RAID技术有各种级别之分,包括RAID-0、RAID-1、RAID-10、RAID-1E、RAID-2、RAID-3、RAID-4、RAID-5、RAID-5E、RAID-5EE、RAID双循环、RAID-6、JBOD等,本章将详细讲解各个级别RAID的数据组织原理、故障原因分析及其数据恢复思路。
1.1 什么是RAID这一节首先对RAID做一个基本介绍,包括RAID的概念、RAID的作用、RAID级别的分类、软RAID和硬RAID的组建方法,同时还会对RAID中常用的一些专业术语进行讲解。
1.1.1 RAID基础知识RAID最初是1987年在加利福尼亚大学进行的一个科研项目,后来由伯克利分校的D.A. Patterson教授在1988年正式提出。
RAID(Redundant Array of Inexpensive Disks),直译为“廉价冗余磁盘阵列”,最初是为了组合多块小容量的廉价磁盘来代替大容量的昂贵磁盘,同时希望在磁盘失效时不会对数据造成影响而开发出的一种磁盘存储技术。
后来随着硬盘研发技术的不断提升,硬盘的容量越来越大,成本却在不断下降,所以RAID中Inexpensive(廉价)一词已经失去意义,于是将这个词用Independent(独立)来替代,RAID就成了“独立冗余磁盘阵列”,也简称为“磁盘阵列”,但这只是名称的变化,实质性的内容并没有改变。
1.1.2 RAID能解决什么问题通俗地说,RAID就是通过将多个磁盘按照一定的形式和方案组织起来,通过这样的形式能够获取比单个硬盘更高的速度、更好的稳定性、更大的存储能力的存储解决方案,用户不必关心磁盘阵列究竟由多少块硬盘组成,使用中整个阵列就如同一块硬盘一样。
RAID基础知识解析
![RAID基础知识解析](https://img.taocdn.com/s3/m/2a854860eff9aef8951e061d.png)
RAID 制作
intel 目前主板使用的intel RAID 控制器 分别是 intel ICH5R、ICH6R、ICH7R南 桥芯片中集成的SATA RAID 控制器。主板型号对应有以下几种: 它们的BIOS设定和RAID BIOS界面也大致相同,只是所支持的RAID 模式稍 有不同,所以也一起来介绍了。 BIOS设定; 将On-Chip SATA 模式设定为 Enhanced Mode; 将On-Chip SATA Mode 设定为 RAID; 保存BIOS充启后,按Ctrl+I 进入RAID BIOS 创建RAID ; 确认创建; RAID 0模式下磁盘信息; Matrix RAID 模式下的磁盘信息(只有ICH6R、ICH7R能够组建Matrix RAID); ICH5R(82801ER)与ICH6R(82801FR)软盘驱动加载; ICH7R 软盘驱动加载; 组建成功Matrix RAID后,在安装程序中识别出的磁盘容量; 操作系统成功安装完成即制作完成。
10
RAID的分类
RAID 0+1
1、RAID10的情况 这种情况中,我们假设当DISK0损坏时,在剩下的3块盘中,只 有当DISK1一个盘发生故障时,才会导致整个RAID失效,我们 可简单计算故障率为1/3。
2、RAID01的情况 这种情况下,我们仍然假设DISK0损坏,这时左边的条带将无 法读取。在剩下的3块盘中,只要DISK2,DISK3两个盘中任 何一个损坏,都会导致整个RAID失效,我们可简单计算故障 率为2/3。
8
RAID的分类
A1
RAID 1
A2 A3
A4
Raid1
A1
A1
A2
A2
A3
A3
RAID系列技术详解
![RAID系列技术详解](https://img.taocdn.com/s3/m/0fa56b2d492fb4daa58da0116c175f0e7dd1195f.png)
RAID系列技术详解1、RAID 0 RAID 0是把n个物理磁盘虚拟成⼀个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成⼀个逻辑上连续,物理上也连续的虚拟磁盘。
⼀级磁盘控制器(指使⽤这个虚拟磁盘的控制器,如果某台主机使⽤配适卡链接外部盘阵,则指的就是主机上的磁盘控制器)对这个虚拟磁盘发出的指令,都被RAID控制器收到并分析处理,根据Block映射关系算法公式转换成对组成RAID0的各个物理盘的真实物理磁盘IO请求指令,收集或写⼊数据之后,再提交给主机磁盘控制器。
RAID 0也称为条带化存储,它代表了所有RAID级别中最⾼的存储性能。
⽆数据校验,下⾯分析从上到下访问RAID 0磁盘的过程。
假如某⼀时刻,主机控制器发出指令:读取初始扇区10000长度128 RAID控制器接收到这个指令之后,⽴即进⾏计算,根据对应公式算出10000号逻辑扇区所对应的物理磁盘的扇区号,然后依次算出逻辑上连续的下128个扇区所在物理磁盘的扇区号。
分别向对应这些扇区的磁盘再次发出指令。
这次是真是的读取数据了,磁盘接受到指令,各⾃将数据提交给RAID控制器,经过控制器在Cache中的组合,再提交给主机控制器。
经过以上过程,发现如果这128个扇区都落在同⼀个Segment中的话,也就是说条带深度容量⼤于128个扇区的容量(64KB),则这次IO就只能真实地从这⼀块物理盘上读取,性能和单盘相⽐会减慢,因为没有任何优化,反⽽还增加了RAID控制器额外的计算开销。
所以,在某种特定条件下要提升性能,让⼀个IO尽量扩散到多块物理盘上,就要减⼩条带深度。
在磁盘数量不变的条件下,也就是减⼩条带⼤⼩(Stripe SIZE,也就是条带长度),让这个IO的数据被控制器分割,同时放满⼀个条带的第⼀个Segment、第⼆个Segment等,以此类推,这样就能极⼤地占⽤多块物理盘。
所以RAID 0要提升性能,条带做的越⼩越好。
但是有⼀个⽭盾出现了,就是条带太⼩,导致并发IO⼏率降低,因为如果条带太⼩,则每次IO⼀定会占⽤⼤部分物理盘,队列中的IO就只能等待这次IO结束后才能使⽤物理盘,⽽条带太⼤,⼜不能充分提⾼传输速度。
RAID的基本知识
![RAID的基本知识](https://img.taocdn.com/s3/m/d9cb410e84254b35effd34a1.png)
RAID的基本知识
本文介绍RAID相关的一些基本知识。
一、RAID基本知识
磁盘阵列就是我们平常说的RAID,全称是“廉价的冗余磁盘阵列”。
主要RAID类型有RAID0,RAID1,RAID1+0,RAID5,RAID6,下面分别介绍。
RAID0:磁盘合并
将多个硬盘合并成一个大硬盘,提高硬盘的写功能。
RAID1:磁盘镜像
将一块(组)硬盘作为另一块(组)硬盘的镜像,同步写操作,牺牲50%的写功能,提高数据的安全性。
RAID1+0:镜像+合并
RAID5:奇偶校验
拿一块硬盘做奇偶校验,牺牲1块硬盘的写功能,可以坏1块硬盘,提高了数据的安全性。
RAID6:增强奇偶校验
牺牲2块硬盘的写功能,可以坏2块硬盘,提高了数据的安全性。
二、RAID故障解决
1、RAID卡坏了
RAID卡的信息应该是同时保存在RAID卡和硬盘中,所以RAID卡坏了后,换一个同型号的RAID卡,所有的阵列配置信息都在。
用同一型号的RAID卡来恢复RAID,我们在镇江机房实践成功过。
2、硬盘坏了
好的RAID卡,它的驱动里面有监控软件,可以在系统下监控并发现哪块盘坏了。
以前我们无法监控时,从盘镜像盘坏了,我们无法知道,直到主盘也坏了,我们才发现,这时候想要恢复数据,但两块盘都坏了,于是,数据损失了。
三、RAID FAQ
1、从RAID1组里面拿出一块硬盘,在别的机器上是否能读出?
答:1)能看到盘,但读不出数据;2)可以直接读数据;3)连盘都看不到。
RAID技术基础知识课件
![RAID技术基础知识课件](https://img.taocdn.com/s3/m/701f5348102de2bd960588cb.png)
操作数1 假 假 真 真
操作数2 假 真 假 真
XOR结果 假 真 真 假
学习交流PPT
12
热备和热换
• 热备是指在不干扰当前系统的正常使用的 情况下,用系统中另外一个正常的备用磁 盘顶替失效磁盘
• 热换是指在不影响系统正常运转的情况下, 用正常的磁盘物理替换RAID阵列中的失效 磁盘
学习交流PPT
磁盘3 数据1c
P2 Q3 数据4j 数据5n
磁盘4 P1 Q2
数据3h 数据4k 数据5o
磁盘5 Q1
数据2f 数据3i 数据4l
P5
学习交流PPT
28
RAID6 DP
• RAID6 DP中的DP指Double Parity,它在RAID4 的基础上不仅有行的校验,还增加了一个用来 存放斜向校验信息的磁盘
D0
D1
D2
D3
D4
D5 D6
D0
D1
D2
D3
条带0
D7
D4
D5
D6
D7
条带1
D8
D8
D9
D10
D11
条带2
D9
D10
D11
物理磁盘0 物理磁盘1 物理磁盘2 物理磁盘3
…..
学习交流PPT
16
RAID0的特性
所需成员磁盘数 优点 缺点
适用领域
2个或更多,最低为2个 极高的磁盘读写效率
不存在校验,不会占用太多CPU资源 设计、使用和配置比较简单
学习交流PPT
8
镜像冗余的概念
• 镜像冗余使用了磁盘镜像技术 • 磁盘镜像是一个简单的设备虚拟化技术,
每个I/O操作都会在两个磁盘上执行,两 个磁盘看起来就像一个磁盘一样 • 镜像冗余可以提高磁盘的读性能
raid介绍简单易懂
![raid介绍简单易懂](https://img.taocdn.com/s3/m/d2f23846df80d4d8d15abe23482fb4daa58d1db7.png)
raid介绍简单易懂RAID(冗余阵列独立磁盘,Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起的技术,以提高数据存储性能、可靠性和/或容量。
RAID 技术通过在多个硬盘之间分配数据和/或进行冗余备份来实现这些目标。
以下是几种常见的 RAID 级别,每个级别都有不同的工作原理和适用场景:1. RAID 0 - 带条带化(Striping):•工作原理:数据被分割成小块,然后分别写入多个硬盘。
提高读写性能,但不提供冗余,一块硬盘故障会导致数据丢失。
•适用场景:对性能要求高,对数据冗余要求不高的场景,如临时数据存储。
2. RAID 1 - 镜像(Mirroring):•工作原理:数据同时写入两块硬盘,实现数据冗余。
如果一块硬盘故障,另一块硬盘仍然可用。
•适用场景:对数据冗余和可靠性要求高的场景,如关键数据存储。
3. RAID 5 - 带分布式奇偶校验(Striping with Distributed Parity):•工作原理:将数据分割成块并分别写入多个硬盘,同时每个块的奇偶校验信息分布在其他硬盘上。
提高性能和数据冗余。
•适用场景:对性能和冗余兼顾的场景,如文件服务器。
4. RAID 6 - 带双分布式奇偶校验(Striping with Dual Distributed Parity):•工作原理:类似 RAID 5,但使用两个奇偶校验块。
可以容忍两块硬盘同时故障。
•适用场景:对冗余容错性要求极高的场景,如大容量磁盘阵列。
5. RAID 10 - RAID 1+0:•工作原理:将多块硬盘分为两组,每组实施 RAID 1 镜像,然后通过 RAID 0 带条带化。
兼具高性能和高冗余。
•适用场景:对性能和冗余兼顾的场景,如数据库服务器。
RAID 技术可以根据需求进行组合或选择,以满足不同的存储需求。
选择合适的 RAID 级别需要综合考虑性能、可靠性、成本和数据冗余等因素。
RAID技术基础_20191209
![RAID技术基础_20191209](https://img.taocdn.com/s3/m/4f3e9f34b307e87101f69695.png)
开销大,空间利用率只有50% 在写性能方面提升不大
财务、金融等高可用、高安全的数据存储环境
RAID2
采用校验冗余
把数据分散为位或块,加入汉明码,间隔写 入到磁盘阵列的每个磁盘中
在成员磁盘上的地址都一样
采用了并行存取方式 花费大,成本昂贵
RAID6
RAID6是指带有两种分布存储的检验信息 的磁盘阵列,它是对RAID5的扩展,主要 是用于要求数据绝对不能出错的场合, 使用了二种奇偶校验方法,需要N+2个 磁盘
常用的RAID6技术:
RAID6 P+Q
RAID6 DP
RAID6 P+Q
RAID6 P+Q会根据公式计算出P和Q的值, 当有两个数据同时丢失时,仍可以计算 出原数据
所需成员磁盘数 优点 缺点
适用领域
3个或更多,最低为3个
读写性能都比较好 当有磁盘损坏时,对整体吞吐量影响较小
减少了开销
控制器设计复杂 采用并行存取方式,主轴同步时吞吐量没有提高
校验磁盘的写性能有瓶颈
视频生成和图像、视频编辑等 需要高吞吐量的应用环境
RAID4的工作原理
在RAID4中,数据被分为更大的块并行传 输到各个成员磁盘上,同时计算XOR校 验数据存放到专用的校验磁盘上
常见的DAS协议是SCSI和SATA。 磁盘是管理DAS的主要单位。
NAS允许管理员分配一部分存储空间 组成一个文件系统,文件系统是管理 NAS的主要单位。
可 组 辑 对
以 硬 单 外
把 盘 元 界
一 的 ( 来
组硬盘(或者这 一部分)组成逻 LUN : logic unit) , 说 , LUN 就 像 一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D2
D3
….
21
RAID3的特性
所需成员磁盘数 优点 3个或更多,最低为3个 读写性能都比较好 当有磁盘损坏时,对整体吞吐量影响较小 减少了开销 控制器设计复杂 采用并行存取方式,主轴同步时吞吐量没有提高 校验磁盘的写性能有瓶颈 视频生成和图像、视频编辑等 需要高吞吐量的应用环境
缺点
适用领域
22
RAID4的工作原理
在RAID4中,数据被分为更大的块并行 传输到各个成员磁盘上,同时计算XOR 校验数据存放到专用的校验磁盘上
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D110
D1 D4 D7 D10 物理磁盘1
分区0
分块 分块 分块 分区1
分块 分块 分块 分区1
分块 分块 分块 分区1
分块 分块 分块 分区0
条带1 条带2 条带3
磁盘1
磁盘2
磁盘3
磁盘4
7
RAID存取数据的基本方式
并行存取方式
适用于大型的、以长时间顺序访问数据为特征的
应用
独立存取方式
适用于数据存取频繁,每笔存取数据量较小的应
目录
RAID的基本概念 RAID级别 RAID的实现方式和运行状态
RAID的定义
RAID的全称
廉价磁盘冗余阵列(Redundant
Inexpensive Disks)
Array of
RAID的定义
多个独立的物理硬盘按照不同的方式组合起来,
形成一个虚拟的硬盘
具有100%数据冗余,提供最高的数据安全保障 理论上可以实现2倍的读取效率 设计和使用比较简单 开销大,空间利用率只有50% 在写性能方面提升不大 财务、金融等高可用、高安全的数据存储环境
缺点 适用领域
19
RAID2
采用校验冗余
把数据分散为位或块,加入汉明码,间隔写
入到磁盘阵列的每个磁盘中 在成员磁盘上的地址都一样
第7章 RAID技术基础知识
ISSUE 1.0
日期:
杭州华三通信技术有限公司 版权所有,未经授权不得使用与传播
引入
计算机和网络技术的高速发展对存储性能和数据可靠 性的要求不断的提高。使用RAID技术是很好的解决
途径。
课程目标
学习完本课程,您应该能够:
了解RAID的定义与特点 理解RAID数据组织方式和冗余原理 熟练掌握各RAID级别的原理及特性 了解RAID的实现方式
用
8
镜像冗余的概念
镜像冗余使用了磁盘镜像技术
磁盘镜像是一个简单的设备虚拟化技术, 每个I/O操作都会在两个磁盘上执行,两 个磁盘看起来就像一个磁盘一样
镜像冗余可以提高磁盘的读性能
9
镜像冗余的实现方式
I/O请求
文件系统 卷管理器 设备驱动程序
系统总线 主机I/O控制器 I/O总线 子系统 设备 镜像器 镜像I/O路径 主磁盘
缺点
适用领域
17
RAID1的工作原理
RAID1以镜像为冗余方式,对虚拟磁盘 上的数据做多份拷贝,放在成员磁盘上
D0
D1
D0 D2 D0 D1 D2 D3
5
D3 ….
D1 D2 D3
物理磁盘0
物理磁盘1
18
RAID1的特性
所需成员磁盘数 优点
2N个,(N≥1),最低为2个
RAID的基本概念 RAID级别 RAID的实现方式和运行状态
RAID级别
组成RAID阵列的不同方式称为RAID级别
不同的RAID级别
不同的存储性能 不同的数据可靠性 不同的存储成本
15
RAID0的工作原理
RAID0是以条带的形式将数据均匀分布 在阵列的各个磁盘上
操作数2 假 真 假 真
XOR结果 假 真 真 假
12
热备和热换
热备是指在不干扰当前系统的正常使用 的情况下,用系统中另外一个正常的备 用磁盘顶替失效磁盘 热换是指在不影响系统正常运转的情况 下,用正常的磁盘物理替换RAID阵列中 的失效磁盘
13
目录
5
RAID的优势
RAID在容量和管理上的优势
易于灵活的进行容量扩展
“虚拟化”使可管理性极大的增强
RAID在性能上的优势
“磁盘分块”技术带来性能的提高
RAID在可靠性和可用性上的优势
通过冗余技术和热备、热换提升了可靠性
6
RAID组织数据的基本方式
分区0
分区0
采用了并行存取方式 花费大,成本昂贵
20
RAID3的工作原理
在RAID3中,数据块被分为更小的块并 行传输到各个成员磁盘上,同时计算 XOR校验数据存放到专用的校验磁盘上
D0
D1 D00 D10 D20 D30 物理磁盘0 D01 D11 D21 D31 物理磁盘1 D02 D12 D22 D32 物理磁盘2 P0 P1 P2 P3 校验磁盘3
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 …..
D0 D4 D8
D1 D5 D9
D2 D6 D10
D3 D7 D11
条带0
条带1 条带2
物理磁盘0
物理磁盘1
物理磁盘2
物理磁盘3
16
RAID0的特性
所需成员磁盘数 优点
2个或更多,最低为2个 极高的磁盘读写效率 不存在校验,不会占用太多CPU资源 设计、使用和配置比较简单 无冗余,不能用于对数据安全性要求高的环境 视频生成和编辑、图像编辑 其他需要大的传输带宽的操作
D2 D5 D8 D11 物理磁盘2
P0 P1 P2 P3 校验磁盘3
条带0
条带1
条带2 条带3
23
RAID4
RAID4采用独立存取方式,将条带由 RAID3的小数据块改为更大的数据块, 这是RAID4和RAID3最大的不同 RAID4的校验较为迅速,可以获得相对 于RAID3更高的读取速度,但写入速度 极差,控制器的设计更加复杂
镜像磁盘
10
校验冗余的概念
根据冗余算法计算阵列中成员磁盘上数 据的校验信息,将校验信息保存在其他 的磁盘资源上 保证数据可靠性 和镜像冗余相比较,校验冗余的开销更 小
11
XOR算法
相同为假,不同为真
XOR的逆操作是XOR
操作数1 假 假 真 真