材料力学第9章压杆稳定习题解
材料力学简明教程(景荣春)课后答案第九章
解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
材料力学_压杆稳定
π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学第九章 压杆稳定 答案
第九章 压杆稳定
一、什么是压杆稳定?
二、临界压力的计算方法?
三、压杆的稳定性条件?
四、一根两端铰支钢杆,所受最大压力KN P 8.47=。
其直径mm d 45=,长度mm l 703=。
钢材的E =210GPa ,p σ=280MPa ,2.432=λ。
计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=461-2.568λ(MPa)。
试:(1)判断此压杆的类型;(2)求此杆的临界压力。
解:(1) 1=μ 86
21==P E σπλ 5.624
===d l i
l μμλ 由于12λλλ<<,是中柔度杆。
(2)MPa cr 301568.2461=-=λσ
kN A P cr cr 478==σ
四、图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序为?
六、图示托架各杆均以圆柱形铰链
联接和支承,BC 杆直径d =40mm ,
材料为A 3钢,压杆的大柔度限值
λ1=100,λ2=60。
试判定压杆BC 的类型和该杆临界应力的计算公式。
(14分)
解 惯性半径为 104
===d A I i z mm (4分)
柔度为 83.80==i
l μλ (4分) 属于中长杆,用经验公式计算临界应力,即 λσb a cr -= (6分)。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】
所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸
2020年材料力学习题册答案-第9章 压杆稳定
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
《材料力学》第9章压杆稳定习题解
v
MM
e'kkx
esin
(1coskx)
v
PP
crcr
M
e
边界条件:③xL;v0:0(1coskL)
P
cr
,1coskL0
Mቤተ መጻሕፍቲ ባይዱ
'esin
④x0v0:0kkLsinkL0
P
cr
以上两式均要求:kL2n,(n0,1,3,......)
5
2
L
。故有:
k
2
2
(0.5L)
2
P
cr
EI
其最小解是:kL2,或
Pcr
2
EI
min
2
(2.l)
?为什么?并由此判断压杆长因数是否可能大于2。
2
螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为l的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的
度系数。
(a)l155m
(b)l0.774.9m
(c)l0.594.5m
(d)l224m
(e)l188m
(f)l0.753.5m(下段);l0.552.5m(上段)
故图e所示杆
F最小,图f所示杆Fcr最大。
cr
[习题9-3]图a,b所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性
地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为
失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳
材料力学:第九章 压杆稳定问题
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
压杆稳定习题及答案
压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
09 第9章 压杆稳定
An
4 稳定性校核步骤:
•计算柔度 •判断压杆类型并计算临界应力或临界压力 •稳定性校核
【例9.3】 千斤顶如图9.6所示,丝杠长度,螺纹内径,材料为
45钢,最大起重重量为F=80kN,规定的稳定安全因数[nst]=4,
试校核丝杠的稳定性。 解:(1) 计算柔度。
丝杠可以简化为下端固定,上端自由的压 杆,因此长度因数取μ=2。
稳定失效:压杆丧失稳定性而破坏,具有突发性
逐渐成为构件或结构安全工作的控制条件
称为临界压力
稳定 平衡
Pcr
不稳定 平衡
§9.2 细长压杆的临界载荷的计算及欧拉公式
9.2.1 两端铰支细长压杆的临界载荷的计算
Pcr
y
Pcr
x
M (x) Pcr w M M (x) EIw''
EIw'' Pcr w 0
解: (1) 计算截面的极惯性矩
I min
0.05 0.033 12
m4
11.25 108 m 4
(2) 两端为铰支约束,则代入欧拉公式得
Pcr
2EI l2
2
9 109
11.25 108 1
N
10kN
所以,当杆的轴向压力达到10kN时, 此杆就会丧失稳定。
9.3 欧拉公式的适用范围·经验公式
记:2
a
s
b
a s
b
2 1 ——直线公式的适用范围
——这种压杆称为中柔度杆或中长杆
2 的压杆 ——小柔度杆或短粗杆
不存在失稳问题,应考虑强度问题
cr s
经验公式中,抛物线公式的表达式为
《材料力学》第9章压杆稳定习题解[整理]
第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式。
试分析当分别取图b,c,d 所示坐标系及挠曲22l EIP cr π=线形状时,压杆在作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得公cr F cr F 式又是否相同。
解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。
因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是。
(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw -=,显然,这微分方程与(a )的微分方程不同。
)("x M EIw =临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。
因此,以上四种情形的临界力具有相同的公式,即:。
22l EIP cr π=[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:。
由这公式可知,对于材料和截面相同的压22).(l EI P cr μπ=杆,它们能承受的压力与 原压相的相当长度的平方成反比,其中,为与约束情况有l μμ关的长度系数。
(a )ml 551=⨯=μ(b )ml 9.477.0=⨯=μ(c )ml 5.495.0=⨯=μ(d )ml 422=⨯=μ(e )ml 881=⨯=μ(f )(下段);(上段)m l 5.357.0=⨯=μm l 5.255.0=⨯=μ故图e 所示杆最小,图f 所示杆最大。
cr F cr F[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。
试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数是否可能大于2。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
2.压杆分类(见表 9-1-4) 表 9-1-4 压杆分类
3.折减弹性模量理论(见表 9-1-5)
3 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
表 9-1-5 折减弹性模量理论
4.压杆的临界应力总图 压杆临界应力 σcr 与柔度 λ 的关系曲线称为压杆的临界应力总图。当压杆的柔度很小时, 以屈服界限 σs 作为临界应力。临界应力总图的绘制如图 9-1-1 所示。
图 9-1-1 临界应力总图
4 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、实际压杆的稳定因数 实际压杆的稳定许用应力与稳定因数的确定见表 9-1-6。
表 9-1-6 稳定许用应力与稳定因数
五、压杆的稳定计算·压杆的合理截面 1.压杆的稳定计算(见表 9-1-7)
6 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 9-2-1 令 k2=Fcr/EI,可得:w″+k2w=k2Me/Fcr。则该微分方程的通解:w=Asinkx+ Bcoskx+Me/Fcr。 其一阶导为:w′=Akcoskx-Bksinkx,由边界条件 x=0,w=0,w′=0 可确定积分 常数:A=0,B=-Me/Fcr。故方程的通解:w=-Mecoskx/Fcr+Me/Fcr。 又由 x=l,w=0 得:-Mecoskx/Fcr+Me/Fcr=0,即 coskl=1,kl=2nπ(n=1, 2,3…),取其最小解 kl=2π,则压杆的临界力 Fcr 的欧拉公式 Fcr=4π2EI/l2=π2EI/ (0.5l)2。 9-2 长 5m 的 10 号工字钢,在温度为 0℃时安装在两个固定支座之间,这时杆不受 力。已知钢的线膨胀系数 αl=125×10-7(℃)-1,E=210GPa。试问当温度升高至多少 度时,杆将丧失稳定? 解:设温度升高 Δt 时,杆件失稳。
材料力学习题册答案-第9章压杆稳定
材料力学习题册答案-第9章压杆稳定第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A 、弯曲变形消失,恢复直线形状;B 、弯曲变形减少,不能恢复直线形状;C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C )A 、完全消失B 、有所缓和C 、保持不变D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m ,直径50mm 。
其柔度为 ( C )A.60;B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小;9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤ PEπσ B 、λ≤sEπσC 、λ≥ P Eπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学第9章 压杆稳定(土木)
2.1922年冬天下大雪,美国华盛 . 年冬天下大雪, 年冬天下大雪 顿尼克尔卜克尔剧院由于屋顶结 构中的一根压杆超载失稳,造成 构中的一根压杆超载失稳, 一根压杆超载失稳 剧院倒塌, 余人。 剧院倒塌,死98人,伤100余人。 人 余人
3.2000年10月25日 . 年 月 日 上午10时 分 上午 时30分,在南京 电视台演播中心演播厅 屋顶的浇筑混凝土施工 顶的浇筑混凝土施工 中,因脚手架失稳,造 脚手架失稳, 成演播厅屋顶模板倒塌, 成演播厅屋顶模板倒塌, 死5人,伤35人。 人 人
欧拉公式与精确解曲线 精确解曲线
F =1.152F 时,
cr
δ ≈ 0.3l
理想受压直杆 非理想受压直杆
y
适用条件: 适用条件: •理想压杆(轴线为直线,压力与 理想压杆(轴线为直线, 理想压杆 轴线重合,材料均匀) 轴线重合,材料均匀) •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座
hb3 Iz = = 32cm 4 12
µl
iz =
Iz 32 = = 1.155cm A 4× 6
x
h
µ z = 0.5,
0.5 × 2 λz = = = 86.6 −2 iz 1.155 ×10
A3钢的λs= 61.6, λs<λ< λp,属于中 钢的 , 长压杆稳定问题。 长压杆稳定问题。 由表9-2查得 由表 查得: 查得
挠曲线的近似微分方程 挠曲线的近似微分方程
d w M =− dx EI
2
2
d w Fw =− 2 dx EI
引入记号
2
F w′′ + w = 0 EI
F k = EI
2
w′′ + k w = 0
材料力学第九章4-6压杆稳定
A C D B
1m E
1m F
1.5m
1m
算例3
图示结构, AB为18号工字钢梁,[]=120MPa, CD为两端铰链约束的圆截面钢杆,d=24mm, P=100, S=61.4, [n]st=2.8。 要求: 结构的许用载荷Pmax=?
P
A
C
3m D
B
1.8m
1m
解题思路
1 校核时,必须先按梁AB的强度估算一个许用载荷 Pmax 。 2 Pmax 。 再按杆CD梁的稳定要求,估算第二个许用载荷
图示结构, AB为18号工字钢梁,[]=120MPa, CE和DF均为两端铰链约束的圆截面钢杆, d=24mm, P=100, S=61.4。 求:结构整体失稳时的理论极限载荷Pmax=?
P
A C D B
1m E
1m F
1.5m
1m
解题思路
由于CE和DF杆与结构是并联关系,只有CE和DF杆都 失稳时,才导致结构整体失稳。( DF杆先失稳, 此后杆内力保持不变为Pcr)因此,应当按照两压杆 的临界载荷Pcr对A点取力矩平衡而求出结构的理论 极限载荷Pmax。
思考:
如对于大柔度杆误用了经验公式,或对 于中柔度杆误用了欧拉公式,所得临界 应力比实际值大还是小?
算例1
分析: 哪一根压杆的 临界载荷比较大;
分析: 哪一根压杆的临界载荷比较大:
Pcr= crA , cr
E
2
2
= l / i , i a=20/d ,
I A
d 4
b=18/d .
b d A h C 3m 1.8m
B
解题思路
由于CE和DF杆与结构是串联关系,只要两杆中有 一根杆失稳,就导致结构整体失稳。 先求出AC杆和CB杆的临界载荷Pcr,再按静不定 杆方法,求出杆AC和杆CB的轴力。最后就可校 核系统的稳定性。
刘鸿文《材料力学》(第5版)课后习题(压杆稳定)【圣才出品】
解:根据公式计算得: 挺杆横截面面积: 截面的惯性半径:
1 / 28
圣才电子书
十万种考研考证电子书、题库视频学习平 台
则挺杆柔度:
因此,使用欧拉公式计算挺杆的临界压力
压杆的工作安全因数:
规定的稳定安全因数为 nst 3 ~ 5 ,所以挺杆满足稳定要求。
9.3 图 9-1 所示蒸汽机的活塞杆 AB,所受的压力 F=120 kN,l=180 cm,横截面 为圆形,直径 d=7.5 cm。材料为 Q255 钢,E=210 GPa,σP=240 MPa。规定 nst=8,试校核活塞杆的稳定性。
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 9 章 压杆稳定
9.1 某型柴油机的挺杆长度 l=25.7 cm,圆形横截面的直径 d=8 mm,钢材的 E=210 GPa,σP=240 MPa。挺杆所受最大压力 F=1.76 kN。规定的稳定安全因数 nst=2~5。试校核挺杆的稳定性。
6 / 28
圣才电子书
nst=3,试求许可载荷 F。
十万种考研考证电子书、题库视频学习平 台
图 9-6 解:由于支架的对称性,三根杆所承受的压力相等,即当三根杆同时达到临界值时,
支架开始失稳。任取一根杆进行研究,设其受力为 F ' 。
又该杆的惯性半径:
则其柔度: 由此可知其为大柔度杆,故由欧拉公式计算其临界压力:
其稳定性。
图 9-3
解:对于 Q235 钢, E 200GPa, s 240MPa, p 200MPa ,则有:
4 / 28
圣才电子书
十万种考研考证电子书、题库视频学习平 台
。
又查表得 a 304MPa,b 1.12MPa ,则
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
支 承
两端铰接 情 况 失 稳 时 挠 曲 线 的 形 状 欧 拉 公 式
表 9-2
一端固定一段 铰接
两端固定
一 端 固 定 一 端 两端固定但可沿
自由
横截面相对移动
3 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)柔度或长细比 临界应力可表示为
4 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
式中,λ 为柔度或长细比,
,集中反应了压杆的长度、约束条件、截面尺寸
和形状等因素对临界应力 σcr 的影响。λ 越大,相应的 σcr 越小,压杆越容易失稳。 注意:若压杆在不同平面内失稳时的支承约束条件不同,应分别计算在各平面内失稳时
杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端
在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为
其相应中性轴的惯性矩。
三、欧拉公式的适用范围及临界应力总图 1.相关概念 (1)临界应力:与临界压力 Fcr 对应的应力,用 σcr 表示,即
2.提高压杆稳定性的措施
影响压杆稳定的因素包括压杆的截面形状、长度和约束条件、材料的性质等。因而,提
6 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
高压杆稳定性的措施主要包括以下三个方面: (1)选择合理的截面形状 截面的惯性矩 I 越大,或惯性半径 i 越大,稳定性越好。 ①在截面积相等的情况下,尽可能将材料放在离截面形心较远处,使 I 或 i 较大,如图
应力
达到限值
小于限值
材料力学-第9章压杆的稳定问题
0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B 不全为零的条件是他们的系数行列式等于零:
FP F FP P
FP>FPcr :在扰动作用下, 直线平衡构形转变为弯曲平 衡构形,扰动除去后, 不能恢复到直线平衡构形, 则称原来的直线平衡构形 是不稳定的。
第9章 压杆的稳定问题
压杆稳定的基本概念
当压缩载荷大于一定的数值时,在任意微小的外界扰动下, 压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程 称为屈曲(buckling)或失稳(lost stability)。对于细长压杆, 由于屈曲过程中出现平衡路径的分叉,所以又称为分叉屈曲 (bifurcation buckling)。 稳定的平衡构形与不稳定的平衡构形之间的分界点称为临 界点(critical point)。对于细长压杆,因为从临界点开始, 平衡路径出现分叉,故又称为分叉点。临界点所对应的载荷称 为临界载荷(critical load)或分叉载荷(bifurcation load), 用FP表示。
第9章 压杆的稳定问题
压杆稳定的基本概念
在很多情形下,屈曲将导致构件失效,这种失 效称为屈曲失效(failure by buckling)。由于屈曲 失效往往具有突发性,常常会产生灾难性后果,因 此工程设计中需要认真加以考虑。
孙训方材料力学09压杆稳定
B
11
材 料 力 学 x
Fcr
Fcr M(x)=Fcr w m w B m x y
l m
m x
B y
m-m 截面的弯矩
M ( x) Fcr w
材 料 力 学
杆的挠曲线近似微分方程
EIw M ( x) Fcr w (a)
''
Fcr M(x)=Fcr w m x m
令 得
Fcr k EI
材 料 力 学
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩. 取 Iy 、Iz 中小的一个计算临界力。 若杆端在各个方向的约束情况不同(如柱 形铰),应分别计算杆在不同方向失稳时的临 x y z
界压力。 I 为其相应中性轴的惯性矩。
π 2 EI Fcr ( l )2
l—相当长度
—长度因数
材 料 力 学
π 2 EI Fcr 2 ( l )
讨 论 (1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度 l 。
l是各种支承条件下,细长压杆失稳时,挠曲线中相当
于半波正弦曲线的一段长度。
材 料 力 学
解:
E p π 100 σp
压杆 = 1
i
I A
π( D d ) 1 2 2 64 D d π( D 2 d 2 ) 4 4
4 4
lmin
l
i
4l D2 d 2
2
p 100
2
100 0.05 0.04 1.6m 41
y yl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式22lEIP cr π=。
试分析当分别取图b,c,d 所示坐标系及挠曲线形状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。
解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。
因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是)("x M EIw -=。
(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。
临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。
因此,以上四种情形的临界力具有相同的公式,即:22lEIP cr π=。
[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)解:压杆能承受的临界压力为:22).(l EIP cr μπ=。
由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长度系数。
(a )m l 551=⨯=μ (b )m l 9.477.0=⨯=μ (c )m l 5.495.0=⨯=μ (d )m l 422=⨯=μ (e )m l 881=⨯=μ(f )m l 5.357.0=⨯=μ(下段);m l 5.255.0=⨯=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。
[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。
试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数μ是否可能大于2。
螺旋千斤顶(图c )的底座对丝杆(起顶杆)的稳定性有无影响校核丝杆稳定性时,把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆是否偏于安全解:临界力与压杆两端的支承情况有关。
因为(a)的下支座不同于(b)的下支座,所以它们的临界力计算公式不同。
(b)为一端固定,一端自由的情况,它的长度因素2=μ,其临界力为:2min2).2(l EI P cr π=。
但是,(a) 为一端弹簧支座,一端自由的情况,它的长度因素2≠μ,因此,不能用2min2).2(l EI P cr π=来计算临界力。
为了考察(a )情况下的临界力,我们不妨设下支座(B )的转动刚度lEIMC 20==ϕ,且无侧向位移,则:)()("w F x M EIw cr -=-=δ令2k EIF cr=,得: δ22"k w k w =+ 微分方程的通解为:δ++=kx B kx A w cos sin kx Bk kx Ak w sin cos '-= 由边界条件:0=x ,0=w ,CF C M w cr δϕ===';l x =,δ=w 解得: Ck F A cr δ=,δ-=B ,δδδδ+-=kl kl CkF cr cos sin 整理后得到稳定方程:20/tan ==lEI Ckl kl 用试算法得: 496.1=kl故得到压杆的临界力:222)1.2()496.1(l EIl EI F cr π==。
因此,长度因素μ可以大于2。
这与弹性支座的转动刚度C 有关,C 越小,则μ值越大。
当0→C 时,∞→μ。
螺旋千斤顶的底座与地面不是刚性连接,即不是固定的。
它们之间是靠摩擦力来维持相对的静止。
当轴向压力不是很大,或地面较滑时,底座与地面之间有相对滑动,此时,不能看作固定端;当轴向压力很大,或地面很粗糙时,底座与地面之间无相对滑动,此时,可以看作是固定端。
因此,校核丝杆稳定性时,把它看作上端自由,下端为具有一定转动刚度的弹性支座较合适。
这种情况,2>μ,算出来的临界力比“把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆”算出来的临界力要小。
譬如,设转动刚度lEIMC 20==ϕ,则: 1025.121.222==弹簧固端cr cr P P ,弹簧固端,1025.1cr cr P P =。
因此,校核丝杆稳定性时,把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆不是偏于安全,而是偏于危险。
[习题9-4] 试推导两端固定、弯曲刚度为EI ,长度为l 的等截面中心受压直杆的临界应力cr P 的欧拉公式。
[解]:设压杆向右弯曲。
压杆处于临界状态时,两端的竖向反力为cr P ,水平反力为0,约束反力偶矩两端相等,用e M 表示,下标e 表示端部end 的意思。
若取下截离体为研究对象,则e M 的转向为逆转。
e cr M x v P x M -=)()()()("x v P M x M EIv cr e -=-= e cr M x v P EIv =+)("EI M x v EI P v e cr =+)(",令EI P k cr =2,则 EIP k cr 12=creP M k v k v 22"=+ 上述微分方程的通解为:creP M kx B kx A v ++=cos sin …………………………….(a) kx Bk kx Ak v sin cos '-=边界条件:① 0=x ;0=v : cr e P M B A ++=0cos 0sin 0;cre P MB -=。
② 0=x 0'=v :0sin 0cos 0Bk Ak -=;0=A 。
把A 、B 的值代入(a )得: )cos 1(kx P M v cr e -= kx k P Mv cre sin '⋅=边界条件:③ L x =;0=v :)cos 1(0kL P M cre-=, 0cos 1=-kL ④ 0=x 0'=v :kL k P M cresin 0⋅=0sin =kL 以上两式均要求:πn kL 2=,,......)3,1,0(=n其最小解是:π2=kL ,或L k π2=。
故有:EI P L k cr ==222)5.0(π,因此: 22)5.0(L EIP cr π=。
[习题9-5] 长m 5的10号工字钢,在温度为C 00时安装在两个固定支座之间,这时杆不受力。
已知钢的线膨胀系数107)(10125--⨯=C l α,GPa E 210=。
试问当温度升高至多少度时,杆将丧失稳定性 解:[习题9-6] 两根直径为d 的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。
试根据杆端的约束条件,分析在总压力F 作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F 之临界值的算式(按细长杆考虑),确定最小临界力cr P 的算式。
解:在总压力F 作用下,立柱微弯时可能有下列三种情况: (a )每根立柱作为两端固定的压杆分别失稳:(b )两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c )两根立柱一起作为下端固定而上端自由的体系在面外失稳故面外失稳时cr P 最小:243128lEd P cr π=。
[习题9-7] 图示结构ABCD 由三根直径均为d 的圆截面钢杆组成,在B 点铰支,而在A 点和C 点固定,D 为铰接点,π10=dl。
若结构由于杆件在平面ABCD 内弹性失稳而丧失承载能力,试确定作用于结点D 处的荷载F 的临界值。
解:杆DB 为两端铰支 ,杆DA 及DC 为一端铰支一端固定,选取 。
此结构为超静定结构,当杆DB 失稳时结构仍能继续承载,直到杆AD 及DC 也失稳时整个结构才丧失承载能力,故2024.36l EI =[习题9-8] 图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。
若由于杆件在平面ABC 内失稳而引起毁坏,试确定荷载F 为最大时的θ角(假设20πθ<<)。
解:要使设计合理,必使AB 杆与BC 杆同时失稳,即:θπcos 22,F l EIP ABAB cr ==θπsin 22,F l EIP BCBC cr ==βθθθ22cot )(tan cos sin ===BCAB l l F F)arctan(cot 2βθ=[习题9-9] 下端固定、上端铰支、长m l 4=的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b 类截面中心受压杆的要求。
已知杆的材料为Q235钢,强度许用应力MPa 170][=σ,试求压杆的许可荷载。
解:查型钢表得:m[习题9-10] 如果杆分别由下列材料制成:(1)比例极限MPa P 220=σ,弹性模量GPa E 190=的钢; (2)MPa P 490=σ,GPa E 215=,含镍%的镍钢; (3)MPa P 20=σ,GPa E 11=的松木。
试求可用欧拉公式计算临界力的压杆的最小柔度。
解:(1)(2)(3)[习题9-11] 两端铰支、强度等级为TC13的木柱,截面为150mm ×150mm 的正方形,长度m l 5.3= ,强度许用应力MPa 10][=σ。
试求木柱的许可荷载。
解:由公式(9-12a ):[习题9-12] 图示结构由钢曲杆AB 和强度等级为TC13的木杆BC 组成。
已知结构所有的连接均为铰连接,在B 点处承受竖直荷载kN F 3.1=,木材的强度许用应力MPa 10][=σ。
试校核BC 杆的稳定性。
解:把BC 杆切断,代之以轴力N ,则0=∑AM01sin 1cos 13.1=⨯-⨯-⨯C N C NCC N cos sin 3.1+=8.05.122sin 22=+=C6.05.125.1cos 22=+=C)(929.06.08.03.1kN N =+=)(213333404012112433mm bh I =⨯⨯==)(547.114040213333mm AI i =⨯==915.216547.11105.213>=⨯⨯==i lμλ由公式(9—12b )得:0597.05.2162800280022===λϕ MPa st 597.0100597.0][][=⨯==σϕσMPa mmN A N 581.040409292=⨯==σ 因为st ][σσ<,所以压杆BC 稳定。
A[习题9-13] 一支柱由4根mm mm mm 68080⨯⨯的角钢组成(如图),并符合钢结构设计规范中实腹式b 类截面中心受压杆的要求。