凸轮机构的设计计算和运动分析

合集下载

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。

在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。

一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。

根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。

根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。

二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。

几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。

图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。

对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。

根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。

对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。

首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。

三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。

凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。

弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。

而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。

四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。

凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。

配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。

凸轮机构的设计和计算详解

凸轮机构的设计和计算详解

凸轮机构的设计和计算详解1. 引言凸轮机构是一种常见的机械传动装置,通过凸轮的运动来实现对其他部件的控制和驱动。

凸轮机构广泛应用于发动机、机械加工、自动化设备等领域。

在本文中,我们将详细介绍凸轮机构的设计和计算方法。

2. 凸轮机构的基本原理凸轮机构由凸轮、从动件和控制件组成。

凸轮通过旋转或移动的方式,驱动从动件进行线性或旋转运动。

不同凸轮形状和运动方式将实现不同的功能。

3. 凸轮的设计要点凸轮的设计涉及凸轮形状、凸轮面积、凸轮运动规律等方面。

在进行凸轮设计时,需要考虑以下要点:•运动要求:根据从动件需要的运动类型(线性或旋转)、速度和加速度要求,确定凸轮的形状和运动规律。

•动态负载:凸轮在运动过程中所承受的动态负载应被考虑在内,以确保凸轮的强度和耐久性。

•材料选择:根据凸轮的工作条件和负载要求,选择适当的材料来制造凸轮,以保证其可靠性和寿命。

4. 凸轮机构的计算方法4.1 凸轮剖面的计算凸轮剖面的计算是凸轮机构设计中的重要一环。

根据凸轮的运动规律和从动件的运动要求,可以进行凸轮剖面的计算。

常用的凸轮剖面计算方法有:•凸轮剖面生成法:根据从动件的运动要求,通过几何构造和插值计算,生成凸轮剖面。

•凸轮运动分析法:通过分析凸轮的运动规律和从动件的运动要求,推导出凸轮剖面的数学表达式。

4.2 凸轮机构的运动学分析凸轮机构的运动学分析是确定凸轮机构各部件的运动规律和参数的过程。

通过运动学分析,可以计算凸轮机构的几何关系、速度和加速度等。

常用的凸轮机构运动学分析方法有:•图形法:通过绘制凸轮机构的运动示意图和运动曲线,分析凸轮机构的运动规律。

•解析法:通过建立凸轮机构的运动学方程,推导出各部件的运动参数,并进行计算。

4.3 凸轮机构的强度计算凸轮机构的强度计算是为了确定凸轮所承受的载荷是否安全,并选择适当的材料和结构来满足设计要求。

在强度计算中,需要考虑凸轮的静载荷、动载荷和疲劳载荷等。

常用的凸轮机构强度计算方法有:•静态强度计算:通过分析凸轮在静态载荷下的应力和变形情况,确定凸轮的强度和刚度。

凸轮机构的设计和计算

凸轮机构的设计和计算

B0 B1 ω e O B2 r0
−ω
B9 η'
η'' B8 η
设计滚子从动件凸轮机构时, 凸轮的基圆半径是指理论轮廓 曲线的基圆半径。
B7
B6 B3 B5 B4
B0 B1 ω e O B2 r0
−ω
B9 η'
η'' B8 η
B7
B6 B3 B5 B4
3、平底从动件 (1)取平底与导路的交点B0为参考点 (2)把B0看作尖底,运用上述方法找到B1、B2… (3)过B1、B2…点作出一系列平底,得到一直线族。 作出直线族的包络线,便得到凸轮实际轮廓曲线。
s B C h (b) ϕ's h A ϕ r0 O ϕs ϕ' D A ϕ's 2π ϕ,t B1 C B C1
运休止角:φS=∠BOC=∠B1OC1
ω
B' e
A
D ϕ ϕs ϕ'
从动件位移线图:从动件速度线图,加速度线图
三、常用从动件运动规律
1、匀速运动规律(推程段)
s h ϕ v v0 ϕ,t
∂ dx dy f ( x1 , y1 , ϕ ) = −2( x1 − x) − 2( y1 − y) =0 dϕ dϕ ∂ϕ
联立求解x1和y1,即得滚子从动件盘形凸轮的实际廓线参数方程:
x1 = x ± rT dy / dϕ dx dy dϕ + dϕ dx / dϕ
s
r θ
B
s 2 3
A A0 1 v
ϕ
4
5
6
h ϕ,t
ϕ,t a
运动特征:没有冲击
ϕ,t

凸轮机构运动分析的原理

凸轮机构运动分析的原理

凸轮机构运动分析的原理凸轮机构是一种常见的机构,用于将旋转运动转化为直线运动或者变化其运动轨迹。

其基本原理是通过凸轮的几何形状和凸轮与其它运动部件的相对位置,实现运动传递和控制。

凸轮机构的运动分析是通过分析凸轮的几何特性和与其它机构部件的作用关系,推导出机构的运动规律和性能参数,包括凸轮的运动学状态、凸轮轮廓的设计,以及机构的运动周期和速度等。

凸轮机构的关键是确定凸轮的几何特性和轮廓形状。

凸轮的几何形状通常是由其运动部位(如凸轮轴)和运动部件(如滑块、摇臂等)的相对位置关系来确定。

在运动分析过程中,可以通过几何图形的绘制和计算,以及几何和尺寸的转换,来确定凸轮的轮廓和运动状态。

其中,常见的凸轮形状有圆形凸轮、椭圆凸轮、伞形凸轮和曲线凸轮等。

凸轮机构的运动分析主要包括以下几个方面的内容:第一,凸轮的转动及滚动运动分析。

根据凸轮与其它运动部件的相对运动关系,可以推导出凸轮的转动规律和速度,并确定凸轮是否有滚动条件。

滚动条件是指凸轮与其它运动部件接触点的相对速度为零,这样可以避免由于滑动产生的摩擦和磨损等问题。

第二,凸轮轮廓的设计与绘制。

通过运动分析和计算,可以确定凸轮的运动规律和性能参数,然后根据这些参数来设计凸轮的轮廓形状。

常用的方法有图解法、计算法和仿真法等。

其中,图解法是最简单直观的方法,通过手绘几何图形来确定凸轮的轮廓形状;计算法则是通过数学模型和计算公式,来计算凸轮的几何参数和轮廓形状;仿真法主要是利用计算机辅助设计(CAD)或仿真软件,来模拟凸轮的运动状态和绘制轮廓图形。

第三,凸轮机构的运动周期与传动比分析。

凸轮机构通常是用来实现特定的工作循环或运动行程,所以需要分析凸轮的运动周期和传动比。

运动周期是指凸轮从一个状态到另一个状态所需的时间,可以通过几何图形和时距图来表示和计算;传动比是指输入轴和输出轴的转速之比,可以通过几何和动力学分析来计算。

第四,凸轮机构的运动状态分析与优化。

通过运动分析,可以得到凸轮机构的运动规律和性能参数,如加速度、速度和位置等。

凸轮机构中从动件计算公式

凸轮机构中从动件计算公式

凸轮机构中从动件计算公式在机械设计中,凸轮机构是一种常用的传动机构,它通过凸轮的运动来驱动从动件进行运动。

凸轮机构的设计涉及到很多参数的计算,其中包括从动件的运动规律和计算公式。

本文将从动件的计算公式作为标题,详细介绍凸轮机构中从动件的计算方法。

1. 从动件的运动规律。

在凸轮机构中,从动件的运动规律可以通过凸轮的运动规律来确定。

通常情况下,凸轮的运动规律可以用曲线来描述,而从动件的运动规律则可以通过凸轮曲线的参数方程来确定。

假设凸轮的曲线方程为x=f(θ),y=g(θ),其中θ为凸轮的转动角度,x和y分别为凸轮曲线上点的坐标。

则从动件的运动规律可以通过以下步骤确定:1)确定从动件的起始位置和终止位置;2)根据凸轮的曲线方程,确定从动件在整个运动过程中的位置;3)根据从动件的位置,确定从动件的运动规律。

2. 从动件的计算公式。

在确定了从动件的运动规律后,就可以通过计算公式来确定从动件的运动参数。

常见的从动件运动参数包括位移、速度和加速度。

下面将分别介绍这些参数的计算公式。

2.1 位移。

从动件的位移可以通过凸轮曲线的参数方程来确定。

假设从动件在运动过程中的位置为(x,y),则从动件的位移可以通过以下公式计算:s=∫√(dx^2+dy^2)。

其中s为从动件的位移,dx和dy分别为从动件在x和y方向上的位移。

通过对位移的积分,可以得到从动件在整个运动过程中的位移。

2.2 速度。

从动件的速度可以通过位移对时间的导数来确定。

假设从动件的位移为s(t),则从动件的速度可以通过以下公式计算:v=ds/dt。

其中v为从动件的速度,ds/dt为从动件位移对时间的导数。

通过对速度的计算,可以确定从动件在不同时间点的速度大小。

2.3 加速度。

从动件的加速度可以通过速度对时间的导数来确定。

假设从动件的速度为v(t),则从动件的加速度可以通过以下公式计算:a=dv/dt。

其中a为从动件的加速度,dv/dt为从动件速度对时间的导数。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

凸轮机构自由度计算

凸轮机构自由度计算

凸轮机构自由度计算
凸轮机构自由度计算
凸轮机构是一种较为典型的机构,它具有独特的功能和优秀的性能。

它能够在满足要求的前提下实现更多的动力作动,对于机械系统的实际运行也有着重要的作用。

在有关凸轮机构设计过程中,需要计算凸轮机构的自由度数,以便更好地了解和确定它的运动性能。

凸轮机构的自由度计算包括圆锥自由度和滚轮自由度,它们分别对应凸轮机构的圆锥部分和滚轮部分。

(1)圆锥自由度:凸轮机构的圆锥部分由圆锥和它的固定点组成,根据相互作用的原理,可以得到圆锥的自由度计算公式:
F=2(n-1)
其中,n是凸轮机构中的圆锥轮数。

(2)滚轮自由度:滚轮部分由滚子和与它的约束共同组成,根据相互作用的原理,可以得到滚轮的自由度计算公式:
F=2(m-1)
其中,m是凸轮机构中的滚轮轮数。

上述公式可以用来计算凸轮机构的总自由度,它是凸轮机构的性能和运动性能的重要指标。

总之,凸轮机构的总自由度可以通过计算圆锥部分和滚轮部分的自由度来获得。

此外,它还可以提供有关凸轮机构的设计和分析的重要参考,使其可以更好地服务于机械系统的实际运行。

- 1 -。

机械原理课程设计凸轮机构设计说明书

机械原理课程设计凸轮机构设计说明书

全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。

本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。

一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。

凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。

凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。

二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。

手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。

此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。

三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。

凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。

凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。

通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。

机械设计-凸轮机构的运动规律分析

机械设计-凸轮机构的运动规律分析
冲击特性:无冲击 适用场合:高速轻载
s
h
2h p
A
0
5v
1 6
2 7
3 8
a
φ

φ
φ
φ
φ
小结
1.运动过程分析
运动循环和运动参数
2.从动件的运动规 律
运动规律 等速运动规律 等加速等减速运动 余弦加速度运动规律 正弦加速度运动规律
运动特性
有刚性冲击
柔性冲击 柔性冲击 无冲击
适用场合
低速、轻载
中速、 轻载 中速、中载
✓ 等加速等减速运动规律(线运动规律(正弦加速度运动律)
1.等速运动规律
定义 从动件在推程或回程作等速运动。
启动瞬间: 速度由0→v0,a 由0→∞ 终止瞬间: 速度由v0→0,a 由0→-∞
冲击特性:始点、末点刚性冲击(F=ma) 适用场合:低速轻载
s h
O
v
O
a

O
v0
φ φ
φ φ
φ φ
-∞
2.等加速等减速运动规律 定义 从动件在推程或回程的前半行程作等加速 运动,后半行程作等减速运动。
运动线图 从动件位移方程
抛物线
动力特性 加速度在运动的起始、中间和终止 位置有突变。
存在柔性冲击 (F=ma)
适用场合 中速轻载。
A
B
3.简谐(余弦加速度)运动规律
近休止:从动件在初始位置静止不动。 近休止角 :凸轮转过角度 Φs´ 凸轮与从动件的关系: 从动件的运动规律取决于凸轮的轮廓曲
二、从动件的运动规律
从动件的运动规律:从动件的位移(s)、速度(v)和加速 度(a)随时间(t)或凸轮转角(φ)的变 化规律。

凸轮机构的设计计算和运动分析

凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程rb=40;rt=10;e=15;h=50;% 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速ft=100;fs=60;fh=90;alpha_p=35;n=200;% 角度和弧度转换系数;机构尺度hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2);w=n*pi/30; omega=w*du; % 凸轮角速度(°/s)fprintf(' 基圆半径rb = %3.4f mm \n',rb)fprintf(' 滚子半径rt = %3.4f mm \n',rt)fprintf(' 推杆偏距 e = %3.4f mm \n',e)fprintf(' 推程升程h = %3.4f mm \n',h)fprintf(' 推程运动角ft = %3.4f 度\n',ft)fprintf(' 远休止角fs = %3.4f 度\n',fs)fprintf(' 回程运动角fh = %3.4f 度\n',fh)fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w)fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' 'disp ' @@@@@@ 计算过程和输出结果@@@@@@' disp ' '% (1)---校核凸轮机构的压力角和轮廓曲率半径'disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***'disp ' 1 推程(等加速/等减速运动)'for f=1:ftif f<=ft/2s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f);vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程elses(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f);vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程endalpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度)alpha_td(f)=alpha_t(f)*du; % 推程压力角(度)pt1=((se+s)^2+(ds-e)^2)^1.5;pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));rho_t(f)=pt1/pt2; % 推程曲率半径st(f)=s;endalpha_tm=max(alpha_td);fprintf(' 推程最大压力角alpha_tm = %3.4f 度\n',alpha_tm)for f=1:ftif alpha_td(f)==alpha_tm;ftm=f;break;endendfprintf (' 对应的位置角ftm = %3.4f 度\n',ftm)if alpha_tm>alpha_pfprintf(' * 凸轮推程压力角超过许用值,需要增大基圆!\n')endrho_tn = min(rho_t);fprintf (' 最小曲率半径rho_tn = %3.4f mm\n',rho_tn)for f=1:ftif rho_t(f)==rho_tn;ftn=f;break;endendfprintf(' 对应的位置角ftn = %3.4f 度\n',ftn)if rho_tn<rt+5fprintf(' * 凸轮推程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' 2 回程(余弦加速度运动-简谐运动)'d1=ft+fs;d2=ft+fs+fh; % 回程运动角范围for f=d1:d2k=f-d1;s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f); % 简谐运动-位移方程ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);d2s(f)=-0.5*pi^2*h*cos(pi*k/fh)/(fh*hd)^2;d2s=d2s(f);alpha_h(f)=atan(abs(ds+e)/(se+s)); % 回程压力角(弧度)alpha_hd(f)=alpha_h(f)*du; % 回程压力角(度)ph1=((se+s)^2+(ds-e)^2)^1.5;ph2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));rho_h(f)=ph1/ph2; % 回程曲率半径sh(f)=s;vh(f)=-0.5*pi*h*omega*sin(pi*f/fh)/fh; % 简谐运动-速度方程ah(f)=-0.5*pi^2*h*omega^2*cos(pi*f/fh)/fh^2; % 简谐运动-加速度方程endalpha_hm = max(alpha_hd(d1:d2));fprintf(' 回程最大压力角alpha_hm = %3.4f 度\n',alpha_hm)for f=d1:d2if alpha_hd(f)==alpha_hm;fhm=f;break;endendfprintf(' 对应的位置角fhm = %3.4f 度\n',fhm)rho_hn=min(rho_h(d1:d2));fprintf(' 最小曲率半径rho_hn = %3.4f mm\n',rho_hn)for f=d1:d2if rho_h(f)==rho_hn;fhn=f;break;endendfprintf(' 对应的位置角fhn = %3.4f 度\n',fhn)if rho_hn<rt+5fprintf(' * 凸轮回程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' '% (2)---计算凸轮机构的从动件运动参数'disp ' *** 计算凸轮机构从动件的运动参数***'disp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角位移s(mm) 速度v(mm/s)'for f=10:10:ftydcs_t=[f st(f) vt(f)];disp(ydcs_t)endat_1=4*h*omega^2/ft^2;at_2=-4*h*omega^2/ft^2;fprintf(' 等加速上升的加速度at_1 = %3.4f (mm/s^2) \n',at_1)fprintf(' 等减速上升的加速度at_2 = %3.4f (mm/s^2) \n',at_2)disp ' 2 回程(余弦加速度运动-简谐运动)'disp ' 凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2)'for f=d1:10:d2ydcs_h=[f sh(f) vh(f) ah(f)];disp(ydcs_h)end% (3)---绘制凸轮机构的从动件运动线图figure(1);subplot(3,2,1) % 推程位移线图f=1:ft;plot(f,st);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it s / \rm(mm)')title('从动件推程位移线图');subplot(3,2,2) % 回程位移线图f=d1:d2;plot(f,sh(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it s / \rm(mm)')title('从动件回程位移线图');subplot(3,2,3) % 推程速度线图f=1:ft;plot(f,vt);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it v / \rm(mm/s)')title('从动件推程速度线图');subplot(3,2,4) % 回程速度线图f=d1:d2;plot(f,-vh(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it v / \rm(mm/s)')title('从动件回程速度线图');subplot(3,2,5) % 推程加速度线图line([0,ft/2],[at_1,at_1]);line([ft/2,ft/2],[at_1,at_2]); % 等加速等减速之间的突变垂线line([ft/2,ft],[at_2,at_2]);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it a / \rm(mm/s^2)')title('从动件推程加速度线图');subplot(3,2,6) % 回程加速度线图f=d1:d2;plot(f,-ah(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it a / \rm(mm/s^2)')title('从动件回程加速度线图');disp ' '% (4)---计算凸轮理论廓线与实际廓线的直角坐标和向径'disp ' ****** 凸轮理论轮廓与实际轮廓的直角坐标******'nd=360;for f=1:ndif f<=ft/2 % 等加速运动s(f)=2*h*f^2/ft^2;s=s(f);ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);elseif f>ft/2 & f<=ft % 等减速运动s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f);ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);elseif f>ft & f<=d1 % 远休止角s=h;ds=0;elseif f>d1 & f<=d2 % 简谐运动k=f-d1;s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f);ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);elseif f>d2 & f<=nds=0;ds=0;endxx(f)=(se+s)*sin(f*hd)+e*cos(f*hd);x=xx(f); % 理论轮廓横坐标yy(f)=(se+s)*cos(f*hd)-e*sin(f*hd);y=yy(f); % 理论轮廓纵坐标dx(f)=(ds-e)*sin(f*hd)+(se+s)*cos(f*hd);dx=dx(f);dy(f)=(ds-e)*cos(f*hd)-(se+s)*sin(f*hd);dy=dy(f);xp(f)=x+rt*dy/sqrt(dx^2+dy^2);xxp=xp(f); % 实际轮廓横坐标yp(f)=y-rt*dx/sqrt(dx^2+dy^2);yyp=yp(f); % 实际轮廓纵坐标r(f)=sqrt(x^2+y^2); % 理论轮廓向径rp(f)=sqrt(xxp^2+yyp^2); % 实际轮廓向径enddisp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y'for f=10:10:ftnu=[f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp ' 2 回程(余弦加速度运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y'for f=d1:10:d2nu=[f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp '*** 凸轮理论轮廓与实际轮廓的向径***'disp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角理论r 实际r'for f=10:10:ftnu=[f r(f) rp(f)];disp(nu)enddisp ' 'disp ' 2 回程(余弦加速度运动)'for f=d1:10:d2nu=[f r(f) rp(f)];disp(nu)end% (5)---绘制凸轮的理论轮廓和实际轮廓figure(2);plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(rb+h-10) (rb+h+10) -(rb+h+10) (rb+rt+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(rb+h+3,0,'X') % 标注横轴text(0,rb+rt+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置移动从动件盘形凸轮轮廓') % 标注图形标题hold on; % 保持图形plot([-(rb+h) (rb+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(rb+h) (rb+rt)],'k') % 纵轴(黑色)plot([e e],[0 (rb+rt)],'k--') % 初始偏置位置(黑色,虚线)ct=linspace(0,2*pi); % 画圆的极角变化范围plot(rb*cos(ct),rb*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(青色,虚线)plot(e + rt*cos(ct),se + rt*sin(ct),'m') % 滚子圆(品红色)plot(xp,yp,'b') % 实际轮廓(蓝色)******** 偏置移动从动件盘形凸轮设计绘图和运动分析********######## 已知条件########凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作等加速/等减速运动,在回程作余弦加速度运动基圆半径rb = 40.0000 mm滚子半径rt = 10.0000 mm推杆偏距 e = 15.0000 mm推程升程h = 50.0000 mm推程运动角ft = 100.0000 度远休止角fs = 60.0000 度回程运动角fh = 90.0000 度推程许用压力角alpha_p = 35.0000 度凸轮转速n = 200.0000 r/min凸轮角速度(弧度) w = 20.9440 rad/s凸轮角速度(度) omega = 1200.0000 度/s@@@@@@ 计算过程和输出结果@@@@@@*** 计算凸轮理论轮廓的压力角和曲率半径***1 推程(等加速/等减速运动)推程最大压力角alpha_tm = 34.2666 度对应的位置角ftm = 50.0000 度最小曲率半径rho_tn = 35.2303 mm对应的位置角ftn = 51.0000 度2 回程(余弦加速度运动-简谐运动)回程最大压力角alpha_hm = 30.9248 度对应的位置角fhm = 213.0000 度最小曲率半径rho_hn = 30.3591 mm对应的位置角fhn = 250.0000 度*** 计算凸轮机构从动件的运动参数***1 推程(等加速/等减速运动)凸轮转角位移s(mm) 速度v(mm/s)10 1 24020 4 48030 9 72040 16 96050 25 120060 34 96070 41 72080 46 48090 49 240100 50 0等加速上升的加速度at_1 = 28800.0000 (mm/s^2)等减速上升的加速度at_2 = -28800.0000 (mm/s^2)2 回程(余弦加速度运动-简谐运动)凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2) 160 50 673 -33602170 48 358 -41220180 44 0 -43865190 37 -358 -41220200 29 -673 -33602210 21 -907 -21932220 12.5 -1031.3 -7617.1230 5.8 -1031.3 7617.1240 2 -907 21932250 0 -673 33602****** 凸轮理论轮廓与实际轮廓的直角坐标******1 推程(等加速/等减速运动)凸轮转角理论x 理论y 实际x 实际y 10.0000 21.3848 34.8977 18.7440 25.2527 20.0000 28.1459 33.4732 26.5660 23.5988 30.0000 36.0309 32.4073 34.7788 22.4860 40.0000 45.6105 31.0206 43.9004 21.1679 50.0000 57.1986 28.4142 54.4870 18.7889 60.0000 69.0579 22.5501 63.1030 14.5165 70.0000 78.5024 12.6099 70.2060 7.0270 80.0000 84.4235 -0.3453 74.7846 -3.008390.0000 86.0810 -15.0000 76.0894 -14.5890 100.0000 83.1533 -29.8936 73.7429 -26.51052 回程(余弦加速度运动)凸轮转角理论x 理论y 实际x 实际y 160.0000 15.6881 -86.9597 13.9127 -77.1185 170.0000 0.0875 -86.8780 1.9206 -77.0474 180.0000 -15.0000 -81.2321 -9.9808 -72.5829 190.0000 -27.7230 -70.8432 -20.2897 -64.1539 200.0000 -36.8131 -57.2861 -27.8219 -52.9092 210.0000 -41.8603 -42.5041 -32.0770 -40.4336 220.0000 -43.3607 -28.3394 -33.3609 -28.2733 230.0000 -42.5280 -16.1041 -32.6176 -17.4398 240.0000 -40.9188 -6.3040 -31.0634 -7.9985 250.0000 -39.9750 1.4129 -29.9813 1.0597*** 凸轮理论轮廓与实际轮廓的向径***1 推程(等加速/等减速运动)凸轮转角理论r 实际r10.0000 40.9287 31.449020.0000 43.7338 35.533930.0000 48.4609 41.414840.0000 55.1597 48.737350.0000 63.8674 57.635560.0000 72.6465 64.751270.0000 79.5088 70.556880.0000 84.4242 74.845190.0000 87.3781 77.4754100.0000 88.3634 78.36342 回程(余弦加速度运动)160.0000 88.3634 78.3634170.0000 86.8780 77.0714180.0000 82.6054 73.2660190.0000 76.0745 67.2859200.0000 68.0948 59.7783210.0000 59.6564 51.6121220.0000 51.8003 43.7302230.0000 45.4750 36.9872240.0000 41.4015 32.0766250.0000 40.0000 30.0000。

机械原理大作业凸轮机构有关公式

机械原理大作业凸轮机构有关公式

机械原理大作业凸轮机构有关公式凸轮机构是机械传动中常见的一种机构,具有转动曲线的特点,可以将驱动轴的转动运动通过凸轮的滚动轮廓来实现对从动件的相应动作控制。

在凸轮机构的设计和分析中,有一些与凸轮曲线有关的公式是十分重要的。

一、凸轮曲线方程凸轮曲线是指凸轮的滚动轮廓,可以通过数学方法来表示。

常见的凸轮曲线方程有圆弧、椭圆、正弦曲线等。

其中,最常用的是圆弧和直线的组合,这种凸轮曲线被称为简谐凸轮曲线。

简谐凸轮曲线方程可以表示为:y = r (1 - cos(θ - θ0))其中,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。

凸轮在其中一角度θ的位置的坐标可以通过此公式计算得出。

二、凸轮曲线的导数和导数变化率在凸轮机构的设计和分析中,对凸轮曲线的导数和导数变化率也有相当重要的影响。

凸轮的导数表示了凸轮曲线的斜率,而导数的变化率表示了凸轮曲线的曲率。

凸轮曲线的导数可以表示为:dy/dθ = r sin(θ - θ0)凸轮曲线的导数变化率可以表示为:d²y/dθ² = r cos(θ - θ0)通过对凸轮的导数和导数变化率的计算和分析,可以确定从动件的运动状态和速度变化情况,进而进行凸轮机构的设计和优化。

三、凸轮压力和压力角在凸轮机构中,凸轮和从动件之间存在着压力作用。

对于凸轮的任何一个位置,凸轮所施加的压力可以通过力的分解计算得出,并且可以利用凸轮的转角来表示。

凸轮的压力可以表示为:F = P * r * cos(θ - θ0)其中,P为压力系数,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。

凸轮的压力角可以表示为:φ = atan(dy/dθ)其中,dy/dθ为凸轮曲线的导数。

凸轮的压力角可以用来描述凸轮的主动件施加力的方向和作用范围,对凸轮机构的设计和分析具有指导意义。

以上是凸轮机构常见的几个重要的公式,通过这些公式可以计算和分析凸轮机构的运动学和动力学性能,为凸轮机构的设计和优化提供指导。

凸轮机构运动模型和受力分析

凸轮机构运动模型和受力分析
• (3)运动参数方面,凸轮机构压力角是反映凸轮与从动件之间速度 与力传递关系的重要参数。在不考虑磨擦力时,压力角是某瞬时接触 点处的公法线方向与从动件的运动方向之间的夹角。直动从动件凸轮 最大压力角不宜大于30º。[7] 减小压力角,可降低接触应力,降低磨 损。
软件模拟
• 下图为凸轮机构的位移分析图,从上到下为总位置,X方 向的位置,以连杆最左下端点为测量点,可以看出,凸轮 机构的总位移基本成余弦规律,位移图较平稳,但在0点 时刻 出现尖点。
凸轮机构运动模型和受力分析
• 凸轮表面轮廓曲线和平底从动件的接触点的直角坐标为 x,y,O点到 接触点用矢量R(r,θ)表示,r表示矢量R的模,θ表示矢量R与X轴的夹角。 根据其几何关系,有:
• 上式中 为凸轮曲线表面和平底从动件接触点在Y方向的 加速度,即平底从动件(挺杆)垂直上下运动的加速度。 挺杆垂直上下运动的速度和加速度的大小对移动副磨损会 产生很大影响,以挺杆为研究对象,有:
• (1)材料选取方面,要注意凸轮挺杆材料选配,选材时应考虑到摩 擦副表面硬度的适当匹配,凸轮硬度应略低于挺杆硬度,硬度过大或 硬度相同都会使擦伤倾向增加。为了提高表面耐磨性必须对表面进行 硬化处理。有两种方法:一是提高表面硬度,二是提高润滑性或在表 面上形成一层阻止薄膜。
• (2)润滑油方面,从润滑油对挺杆擦伤的影响试验得知,擦伤与油 基的粘度无关,而与添加剂有密切关系特别是二硫化磷酸锌之类的优 良的抗磨损添加剂能够消除擦伤,பைடு நூலகம்无抗磨损性能的氧化剂却会加重 擦伤。
凸轮机构磨损形式和三个阶段
• 凸轮以不同速度旋转时,其接触应力是变化的。低速时, 由于气门弹簧压缩量最大,凸轮桃尖的载荷最大;高速时, 在负加速度区,即在凸轮桃尖附近,由于往复运动的惯性 力抵消了一部分气门弹簧力,凸轮桃尖的载荷降低了,因 此发动机速度较高时点蚀磨损减少。而在最大正加速度区, 接触应力分布幅度小,不易产生点蚀磨损,偶尔会出现金 属间的直接接触,因此会出现擦伤现象。实际上,由于气 门传动机构零件不是刚性的并可产生振动,从而改变了凸 轮桃尖附近的接触压力,高速时这些振动力就会使凸轮— 挺杆副产生点蚀。由于凸轮和挺杆都是硬而脆的材料,若 都是经淬火处理的白口铸铁,其疲劳损坏出现在拉应力最 大的区域,即出现在表面上。这些疲劳损坏向内扩展,形 成松散的鳞屑并产生凹坑(点蚀)。一般金属裂纹的扩展方 向与凸轮转动方向相反,即与滑动方向相反。

凸轮机构的设计

凸轮机构的设计
如果压力角大到一定值时,有害分力所引起 的摩擦阻力将大于有效分力F2 ,这时无论 凸轮对从动件的作用力F有多大,都不能使 从动件运动,机构将发生自锁。
(3)、许用压力角 为了提高机构的效率、改善其受力情况,通常 规 定 一 许 用 压 力 角 [α] , 使 。 推 程 : 直 动 推 杆 取 [α] = 300 ; 摆 动 推 杆 [α] = 400 ~ 500 ; 回程:通常不会引起自锁问题,但为了使推杆不至产生过大的加速 度从而引起不良后果,通常取 [α]= 700~800。 (4)、压力角校核 αmax一般出现在 1)从动件的起点位置 2)从动件最大速度位置 3)凸轮轮廓向径变化最大部分 滚子从动件按理论轮廓校核 平底从动件一般α=0,不需校核 若αmax > [α]: 增大基圆半径 偏置从动件
4、偏置直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮转动方向。凸轮转 动中心与从动件摆动中心的距离,摆动从动件的长度,已知 从动件的运动规律,试设计。(从动件的位移是角位移 )
A0
ψ0 B1 B’1 φ o ω
1

ψ1 B2 ψ2
A1
B0
B’2
2
A2
φ
三、凸轮机构基本尺寸的确定
图所示为工程上常用的诺模 图,图中上半圆的标尺代表 凸轮转角δ0,下半圆的标尺 为最大压力角α max,直径 的标尺代表从动件规律的 h/rb的值(h为从动件的行程, rb为基圆半径)。下面举例 说明该图的使用方法。
2、凸轮压力角的校核
(1)、凸轮机构的压力角定义 凸轮机构从动件作用力的方向线与从动 件上力作用点的速度方向之间所夹的锐角, 用α表示。 (2)、压力角与作用力以及机构尺寸的关系 将凸轮对从动件的作用力F分解为F1和F2 。F2为有效分力,F1为有害分力,当压力角 α越大,有害分力F1越大,如果压力角增大 ,有害分力所引起的摩擦阻力也将增大,摩 擦功耗增大,效率降低。

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是一种常见的运动机构,由凸轮和从动件组成,通过凸轮的形状和运动来驱动从动件进行指定的运动。

凸轮机构广泛应用于各种机械设备和工业生产中,如发动机、机械传动系统、自动化生产线等。

本文将介绍凸轮机构的设计和计算方法,具体内容如下:一、凸轮机构的设计:1.确定从动件的运动要求:根据机械装置的功能和要求,确定从动件的运动方式,如直线运动、往复运动、旋转运动等。

2.选择凸轮的类型:根据从动件的运动要求和机械结构的特点,选择合适的凸轮类型,如往复凸轮、圆柱凸轮等。

3.设计凸轮曲线:根据从动件的运动要求和凸轮的类型,设计凸轮曲线,使得从动件的运动符合需求。

4.确定凸轮轴的位置和方向:根据凸轮曲线和从动件的位置关系,确定凸轮轴所在的位置和方向。

5.合理布局机构:根据机械装置的空间限制和结构特点,合理布局凸轮机构的各个组成部分。

二、凸轮机构的计算:1.凸轮曲线参数计算:根据从动件的运动要求和机械结构的特点,计算凸轮曲线的参数,如内凸高度、内凸角度、外凸高度、外凸角度等。

2.凸轮轴的定位计算:根据凸轮曲线和从动件的位置关系,计算凸轮轴所在的位置和方向,以确保从动件能够完整地运动。

3.从动件的运动轨迹计算:根据凸轮曲线和凸轮轴的位置,计算从动件在运动轨迹上的坐标点,以确保从动件的运动符合需求。

4.从动件的运动速度和加速度计算:根据从动件的运动轨迹和凸轮轴的角速度、角加速度,计算从动件的运动速度和加速度,以确保运动过程的稳定性和安全性。

三、凸轮机构的优化:1.优化凸轮曲线形状:通过调整凸轮曲线的形状,使得从动件的运动更加平稳、稳定和高效。

2.优化凸轮轴的位置和方向:通过调整凸轮轴的位置和方向,使得整个凸轮机构的布局更加紧凑、简洁,并且符合实际使用要求。

3.优化从动件的设计:通过改进从动件的结构和材料,减小惯性负载和摩擦损失,提高机械装置的性能和使用寿命。

4.优化机构的传动方式:通过改变凸轮机构的传动方式,如采用齿轮传动或者链条传动,来提高传动效率和可靠性。

凸轮的设计计算详解

凸轮的设计计算详解

凸轮的设计计算详解
凸轮设计计算主要包括以下几个方面:
1. 确定凸轮类型:根据实际应用需求,选择合适的凸轮类型,如盘形凸轮、滚子凸轮、摆动滚子凸轮等。

2. 确定从动件类型:从动件类型包括平底从动件、滚子从动件等。

不同类型的从动件对应的运动规律和接触变形计算方法不同。

3. 确定基本参数:包括凸轮的基圆半径、从动件的行程、传动比等。

4. 计算运动规律:根据凸轮类型和从动件类型,计算出凸轮转动角度与从动件位移之间的关系。

常用的运动规律包括正弦运动规律、余弦运动规律、线性运动规律等。

5. 计算凸轮轮廓线:根据运动规律,计算凸轮轮廓线上点的坐标。

常用的计算方法有解析法、插件法等。

解析法需要根据基本参数和运动规律建立数学模型,计算过程相对复杂;插件法操作简单,但精度相对较低。

6. 计算从动件运动规律的换算:在生产过程中,由于工作从动件与检验从动件可能不相符,需要进行从动件运动规律的换算。

7. 计算接触变形:对于滚子从动件,需要计算凸轮与滚子接触时的变形量。

常用的计算方法有无限大半空间模型、圆柱体二维线接触变形计算方法等。

8. 校验运动性能:根据计算结果,校验凸轮机构是否能满足设计要求,如运动速度、加速度、运动平稳性等。

9. 优化设计:根据计算结果和实际应用需求,对凸轮设计进行优化,如调整基圆半径、从动件行程等,以提高凸轮机构的性能。

总之,凸轮设计计算涉及多个方面,需要根据实际应用需求和凸轮类型,选择合适的计算方法,进行精确的设计计算。

在设计过程中,还需要考虑到制造和装配的实际情况,以确保凸轮机构的性能和可靠性。

圆柱凸轮分度机构的设计计算及运动仿真

圆柱凸轮分度机构的设计计算及运动仿真

圆柱凸轮分度机构的设计计算及运动仿真圆柱凸轮分度机构是一种常见的传动机构,用于将连续运动转换为间断运动。

它由凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件等部分组成。

设计计算和运动仿真是圆柱凸轮分度机构设计过程中的重要步骤,下面将对其进行详细介绍。

设计计算是圆柱凸轮分度机构设计的关键步骤之一、首先需要确定驱动件和从动件的构型。

通常,驱动件为凸轮轴,从动件为旋转体。

然后,需要根据要求的间断角度和转速计算凸轮的几何参数,如凸轮半径、凸轮高度和凸轮轴位置。

凸轮的几何参数决定了从动件的运动特性,如加速度和速度。

计算凸轮的几何参数时,可采用凸轮的设计曲线。

设计曲线可以通过将所需的运动规律与给定凹模曲线相叠加得到。

凹模曲线是一个以分度运动为基础的曲线,其参数对凸轮的运动特性有重要影响。

凹模曲线的形状和尺寸决定了从动件在分度运动过程中的加速度和速度的变化规律。

在完成设计计算后,需要进行运动仿真来验证设计的准确性和可行性。

运动仿真可以通过使用专业的仿真软件,如ADAMS(Automatic Dynamic Analysis of Mechanical Systems)来实现。

通过建立凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件的几何模型,并设置运动和约束条件,可以模拟圆柱凸轮分度机构的运动过程。

运动仿真可以得到从动件的运动规律和性能参数,例如位置、速度和加速度的变化规律。

通过对仿真结果的分析和评估,可以判断设计的合理性,并根据需要对凸轮的几何参数进行调整和优化,以满足运动要求。

综上所述,圆柱凸轮分度机构的设计计算和运动仿真是设计过程中不可或缺的步骤。

通过设计计算和运动仿真,可以确定凸轮的几何参数,并验证设计的准确性和可行性。

这为圆柱凸轮分度机构的制造和应用提供了重要的参考依据。

sw凸轮设计与计算

sw凸轮设计与计算

sw凸轮设计与计算SW凸轮是一种常用的机械元件,广泛应用于各种机械设备中。

凸轮的设计和计算是凸轮机构设计的重要内容之一,本文将介绍SW 凸轮的设计原理和计算方法。

一、SW凸轮的设计原理SW凸轮是一种具有复杂曲线的凸轮,其工作原理是通过凸轮的曲线形状来控制与之配合的从动件的运动规律。

SW凸轮的设计原理主要包括以下几点:1. 凸轮的曲线形状:凸轮的曲线形状是设计的核心。

凸轮的形状根据从动件的运动规律和工作要求来确定,可以是圆弧形、抛物线形、椭圆形等。

凸轮的曲线形状决定了从动件的运动轨迹和速度。

2. 凸轮的基本参数:凸轮的基本参数包括凸轮半径、凸轮高度、凸轮角度等。

这些参数决定了凸轮的大小和形状,直接影响凸轮的运动规律。

3. 凸轮与从动件的配合:凸轮与从动件之间需要具有良好的配合性能,包括接触状态、运动规律和传动比等。

凸轮与从动件之间的配合关系决定了从动件的运动规律和工作效果。

二、SW凸轮的计算方法SW凸轮的计算是凸轮设计的重要环节,主要包括以下几个方面的计算:1. 凸轮曲线的计算:根据从动件的运动规律和工作要求,通过几何计算或数值计算的方法,确定凸轮的曲线形状和参数。

凸轮曲线的计算需要考虑从动件的运动规律、工作速度和传动比等因素。

2. 凸轮与从动件的配合计算:根据凸轮的曲线形状和从动件的运动规律,计算凸轮与从动件之间的接触状态、运动规律和传动比。

凸轮与从动件的配合计算需要考虑凸轮的几何参数、从动件的运动规律和工作要求等因素。

3. 凸轮机构的运动分析:根据凸轮的曲线形状和从动件的运动规律,通过运动分析的方法,确定凸轮机构的运动规律和工作效果。

凸轮机构的运动分析需要考虑凸轮的几何参数、从动件的运动规律和工作要求等因素。

三、SW凸轮的应用SW凸轮广泛应用于各种机械设备中,其应用范围包括机床、汽车发动机、印刷机械、纺织机械等。

SW凸轮的设计和计算是机械设备设计和制造的重要内容之一,准确的设计和计算可以提高机械设备的运行效率和工作精度。

凸轮机构的设计和计算

凸轮机构的设计和计算
2、按从动件的型式:
五、要求
①尖底从动件:用于低速; ②滚子从动件:应用最普遍; ③平底从动件:用于高速。
3、按锁合的方式:
力锁合(重力、弹簧力)、几何锁合
四、特点
优点:1、能够实现精确的运动规律;2、设计较简单。
缺点:1、承载能力低,主要用于控制机构;2、凸轮轮廓加工困难。
1、分析从动件的运动规律 2、按照运动规律设计凸轮轮廓
2.实际廓线方程
滚子从动件盘形凸轮的实际廓线是圆心在理论廓线上的一族滚子圆的包络线。由微分几何可知,包络线的方程为:
式中x1、y1为凸轮实际廓线上点的直角坐标。
对于滚子从动件凸轮,由于产生包络线(即实际廓线)的曲线族是一族滚子圆,其圆心在理论廓线上,圆心的坐标由式1~3确定,所以由式4有:
式4
由式可知:r0↓α↑
01
η——转向系数 δ——从动件偏置方向系数 滚子(尖底)直动从动件盘形凸轮机构
02
按轮廓曲线全部外凸的条件确定平底从动件盘形凸轮机构
01
凸轮的基圆半径
02
2
最小曲率半径ρmin,设计时,
1
滚子半径rT必须小于理论轮廓曲线外凸部分的
四、滚子半径的选择
对于对心从动件凸轮机构,因e=0,所以s0=ra 式2 式3 摆动从动件盘形凸轮机构 摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而从动件沿-ω方向转过角度,滚子中心将位于B点。B点的坐标,亦即理论廓线的方程为: ψ0为从动件的起始位置与轴心连线OA0之间的夹角。
在设计凸轮廓线时,通常e、r0、rT、a、l等是已知的尺寸,而s和ψ是的函数,它们分别由已选定的位移方程s=s(ψ)和角位移方程ψ=ψ(ψ)确定。
运动特征: 若 为零,无冲击, 若 不为零,有冲击

凸轮机构设计与动力学分析

凸轮机构设计与动力学分析

凸轮机构设计与动力学分析凸轮机构是一种重要的机械传动系统,用于将旋转运动转换成直线运动。

它是许多机械设备和工业生产线的核心部件之一,广泛应用于汽车、机器人、纺织、食品加工等领域。

本文旨在介绍凸轮机构的设计原理和动力学分析方法,为读者提供一些有关凸轮机构的基本知识和实用技巧。

一、凸轮机构的工作原理凸轮机构是由凸轮轴、凸轮和摆杆等部件组成的,其中凸轮是一个形状奇特的零件,通常由一圆柱形或锥形轴与一个凸起相连接而成。

凸轮轴和摆杆的运动轨迹是由凸轮轴的几何形状和参数决定的。

当凸轮轴旋转时,凸轮与摆杆发生相对运动,从而使摆动杆产生直线运动或允许摆动杆在取向不变的情况下旋转。

杆件的运动轨迹可以显式地表示为位置、速度和加速度方程式,这为凸轮机构的性能分析和优化提供了扎实的理论基础。

二、凸轮机构的设计方法在设计凸轮机构时,我们需要考虑以下几个因素:1. 运动要求:根据设备的需求,确定凸轮机构所需的运动类型和要求。

2. 摆杆结构:选择摆杆的长度、截面和形状,以及凸轮轴和摆动杆的垂直距离。

3. 凸轮形状:根据摆杆的运动要求和限制,选择最合适的凸轮形状。

4. 传动方式:根据凸轮机构的运动类型和要求,选择最合适的传动方式,如凸轮与摆动杆的直接接触或传动链条。

在实际设计中,我们可以采用以下方法来优化凸轮机构的性能:1. 确定凸轮形状:根据运动要求和制造成本,选择最合适的凸轮形状。

通常情况下,我们可以使用标准凸轮形状,如圆形、椭圆形和抛物线形等。

2. 调整凸轮轴位置:根据凸轮轴的位置和方向,调整凸轮的运动轨迹,以满足摆动杆的运动要求和限制。

3. 优化摆杆参数:根据摆动杆的长度、截面和形状,优化摆动杆的质量和稳定性,最大限度地提高运动精度和工作效率。

三、凸轮机构的动力学分析凸轮机构的动力学分析是评价凸轮机构运动性能的重要方法,可以预测和控制凸轮机构的位置、速度、加速度和力学性能等方面的变化。

常用的动力学分析方法包括:1. 几何法:利用几何原理和运动学方程,计算凸轮机构的位置、速度和加速度等参数。

圆柱分度凸轮机构设计计算和运动分析

圆柱分度凸轮机构设计计算和运动分析

% 圆柱分度凸轮机构设计计算和运动分析% 函数文件1:绘制凸轮机构运动曲线(zxjs_ydxt.m)% 函数文件2:整理圆柱分度凸轮轮廓曲面三维坐标数据(zxjs_3Dzb.m)disp ' 用键盘输入已知条件:'n=input(' 凸轮转速(r/min) n = ');disp ' * 机构中心距C:凸轮轴线z1到转盘轴线z2的距离'C=input(' 机构中心距(mm) C = ');disp ' * 机构基距A:凸轮轴线z1到转盘基准端面O2x2y2的距离'A=input(' 机构基距(mm) A = ');disp ' * 选择凸轮头数H=1、2、3、4:'H=input(' 凸轮头数H = ');disp ' * 选择凸轮分度期转角theta_f=120~240度:'theta_f=input(' 凸轮分度期转角(度) theta_f = ');disp ' * 选择转盘分度数(按照工作机械工位要求)'I=input(' 转盘分度数I = ');disp ' * 选择凸轮分度廓线旋向(左旋L、右旋R):'LXX=input(' 凸轮分度廓线旋向LXX = ','s');% 1-圆柱分度凸轮机构运动分析% 凸轮角速度omega_1=pi*n/30;% 转盘滚子数z=H*I;% 凸轮停歇期转角theta_d=360-theta_f;% 转盘分度期转位角phi_f=360/I;% 机构分度期时间t_f和停歇期时间t_dhd=pi/180.0; % 角度转换为弧度的系数t_f=theta_f*hd/omega_1;t_d=theta_d*hd/omega_1;% 机构动停比k和运动系数tauk=t_f/t_d;tau=t_f/(t_f+t_d);% 凸轮分度廓线旋向系数if LXX=='L'p=1;elseif LXX=='R'p=-1;enddisp '======== 圆柱分度凸轮机构基本数据========'fprintf(' 凸轮转速n = %3.4f r/min \n',n)fprintf(' 机构中心距 C = %3.4f mm \n',C)fprintf(' 机构基距 A = %3.4f mm \n',A)fprintf(' 凸轮头数H = %3.0f \n',H)fprintf(' 凸轮分度廓线旋向LXX = %s \n',LXX)fprintf(' 转盘分度数I = %3.0f \n',I)fprintf(' 转盘滚子数z = %3.0f \n',z)fprintf(' 凸轮角速度omega_1 = %3.4f 1/s \n',omega_1)fprintf(' 凸轮分度期转角theta_f = %3.4f 度\n',theta_f)fprintf(' 凸轮停歇期转角theta_d = %3.4f 度\n',theta_d)fprintf(' 转盘分度期转角phi_f = %3.4f 度\n',phi_f)fprintf(' 机构分度期时间t_f = %3.4f s \n',t_f)fprintf(' 机构停歇期时间t_d = %3.4f s \n',t_d)fprintf(' 机构动停比k = %3.4f \n',k)fprintf(' 机构运动系数tau = %3.4f \n',tau)% 计算凸轮机构运动参数bc_theta=1; % 转角分度步长1~2度% 转盘分度期采用正弦加速运动规律i_zxjs=0;for theta=0:bc_theta:theta_fi_zxjs=i_zxjs+1;phi_2=phi_f*hd*(theta/theta_f-sin(2*pi*theta/theta_f)/(2*pi));omega_2=omega_1*phi_f/theta_f*(1-cos(2*pi*theta/theta_f));epsilon_2=omega_1^2*2*pi*phi_f/theta_f^2*sin(2*pi*theta/theta_f);zeta_2=omega_1^3*4*pi^2*phi_f/theta_f^3*cos(2*pi*theta/theta_f);omega_2_1=omega_2/omega_1;epsilon_2_1=epsilon_2/omega_1^2;zxjs(i_zxjs,:)=[theta phi_2 omega_2 epsilon_2 zeta_2 omega_2_1 epsilon_2_1];endfprintf(' 正弦加速运动参数数组行数i_zxjs = %3.0f \n',i_zxjs)% 输出圆柱分度凸轮机构运动参数[' 凸轮转角',' 转盘角位移',' 角速度',' 角加速度',' 跃度',' 角速度比',' 角加速度比'][zxjs(:,1),zxjs(:,2)/hd,zxjs(:,3),zxjs(:,4),zxjs(:,5),zxjs(:,6),zxjs(:,7)]disp ' 圆柱分度凸轮机构运动参数的最大值'Vm=2.00;Am=6.28;Jm=39.5; % 正弦加速运动加速运动部分的特征值omega_2_1_max=Vm*phi_f/theta_f;omega_2_max=Vm*phi_f/theta_f*omega_1;epsilon_2_max=Am*phi_f/theta_f^2*omega_1^2;zeta_2_max=Jm*phi_f/theta_f^3*omega_1^3;fprintf(' 最大角速度比omega_2_1_max = %3.4f \n',omega_2_1_max);fprintf(' 最大角速度omega_2_max = %3.4f \n',omega_2_max);fprintf(' 最大角加速度epsilon_2_max = %3.4f \n',epsilon_2_max);fprintf(' 最大跃度zeta_2_max = %3.4f \n',zeta_2_max);% 绘制凸轮机构运动曲线(调用正弦加速绘图M文件:zxjs_ydxt.m)zxjs_ydxt(zxjs,hd,theta_f)% 导出fig图形命令:openfig('YZ200-H1-I16-R_ydxt');% 2-圆柱分度凸轮机构几何尺寸计算disp ' 圆柱分度凸轮机构许用压力角一般为30~40度'alpha_p=input(' 确定许用压力角(度) alpha_p = ');% 转盘节圆半径Rp_2j=2*C/(1+cos(phi_f*hd/2)); % 转盘节圆半径计算值Rp_2=round(Rp_2j+0.5); % 对转盘节圆半径计算值四舍五入圆整% 凸轮节圆半径Rp_1j=Vm*Rp_2*phi_f/theta_f/tan(alpha_p*hd); % 凸轮节圆半径计算值fprintf(' 凸轮节圆半径计算值Rp_1j = %3.4f mm \n',Rp_1j);Rp_1=input(' 确定凸轮节圆半径(mm) Rp_1 = ');% 转盘滚子中心角phi_z=360/z;% 转盘滚子半径(fix是朝0方向取整函数)fprintf(' 转盘滚子半径最小值Rrmin = %3.4f mm \n',fix(0.4*Rp_2*sin(pi/z)));fprintf(' 转盘滚子半径最大值Rrmax = %3.4f mm \n',fix(0.6*Rp_2*sin(pi/z)));Rr=input(' 确定滚子半径(mm) Rr = ');% 转盘滚子宽度fprintf(' 转盘滚子宽度最小值bmin = %3.4f mm \n',fix(Rr));fprintf(' 转盘滚子宽度最大值bmax = %3.4f mm \n',fix(1.4*Rr));b=input(' 确定滚子宽度(mm) b = ');% 转盘滚子与凸轮槽底之间的间隙fprintf(' 转盘滚子与凸轮槽底间隙的最小值emin = %3.4f mm \n',fix(0.2*b));fprintf(' 转盘滚子与凸轮槽底间隙的最大值emax = %3.4f mm \n',fix(0.4*b));disp ' 转盘滚子与凸轮槽底至少取间隙值 e = 5~10 mm'e=input(' 确定滚子与凸轮槽底的间隙(mm) e = ');% 凸轮定位环面的径向深度h=b+e;% 凸轮定位环面的外圆直径Do=2*Rp_1+b;% 凸轮定位环面的内圆直径Di=Do-2*h;% 凸轮宽度fprintf(' 凸轮宽度的最小值Lmin = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)));fprintf(' 凸轮宽度的最大值Lmax = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)+2*Rr)); L=input(' 确定凸轮宽度(mm) L = ');% 转盘的外圆直径fprintf(' 转盘外圆直径的最小值D_2min = %3.4f mm \n',2*(Rp_2+Rr));D_2=input(' 确定转盘外圆直径(mm) D_2 = ');% 转盘基准端面到滚子宽度中点的轴向距离rG=A-Rp_1;% 转盘基准端面到滚子上端面的轴向距离rO=rG-b/2;% 转盘基准端面到滚子下端面的轴向距离re=rG+b/2;% 输出圆柱分度凸轮机构几何尺寸计算结果disp ' ======== 圆柱分度凸轮机构几何尺寸========'fprintf(' 许用压力角alpha_p = %3.4f 度\n',alpha_p); fprintf(' 凸轮节圆半径Rp_1 = %3.4f mm \n',Rp_1); fprintf(' 转盘节圆半径Rp_2 = %3.4f mm \n',Rp_2); fprintf(' 转盘滚子中心角phi_z = %3.4f 度\n',phi_z); fprintf(' 滚子半径Rr = %3.4f mm \n',Rr);fprintf(' 滚子宽度 b = %3.4f mm \n',b);fprintf(' 转盘滚子与凸轮槽底间隙 e = %3.4f mm \n',e);fprintf(' 凸轮定位环面的径向深度h = %3.4f mm \n',h);fprintf(' 凸轮定位环面的外圆直径Do = %3.4f mm \n',Do); fprintf(' 凸轮定位环面的内圆直径Di = %3.4f mm \n',Di); fprintf(' 凸轮宽度L = %3.4f mm \n',L);fprintf(' 转盘外圆直径D_2 = %3.4f mm \n',D_2); fprintf(' 转盘基准端面到滚子上端面的轴向距离rO = %3.4f mm \n',rO); fprintf(' 转盘基准端面到滚子宽度中点轴向距离rG = %3.4f mm \n',rG); fprintf(' 转盘基准端面到滚子上端面的轴向距离re = %3.4f mm \n',re);% 3-圆柱分度凸轮机构压力角的计算% 1#、2#、3#滚子的起始位置角(单位:度)phi0_1=-p*0.5*phi_z;phi0_2=p*0.5*phi_z;phi0_3=p*1.5*phi_z;% 计算1#、2#、3#滚子位置角(单位:度)phi=zeros(i_zxjs,3); % 变量初始化phi1=phi0_1-p.*zxjs(:,2); % zxjs(:,2)存储转盘角位移phi_2 phi2=phi0_2-p.*zxjs(:,2);phi3=phi0_3-p.*zxjs(:,2);phi=[phi1 phi2 phi3]; % 行-theta,列-滚子位置角% 转盘节圆半径处的压力角% 机构的角速度比(omega_2/omega_1)—数组zxjs(:,6)alpha_fz=Rp_2.*zxjs(:,6); % 计算压力角的分子数组alpha_fm_1=C-Rp_2.*cos(phi(:,1)); % 计算1#滚子压力角的分母数组alpha_1=atan2(alpha_fz,alpha_fm_1);alpha_fm_2=C-Rp_2.*cos(phi(:,2)); % 计算2#滚子压力角的分母数组alpha_2=atan2(alpha_fz,alpha_fm_2);alpha_fm_3=C-Rp_2.*cos(phi(:,3)); % 计算3#滚子压力角的分母数组alpha_3=atan2(alpha_fz,alpha_fm_3);% 绘制转盘节圆半径处与1#、2#、3#滚子相啮合的压力角变化线图figure(2);subplot(3,1,1);plot(zxjs(:,1),alpha_1/hd);title('转盘节圆半径处与1号滚子相啮合的压力角变化线图');grid;xlabel('凸轮转角\theta (^。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程rb=40;rt=10;e=15;h=50;% 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速ft=100;fs=60;fh=90;alpha_p=35;n=200;% 角度和弧度转换系数;机构尺度hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2);w=n*pi/30; omega=w*du; % 凸轮角速度(°/s)fprintf(' 基圆半径rb = %3.4f mm \n',rb)fprintf(' 滚子半径rt = %3.4f mm \n',rt)fprintf(' 推杆偏距 e = %3.4f mm \n',e)fprintf(' 推程升程h = %3.4f mm \n',h)fprintf(' 推程运动角ft = %3.4f 度\n',ft)fprintf(' 远休止角fs = %3.4f 度\n',fs)fprintf(' 回程运动角fh = %3.4f 度\n',fh)fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n)fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w)fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' 'disp ' 计算过程和输出结果'disp ' '% (1)---校核凸轮机构的压力角和轮廓曲率半径'disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***'disp ' 1 推程(等加速/等减速运动)'for f=1:ftif f<=ft/2s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f);vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程elses(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f);vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程endalpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度)alpha_td(f)=alpha_t(f)*du; % 推程压力角(度)pt1=((se+s)^2+(ds-e)^2)^1.5;pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));rho_t(f)=pt1/pt2; % 推程曲率半径st(f)=s;endalpha_tm=max(alpha_td);fprintf(' 推程最大压力角alpha_tm = %3.4f 度\n',alpha_tm)for f=1:ftif alpha_td(f)==alpha_tm;ftm=f;break;endendfprintf (' 对应的位置角ftm = %3.4f 度\n',ftm)if alpha_tm>alpha_pfprintf(' * 凸轮推程压力角超过许用值,需要增大基圆!\n')endrho_tn = min(rho_t);fprintf (' 最小曲率半径rho_tn = %3.4f mm\n',rho_tn)for f=1:ftif rho_t(f)==rho_tn;ftn=f;break;endendfprintf(' 对应的位置角ftn = %3.4f 度\n',ftn)if rho_tn<rt+5fprintf(' * 凸轮推程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' 2 回程(余弦加速度运动-简谐运动)'d1=ft+fs;d2=ft+fs+fh; % 回程运动角围for f=d1:d2k=f-d1;s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f); % 简谐运动-位移方程ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);d2s(f)=-0.5*pi^2*h*cos(pi*k/fh)/(fh*hd)^2;d2s=d2s(f);alpha_h(f)=atan(abs(ds+e)/(se+s)); % 回程压力角(弧度)alpha_hd(f)=alpha_h(f)*du; % 回程压力角(度)ph1=((se+s)^2+(ds-e)^2)^1.5;ph2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));rho_h(f)=ph1/ph2; % 回程曲率半径sh(f)=s;vh(f)=-0.5*pi*h*omega*sin(pi*f/fh)/fh; % 简谐运动-速度方程ah(f)=-0.5*pi^2*h*omega^2*cos(pi*f/fh)/fh^2; % 简谐运动-加速度方程endalpha_hm = max(alpha_hd(d1:d2));fprintf(' 回程最大压力角alpha_hm = %3.4f 度\n',alpha_hm)for f=d1:d2if alpha_hd(f)==alpha_hm;fhm=f;break;endendfprintf(' 对应的位置角fhm = %3.4f 度\n',fhm)rho_hn=min(rho_h(d1:d2));fprintf(' 最小曲率半径rho_hn = %3.4f mm\n',rho_hn)for f=d1:d2if rho_h(f)==rho_hn;fhn=f;break;endendfprintf(' 对应的位置角fhn = %3.4f 度\n',fhn)if rho_hn<rt+5fprintf(' * 凸轮回程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' '% (2)---计算凸轮机构的从动件运动参数'disp ' *** 计算凸轮机构从动件的运动参数***'disp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角位移s(mm) 速度v(mm/s)'for f=10:10:ftydcs_t=[f st(f) vt(f)];disp(ydcs_t)endat_1=4*h*omega^2/ft^2;at_2=-4*h*omega^2/ft^2;fprintf(' 等加速上升的加速度at_1 = %3.4f (mm/s^2) \n',at_1)fprintf(' 等减速上升的加速度at_2 = %3.4f (mm/s^2) \n',at_2)disp ' 2 回程(余弦加速度运动-简谐运动)'disp ' 凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2)'for f=d1:10:d2ydcs_h=[f sh(f) vh(f) ah(f)];disp(ydcs_h)end% (3)---绘制凸轮机构的从动件运动线图figure(1);subplot(3,2,1) % 推程位移线图f=1:ft;plot(f,st);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it s / \rm(mm)')title('从动件推程位移线图');subplot(3,2,2) % 回程位移线图f=d1:d2;plot(f,sh(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it s / \rm(mm)')title('从动件回程位移线图');subplot(3,2,3) % 推程速度线图f=1:ft;plot(f,vt);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it v / \rm(mm/s)')title('从动件推程速度线图');subplot(3,2,4) % 回程速度线图f=d1:d2;plot(f,-vh(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it v / \rm(mm/s)')title('从动件回程速度线图');subplot(3,2,5) % 推程加速度线图line([0,ft/2],[at_1,at_1]);line([ft/2,ft/2],[at_1,at_2]); % 等加速等减速之间的突变垂线line([ft/2,ft],[at_2,at_2]);xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it a / \rm(mm/s^2)')title('从动件推程加速度线图');subplot(3,2,6) % 回程加速度线图f=d1:d2;plot(f,-ah(d1:d2));xlabel ('凸轮转角\it \phi / \rm( °)')ylabel ('\it a / \rm(mm/s^2)')title('从动件回程加速度线图');disp ' '% (4)---计算凸轮理论廓线与实际廓线的直角坐标和向径'disp ' ****** 凸轮理论轮廓与实际轮廓的直角坐标******'nd=360;for f=1:ndif f<=ft/2 % 等加速运动s(f)=2*h*f^2/ft^2;s=s(f);ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);elseif f>ft/2 & f<=ft % 等减速运动s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f);ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);elseif f>ft & f<=d1 % 远休止角s=h;ds=0;elseif f>d1 & f<=d2 % 简谐运动k=f-d1;s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f);ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);elseif f>d2 & f<=nds=0;ds=0;endxx(f)=(se+s)*sin(f*hd)+e*cos(f*hd);x=xx(f); % 理论轮廓横坐标yy(f)=(se+s)*cos(f*hd)-e*sin(f*hd);y=yy(f); % 理论轮廓纵坐标dx(f)=(ds-e)*sin(f*hd)+(se+s)*cos(f*hd);dx=dx(f);dy(f)=(ds-e)*cos(f*hd)-(se+s)*sin(f*hd);dy=dy(f);xp(f)=x+rt*dy/sqrt(dx^2+dy^2);xxp=xp(f); % 实际轮廓横坐标yp(f)=y-rt*dx/sqrt(dx^2+dy^2);yyp=yp(f); % 实际轮廓纵坐标r(f)=sqrt(x^2+y^2); % 理论轮廓向径rp(f)=sqrt(xxp^2+yyp^2); % 实际轮廓向径enddisp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y'for f=10:10:ftnu=[f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp ' 2 回程(余弦加速度运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y'for f=d1:10:d2nu=[f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp '*** 凸轮理论轮廓与实际轮廓的向径***'disp ' 1 推程(等加速/等减速运动)'disp ' 凸轮转角理论r 实际r'for f=10:10:ftnu=[f r(f) rp(f)];disp(nu)enddisp ' 'disp ' 2 回程(余弦加速度运动)'for f=d1:10:d2nu=[f r(f) rp(f)];disp(nu)end% (5)---绘制凸轮的理论轮廓和实际轮廓figure(2);plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(rb+h-10) (rb+h+10) -(rb+h+10) (rb+rt+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(rb+h+3,0,'X') % 标注横轴text(0,rb+rt+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置移动从动件盘形凸轮轮廓') % 标注图形标题hold on; % 保持图形plot([-(rb+h) (rb+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(rb+h) (rb+rt)],'k') % 纵轴(黑色)plot([e e],[0 (rb+rt)],'k--') % 初始偏置位置(黑色,虚线)ct=linspace(0,2*pi); % 画圆的极角变化围plot(rb*cos(ct),rb*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(青色,虚线)plot(e + rt*cos(ct),se + rt*sin(ct),'m') % 滚子圆(品红色)plot(xp,yp,'b') % 实际轮廓(蓝色)******** 偏置移动从动件盘形凸轮设计绘图和运动分析********######## 已知条件########凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作等加速/等减速运动,在回程作余弦加速度运动基圆半径rb = 40.0000 mm滚子半径rt = 10.0000 mm推杆偏距 e = 15.0000 mm推程升程h = 50.0000 mm推程运动角ft = 100.0000 度远休止角fs = 60.0000 度回程运动角fh = 90.0000 度推程许用压力角alpha_p = 35.0000 度凸轮转速n = 200.0000 r/min凸轮角速度(弧度) w = 20.9440 rad/s凸轮角速度(度) omega = 1200.0000 度/s计算过程和输出结果*** 计算凸轮理论轮廓的压力角和曲率半径***1 推程(等加速/等减速运动)推程最大压力角alpha_tm = 34.2666 度对应的位置角ftm = 50.0000 度最小曲率半径rho_tn = 35.2303 mm对应的位置角ftn = 51.0000 度2 回程(余弦加速度运动-简谐运动)回程最大压力角alpha_hm = 30.9248 度对应的位置角fhm = 213.0000 度最小曲率半径rho_hn = 30.3591 mm对应的位置角fhn = 250.0000 度*** 计算凸轮机构从动件的运动参数***1 推程(等加速/等减速运动)凸轮转角位移s(mm) 速度v(mm/s)10 1 24020 4 48030 9 72040 16 96050 25 120060 34 96070 41 72080 46 48090 49 240100 50 0等加速上升的加速度at_1 = 28800.0000 (mm/s^2)等减速上升的加速度at_2 = -28800.0000 (mm/s^2)2 回程(余弦加速度运动-简谐运动)凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2) 160 50 673 -33602170 48 358 -41220180 44 0 -43865190 37 -358 -41220200 29 -673 -33602210 21 -907 -21932220 12.5 -1031.3 -7617.1230 5.8 -1031.3 7617.1240 2 -907 21932250 0 -673 33602****** 凸轮理论轮廓与实际轮廓的直角坐标******1 推程(等加速/等减速运动)凸轮转角理论x 理论y 实际x 实际y 10.0000 21.3848 34.8977 18.7440 25.2527 20.0000 28.1459 33.4732 26.5660 23.5988 30.0000 36.0309 32.4073 34.7788 22.4860 40.0000 45.6105 31.0206 43.9004 21.1679 50.0000 57.1986 28.4142 54.4870 18.7889 60.0000 69.0579 22.5501 63.1030 14.5165 70.0000 78.5024 12.6099 70.2060 7.0270 80.0000 84.4235 -0.3453 74.7846 -3.0083 90.0000 86.0810 -15.0000 76.0894 -14.5890 100.0000 83.1533 -29.8936 73.7429 -26.51052 回程(余弦加速度运动)凸轮转角理论x 理论y 实际x 实际y 160.0000 15.6881 -86.9597 13.9127 -77.1185 170.0000 0.0875 -86.8780 1.9206 -77.0474 180.0000 -15.0000 -81.2321 -9.9808 -72.5829 190.0000 -27.7230 -70.8432 -20.2897 -64.1539 200.0000 -36.8131 -57.2861 -27.8219 -52.9092 210.0000 -41.8603 -42.5041 -32.0770 -40.4336 220.0000 -43.3607 -28.3394 -33.3609 -28.2733 230.0000 -42.5280 -16.1041 -32.6176 -17.4398 240.0000 -40.9188 -6.3040 -31.0634 -7.9985 250.0000 -39.9750 1.4129 -29.9813 1.0597*** 凸轮理论轮廓与实际轮廓的向径***1 推程(等加速/等减速运动)凸轮转角理论r 实际r10.0000 40.9287 31.449020.0000 43.7338 35.533930.0000 48.4609 41.414840.0000 55.1597 48.737350.0000 63.8674 57.635560.0000 72.6465 64.751270.0000 79.5088 70.556880.0000 84.4242 74.845190.0000 87.3781 77.4754 100.0000 88.3634 78.36342 回程(余弦加速度运动)160.0000 88.3634 78.3634 170.0000 86.8780 77.0714 180.0000 82.6054 73.2660 190.0000 76.0745 67.2859 200.0000 68.0948 59.7783 210.0000 59.6564 51.6121 220.0000 51.8003 43.7302 230.0000 45.4750 36.9872 240.0000 41.4015 32.0766 250.0000 40.0000 30.0000。

相关文档
最新文档