第五讲线性回归分析

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

线性回归分析

线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。

它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。

线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。

一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。

该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。

二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。

具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。

2. 建立模型:根据数据建立线性回归模型。

3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。

4. 进行预测和推断:利用模型对未知数据进行预测和推断。

四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。

R平方值越接近1,表示模型对数据的拟合程度越好。

2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。

一般来说,残差应该满足正态分布、独立性和等方差性的假设。

五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。

2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。

然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。

线性回归分析法

线性回归分析法

一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量y 和自变量x 之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量y 和自变量1x ,2x ,…,n x 之间的相关关系)。

如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。

在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。

这里讨论线性回归分析法。

2.回归分析法的基本步骤回归分析法的基本步骤如下: (1) 搜集数据。

根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。

由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。

(2) 设定回归方程。

以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表现出来的规律,选择适当的数学模型,设定回归方程。

设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。

(3) 确定回归系数。

将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定回归方程。

这一步的工作量较大。

(4) 进行相关性检验。

相关性检验是指对已确定的回归方程能够代表自变量与因变量之间相关关系的可靠性进行检验。

一般有R 检验、t 检验和F 检验三种方法。

(5) 进行预测,并确定置信区间。

通过相关性检验后,我们就可以利用已确定的回归方程进行预测。

因为回归方程本质上是对实际数据的一种近似描述,所以在进行单点预测的同时,我们也需要给出该单点预测值的置信区间,使预测结果更加完善。

3. 一元线性回归分析的数学模型用一元线性回归方程来描述i x 和i y 之间的关系,即i i i x a a y ∆++=10 (i =1,2,…,n )(2-1)式中,i x 和i y 分别是自变量x 和因变量y 的第i 观测值,0a 和1a 是回归系数,n 是观测点的个数,i ∆为对应于y 的第i 观测值i y 的随机误差。

经济计量学第五讲 回归方程的函数形式

经济计量学第五讲 回归方程的函数形式

双曲函数模型的一个显著特征是,当X无限 增大时,Y将逐渐接近于B1(渐进值或极值)。可以
用双曲函数模型来描述平均成本曲线、恩格尔消
费曲线和菲利普斯曲线等领域的情况。
东北财经大学数量经济系
第六节 多项式回归模型
下述模型称为多项式回归模型:
Yi B1 B2 X i B3 X B4 X ui
Yi B1 B2 ln X i ui
B2的含义为:X的相对变化引起的Y的绝对量变 化量;即表示自变量的一个单位相对增量引起因变量 平均的绝对增量。
Y B2 (X / X )
东北财经大学数量经济系
第五节 双曲函数模型
下述模型称为双曲函数模型:
Yi B1 B2 1 Xi ui
2 i 3 i
多项式回归模型在生产与成本函数领域应用广
泛。在多项式回归模型中,等式右边虽然只有一个 解释变量,但却以不同的次幂出现,因此可以把它
们看做是多元回归模型中的不同解释变量。
东北财经大学数量经济系
我们通过观察散点图,认为需求量和价格之间是近似
的线性关系,因此建立两变量线性回归模型来研究需 求量和价格之间的关系。 若需求量和价格之间的关系不是线性关系而是指 数形式,则我们就需要建立下面的模型来描述需求量
和价格之间的关系,即:
Yi AX
东北财经大学数量经济系
B i
(1)
第一节 双对数模型(2)
东北财经大学数量经济系
第三节 多元对数线性回归模型(4)
例:根据墨西哥1955年到1974年的数据估计多元对 数模型的结果如下:
东北财经大学数量经济系
第四节 半对数模型(1)
下述模型称为半对数模型或对数—线性模型:

SPSS5-相关与回归分析

SPSS5-相关与回归分析
用F值作为标准
在回归方程中包括常项 缺失值的处理方式
用均值代替缺失值
一、线性回归分析( Linear Regression)
2、一元线性回归:
示例1:教材P260数据:20章_数据1.sav
识字量对阅读能力的影响有多大?
步骤:
(1)依据散点图检验线性关系 (2)操作过程:Analyze-Regression-Linear (3)结果输出观察重点:
二、双变量相关分析(Bivariate)
示例1:大学生人格(神经质、内外向程度) 与心理健康(SCL-90总分)之间有无相关?
SPSS操作:
1、绘制散点图,判定两变aphs-Scatter
2、打开Bivarite Correlations主对话框
偏相关分析的思想:控制其它变量的变化,即在剔 除其它变量影响的情况下,计算两变量之间的相 关关系。
两个变量间的线性相关关系,用偏相关系数表示。 应用条件:均为连续性变量。
Partial Correlations 对话框
分析变量
显著性检验 显示实际的显著性水平
控制变量
Options 对话框
均值及标准差 零阶相关矩阵(即:Pearson相关矩阵)
Model 1
Regression Residual Total
Sum of Squares 1845.333 899.634 2744.967
a. Predictors: (Constant), 识 字 量
b. Dependent Var iable: 阅 读 能力
ANOV Ab
df 1
28 29
解释回归平方和在总平方各中所占的比率,即解释回 归效果, r2=0.672,则表示因变量(阅读能力)的 变异中有67.2%是由自变量(识字量)而引起的。

线性回归分析课件

线性回归分析课件

线性回归分析
24
01-03 回归分析的应用
两种回归分析工具使用总结: • 利用回归分析工具进行线性回归的优缺点如下: ① 优点:可以进行一元线性回归,也可以进行多元线性回归。 ② 缺点:只能进行线性回归,不能直接进行非线性回归。 • 利用散点图和趋势线进行回归分析的优缺点如下: ① 优点:不仅能进行线性回归,还能进行非线性回归。 ② 缺点:只能进行一元回归,不能进行多元回归。
线性回归分析
10
01-03 回归分析的应用
案例分析:
表:小区超市的年销售额(百万元)与小区常住人口数(万人)统计表
线性回归分析
11
01-03 回归分析的应用
分析步骤:(一)
线性回归分析
12
01-03 回归分析的应用
分析步骤:(二)
反映模型的拟合度
线性回归分析
13
01-03 回归分析的应用
分析步骤:(三) • 一元线性回归 y=kx+b
线性回归分析
5
01-02 回归分析的概念
• 分类
(1)回归分析按照涉及的变量多少,分为 一元回归分析 多元回归分析
(2)按照自变量和因变量之间的关系类型,可分为 线性回归分析 非线性回归分析线性回归分析601-02 回归分析的概念
• 步骤
线性回归分析
7
01-02 回归分析的概念
• 决定系数
当变量之间的关系可以用一个数学模型来模拟时,我们用决定系数( R2)判定数学模型拟合效果的好坏。
利用Excel散点图和趋势线进行回归分析: 在现实生活中,很多社会经济现象是非线性发展的,此时数据点分布在 一条曲线附近,例如指数曲线、抛物线等。 将例中的直线模型改成指数模型,操作如下。

线性回归分析教程PPT课件

线性回归分析教程PPT课件

实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。

第五讲线性回归分析

第五讲线性回归分析

naˆ bˆ xi yi

xi bˆ
x
2 i

yi xi
一、回归分析的来源
回归分析现在已应用于多个领域,比如气温与旅游、 产品价格与销量、房地产投资与地方经济等。
思考:你身边有哪些现象可以用回归分析解释?
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
Karl Gauss的最小化图
y
(xn , yn)



(x2 , y2)


ei = yi-^yi

(x1 , y1)
(xi , yi)
yˆ βˆ 0 βˆ1x
x
一、回归分析的来源
最小二乘法 • 设已知n组数据(x1,y1),( x2,y2)… (xn,yn), • 模型: yˆi aˆ bˆxi • 误差ui= yi yˆi • 误差的平方和
皮尔逊相关 pearson correlation
定距
Cross-tabulate
Multinominal Logistic Regression
Ordinal Regression
皮尔逊相关 pearson correlation
回归 regression
复习
双变量关系强度测量的主要指标
定类
定序
计算并保存自变量的一个观测值与所有观测值的均值偏差其中mahalanobis马氏距离是一种测量自变量观测值与所有观测值均值差异的测度将马氏距离数值大的观测值视为异常值cooks库克距离用于测量一个特殊观测值被排除在回归系数的计算之外时所有观测值残差有多大变化leveragevalues用于测量回归拟合中一个数据点对回归方程拟合程度的影响其值介于0和n1n之间如果该值为0说明该点对回归拟合无影响其值越大对方程拟合影响越大

第五讲多元线性回归

第五讲多元线性回归
因为当自变量间呈高度相关时,我们很难区分出每一个变量的单独的影响。
当影响变量Y的主要因素有k个时,可以建立起的总体回归模型为
– 变量的季节性差异。如旺季和非旺季,一年 1、回归系数的显著性检验
同样可以通过最小二乘法求出回归系数的估计值。
四季等。 3、解决的办法是抛弃其中一个变量,或是对变量作一些变换,如用相对数代替绝对数等。
模型的检验
1、回归系数的显著性检验
– 查t分布表,自由度为n-k-1,在有多个自变量 时,某个回归系数通不过,可能是这个系数 对应的自变量对因变量的影响不显著,也可 能是多重共线性所致。
2、回归方程的显著性检验
– H0 :1=2=…=k=0 H1 : j不同时为零
F( y (ˆyˆy)2y/)n2/kk1
2、这时的净回归系数是不可靠的。
市与非城市的差别。X =1(城市),X =0 如果回归分析的目的是要精确地测定每个自变量对因变量的单独影响,那么,各个净回归系数的可靠性显然是重要的。
2、回归方程的显著性检验 Y= 0+ 1X1+ 2X2+…+庭食物支出额的影响因素中,考虑城市与非城市的差别。
是当X2保持固定时,X1每变化一个单位时Y所 发生的变化;b2测定的是当X1保持固定时,X2 每变化一个单位时Y所发生的变化
多重共线性问题
1、如果自变量之间高度相关,则我们在进行多元回 归分析时可能会得到一些奇怪的结果。如在一元 回归时,回归系数为正,而在二元回归时,回归 系数却为负。
2、这时的净回归系数是不可靠的。因为当自变量间 呈高度相关时,我们很难区分出每一个变量的单 独的影响。
第五讲多元线性回 归
多元线性回归模型
多元线性回归是一元线性回归的逻辑推广。当 影响变量Y的主要因素有k个时,可以建立起的 总体回归模型为

线性回归分析

线性回归分析

线性回归分析线性回归是一种广泛应用于统计学和机器学习的分析方法,用于建立和预测两个变量之间的线性关系。

它可以帮助我们理解变量之间的相互作用和影响,并进行未来的预测。

本文将介绍线性回归的基本原理、模型建立过程和一些应用实例。

一、线性回归的基本原理线性回归的目标是通过一条直线(或超平面)来拟合数据点,使得预测值和实际观测值之间的误差最小。

这条直线的方程可以表示为:y=β0+β1*x+ε,其中y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。

线性回归的核心假设是,自变量x和因变量y之间存在线性关系,并且误差项ε服从正态分布。

在此基础上,线性回归通过最小二乘法来估计回归系数β0和β1的值,使得预测值和实际值的误差平方和最小。

二、线性回归的模型建立过程1.数据准备:收集包含自变量和因变量的样本数据,确保数据的质量和准确性。

2.模型选择:根据自变量和因变量之间的性质和关系,选择合适的线性回归模型。

3.模型拟合:使用最小二乘法来估计回归系数β0和β1的值,计算出拟合直线的方程。

4.模型评估:通过误差分析、残差分析等方法来评估模型的拟合效果和预测能力。

5.模型应用:利用已建立的模型进行预测和推断,帮助决策和预测未来的结果。

三、线性回归的应用实例线性回归可以应用于各个领域和实际问题中,下面以几个典型的实例来说明其应用:1.经济学:通过分析自变量(如GDP、通货膨胀率)对因变量(如消费水平、投资额)的影响,可以建立GDP与消费的线性回归模型,预测未来消费水平。

2.市场营销:通过分析广告投入与销售额之间的关系,可以建立销售额与广告投入的线性回归模型,帮助制定广告投放策略。

3.医学研究:通过收集患者的生理指标(如血压、血糖水平)和疾病状况,可以建立生理指标与疾病发展程度的线性回归模型,帮助疾病诊断和治疗。

4.金融风险管理:通过分析利率、汇率等宏观经济变量与企业盈利、股价波动之间的关系,可以建立风险预警模型,帮助企业进行风险控制和决策。

线性回归分析-PPT课件

线性回归分析-PPT课件

总离差平方和:
S S S T R E
R
回归均方差(组间方差): M

2 ( Y y ) j jME
(Y
j 1
m
j
yj )
2
m n 1
计算F值,
M F M
R E
由F值查表,得到P。讨论显著度水平: <=α 自变量作用显著 P >α 自变量作用不显著
将未进入方程的某自变量Xi与Y做方差分析,各水平均值差异显著,满足: F > 3.84 或P<= 0.05 则该Xi可以进入回归方程。而已进入回归方程的Xi与回归后的Y如果出现: F < 2.71 , P> 0.1 则该Xi 必须从回归方程中剔除。 3. 回归系数的显著性检验 对已进入方程的变量的回归系数做 T检验,该检验的原假设是 Bi=0,即第 i 个偏回归系数与0无差异。它意味着,当偏回归系数Bi为0时,无论xi取值如何变 化都不会引起y 的线性百脑汇,xi无法解释y 的线性变化,它们之间不存在线性 关系。 T值的计算为: B
四、线性回归分析的具体操作步骤 ⒈回归分析命令菜单
执行:[Analyze] [Regression] [Linear] 选择因变量到:“Dependent”因变量框内 选择若干个自变量移动到:“Independent(s)” 自变量 框内。
⒉回归方法
“Method”下拉菜单提供了五种筛选策略供选择: 强行介入法Enter(默认,通常在一元线性回归中) 向前筛选Forward 向后筛选Backward 逐步筛选Stepwise 强行剔除Remove
T

i
SE
通过查表可以得到P(即:Sig T)。 若P> 0.1的Xi须可以考虑首先从回归方程中剔除。 其中: Bi为偏回归系数 SEBi为偏回归系数的标准误

第五讲 回归分析

第五讲 回归分析

2013-7-21
三峡大学
经济与管理学院
Anovab 模型 1 回归 残差 总计 模型 1 (常量) 农作物总的耕种面积 人均粮食占有量 有效灌溉面积 化肥施用量 平方和 29241179.832 1922610.196 31163790.028 df 4 26 30 均方 7310294.958 73946.546 F 98.859 Sig. .000
度量某个点对回归拟合的影响。一 般情况下值大于0.06就要引起注意。
2013-7-21
三峡大学
经济与管理学院
练习:
数据data5-2是某企业1987~1998年的经济
效益、科研人员、科研经费的统计数据。假定 1999年该企业科研人员61名、科研经费40万元, 试预测1999年该企业的经济效益。
2013-7-21
4.删除法
强迫将所有不进入方程模型的备选变量一次剔除。
2013-7-21
三峡大学
经济与管理学院
例二: 已知全国各地区的粮食生产情况,给出了人均粮 食占有量(公斤)、粮食产量(万吨)、农作物总的 播种面积(千公顷)、有效灌溉面积(千公顷)以及 化肥施用量(万吨)。试以粮食产量为因变量。其他 变量为自变量进行多元线性回归分析,建立回归方程?
2013-7-21
三峡大学
经济与管理学院
2.向前选择法(Forward Selection)
(1)算出因变量和每个自变量的相关系数,选择具有最大 相关系数的自变量进入回归模型; (2)对回归系数进行检验,如果检验结果是回归系数为零 ,则放弃回归方程,否则进入下一步; (3)在上一步的方程中选入的自变量作为控制变量,分别 计算因变量与其他自变量的偏相关系数,将具有偏相关系数 绝对值最大的自变量选入回归方程,并对相应回归系数进行 检验,如果检验结果是回归系数为零,则停止进一步选择, 有效方程为前一步所建的方程,否则进行下一步的选择; (4)重复第三步,但增加取固定影响的变量数,减少可被 选择的自变量,直到所选变量未通过检验,前一步所建的方 程为最后方程。

完整的计量经济学 计量经济学第五章 线性回归的PPT课件

完整的计量经济学 计量经济学第五章  线性回归的PPT课件
被忽略的因素对被解释变量的影响,会从 误差项中表现出来,导致误差不再是纯粹 的随的变量关系为
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y

D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2

线性回归分析

线性回归分析
这里着重讨论简单而又最一般的线性 回归问题,这是因为许多非线性的情形可 以化为线性回归来做。多元线性回归分析 的原理与一元线性回归分析完全相同,但 在计算上却要复杂得多。
第五节 多元线性回归分析
一、多元线性回归分析概述
多元线性回归模型
y 0 1x1 2x2 L mxm
式中β0 β1 β2 … βm 为〔偏〕回归系数 多元线性回归方程
由x预测y时,y有一定的误差,其标准误差为:
sy se
1 1 x x 2
n SSx
因此由x预测y时,y 的95%置信区间为:
yˆ t0.05 sy
实例: 由x预测y的预测区间
第一步:计算当x=2500时, y 的点估计值:
yˆ 190.955 0.094868 2500 428.125
实例:t 检验
dfe n 2 10 2 8, t0.05 2.306,t0.01 3.355 | t | 18.14 t0.01 3.355
结论:回归关系极显著,可得线性回归方程
yˆ 190.955 0.094868x
用光照强度来预测净光合强度是合理的。
第四节 预测值的置信区间
C(i+1)(i+1)为矩阵(X’X)-1的(i+1)(i+1)元素 Q 为误差平方和,自由度:df=n-m-1
第五节 多元线性回归分析
2、回归系数的假设检验
2〕F检验 原假设 H0 :βi=0
统计量为: F
Ui
bi2 / c(i1)(i1)
Q / n m 1 Q / n m 1
其中:Ui 为xi对y的回归平方和,Q 为误差平方和 C(i+1)(i+1)为矩阵(X’X)-1的(i+1)(i+1)元素 自由度:df1 = 1 df2 = n-m-1

spss第五讲回归分析PPT课件

spss第五讲回归分析PPT课件
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)


0




0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值

线性回归分析方法

线性回归分析方法

线性回归分析方法线性回归是一种常用的统计分析方法,用于研究自变量与因变量之间的线性关系。

本文将介绍线性回归的基本原理、模型假设、参数估计方法以及结果解释等内容,帮助读者更好地理解和应用线性回归分析方法。

一、线性回归的基本原理线性回归假设自变量和因变量之间存在线性关系,通过拟合一个线性方程来描述这种关系。

假设我们有一个因变量Y和一个自变量X,线性回归模型可以表示为:Y = β0 + β1X + ε其中,β0是截距,β1是自变量的回归系数,ε是误差项,表示模型无法完全解释的因素。

线性回归的目标是找到最佳的回归系数,使得预测值与真实值之间的误差最小化。

二、线性回归的模型假设在线性回归分析中,有几个关键的假设前提需要满足:1. 线性关系假设:自变量和因变量之间的关系是线性的。

2. 独立性假设:观测样本之间是相互独立的,误差项之间也是独立的。

3. 同方差性假设:误差项具有相同的方差,即误差项的方差在不同的自变量取值下是恒定的。

4. 正态性假设:误差项服从正态分布。

如果以上假设不满足,可能会导致线性回归分析的结果不可靠。

三、线性回归的参数估计方法线性回归的参数估计方法通常使用最小二乘法(Ordinary Least Squares, OLS)来确定回归系数。

最小二乘法的思想是通过最小化观测值与估计值之间的残差平方和来拟合回归模型。

具体而言,我们可以通过以下步骤来估计回归系数:1. 计算自变量X和因变量Y的均值。

2. 计算自变量X和因变量Y与其均值的差。

3. 计算X与Y的差乘积的均值。

4. 计算X的差的平方的均值。

5. 计算回归系数β1和β0。

四、线性回归模型的结果解释线性回归模型的结果可以用来解释自变量对因变量的影响程度以及回归系数的显著性。

通常我们会关注以下几个指标:1. 回归系数:回归系数β1表示自变量X单位变化时,因变量Y的平均变化量。

回归系数β0表示当自变量X为零时,因变量Y的平均值。

2. R平方:R平方是衡量模型拟合优度的指标,它表示因变量Y的变异中有多少百分比可以由自变量X来解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
n
n
Q(aˆ, bˆ) ui2 ( yi yˆi )2 ( yi aˆ bˆxi )2
i 1
i 1
i 1
•由
Q aˆ

0,
Q bˆ

0
• 求得 aˆ , bˆ
参数估计
(Q) 2

(yi aˆ bˆxi )
2( yi naˆ bˆ xi ) 0
第五讲回归分析复习源自R语言的相关分析:states<-state.x77[,1:6] cov(states) cor(states) cor(states,method = "spearman") cor(mtcars,method = "kendall")
复习
复习
双变量关系的统计类型
定类
定类
列联
cross-tabulate
定序 列联 cross-tabulate
定距 方差分析(分组平均数)
compare means
Cross-tabulate
定序
Cross-tabulate
列联 cross-tabulate
斯皮尔曼相关 spearman correlation
斯皮尔曼相关 spearman correlation
二、回归分析的意义
Karl Gauss的最小化图
y
(xn , yn)



(x2 , y2)


ei = yi-^yi

(x1 , y1)
(xi , yi)
yˆ βˆ 0 βˆ1x
x
一、回归分析的来源
最小二乘法 • 设已知n组数据(x1,y1),( x2,y2)… (xn,yn), • 模型: yˆi aˆ bˆxi • 误差ui= yi yˆi • 误差的平方和
编号
1 2345678
身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
解:1、选取身高为自变量x,体重为因变量y,作散点图:
2、由散点图知道身高和体重有比较 好的线性相关关系,因此可以用线性 回归方程刻画它们之间的关系。
一、回归分析的来源
此后,统计学家皮尔逊又用观察数据证实了这一现象,从而 产生了回归(Regression)这一名称。回归分析的核心是 “最小二乘法”,这种方法早在18世纪就被高斯应用于行星 轨道的测定。1801年,意大利天文学家朱赛普·皮亚齐发现 了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神 星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后 全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但 是根据大多数人计算的结果来寻找谷神星都没有结果。时年 24岁的高斯也计算了谷神星的轨道,奥地利天文学家海因里 希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高 斯使用的最小二乘法的方法发表于1809年他的著作《天体运 动论》中。
皮尔逊相关 pearson correlation
定距
Cross-tabulate
Multinominal Logistic Regression
Ordinal Regression
皮尔逊相关 pearson correlation
回归 regression
复习
双变量关系强度测量的主要指标
定类
定序
yi naˆ bˆ xi
(Q)


2
(yi ˆ1 ˆ2xi )(xi )
2(
(yixi

aˆxi

bˆ x
2 i
)
2( yixi aˆ xi bˆ xi2) 0

yixi aˆ
xi bˆ
x
2 i
正规方程
定距
定类 定序
定距
置信系数
Contingency Coefficient
置信系数
Eta 系数
l Spearman 相关系数
l 同序 - 异序 对测量
??
Spearman 相 关系数
Pearson 相关 系数 ??
一、回归分析的来源
回归分析最早来源于生物学,英国生物统计学家高尔顿 ( Galton ),他根据1078对父、子身高的散布图发现,虽然身 材高的父母比身材矮的父母倾向于有高的孩子。但平均而言,身 材高大的父母,其孩子要矮一些(思考:姚明的孩子会比他高 吗?),而身材矮小的父母,其孩子要高大一些(你比自己的父 或母身材高一些吗?)。无论高个子还是矮个子的后代,他们都 有向均值方向拉回的倾向。高尔顿将这种遗传上退化到平庸的现 象称为回归。
最小二乘法通过最小化误差的平方和(即∑(Yi-Yim)2)寻找数据 的最佳函数匹配,它可以非常简便地求未知数据,并使得这 些求得数据与实际数据间的误差平方和最小。最小二乘法还 可用于曲线拟合,一些优化问题也可通过最小化能量或最大 化熵用最小二乘法来表达。
一、回归分析的来源
德国科学家Karl Gauss(1777—1855)提出用最小化图中垂直方 向的误差平方和来估计参数。
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
分析:由于问题中 要求根据身高预报 体重,因此选取身 高为自变量,体重 为因变量.
1. 散点图;
2.回归方程: yˆ 0.849x 85.172
身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
最小二乘法指的是各观察值到估计直线(估计值)间的铅垂直 线距离之和最小。
设从总体中抽取一个样本,其观测值为: (x1,y1)(x2,y2)(x3,y3)……(xn,yn) 现在围绕这n个观测点画一条直线,直线方程为:
y=a+bx 则有无数条直线,哪条直线是n个样本点的最佳拟合直线?答案
是各点都比较接近的那条直线为最佳直线。 最小二乘法原理便可求出这样一条直线。
naˆ bˆ xi yi

xi bˆ
x
2 i

yi xi
一、回归分析的来源
回归分析现在已应用于多个领域,比如气温与旅游、 产品价格与销量、房地产投资与地方经济等。
思考:你身边有哪些现象可以用回归分析解释?
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
相关文档
最新文档