(完整word版)图像分割实验报告
数字图像处理实验报告——图像分割实验
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
图像处理实验报告
图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
图像分割处理实验报告
图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。
图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。
本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。
2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。
每张图像的分辨率为500x500像素。
2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。
2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。
在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。
2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。
在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。
2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。
3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。
然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。
相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。
通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。
3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。
图像分割 实验报告
图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
图像分割 实验报告
图像分割实验报告《图像分割实验报告》摘要:图像分割是计算机视觉领域的重要研究方向,它在许多领域都有着重要的应用价值。
本实验旨在探究图像分割算法在不同场景下的表现,并对比不同算法的优缺点,为图像分割技术的进一步发展提供参考。
一、实验背景图像分割是指将图像划分成若干个具有独立语义的区域的过程。
图像分割技术在医学影像分析、自动驾驶、图像识别等领域都有着广泛的应用。
因此,对图像分割算法的研究和优化具有重要意义。
二、实验目的本实验旨在通过对比不同图像分割算法在不同场景下的表现,探究其优劣,并为图像分割技术的进一步发展提供参考。
三、实验内容1. 数据准备:收集不同场景下的图像数据,包括自然景观、医学影像、交通场景等。
2. 算法选择:选择常用的图像分割算法,如基于阈值的分割、边缘检测、区域生长等。
3. 实验设计:将不同算法应用于不同场景的图像数据上,对比它们的分割效果和计算速度。
4. 结果分析:对比不同算法的优缺点,并分析其适用场景和改进空间。
四、实验结果通过实验我们发现,在自然景观图像中,基于阈值的分割算法表现较好,能够有效地将图像分割成不同的颜色区域;而在医学影像中,边缘检测算法表现更为出色,能够准确地识别出器官的边缘;在交通场景中,区域生长算法表现较好,能够有效地区分不同的交通标志和车辆。
五、结论不同的图像分割算法在不同场景下有着不同的表现,没有一种算法能够适用于所有场景。
因此,我们需要根据具体的应用场景选择合适的图像分割算法,或者结合多种算法进行优化,以达到更好的分割效果。
六、展望未来,我们将继续探究图像分割算法的优化和改进,以适应不同场景下的需求。
同时,我们还将研究图像分割算法在深度学习和人工智能领域的应用,为图像分割技术的发展贡献力量。
通过本次实验,我们对图像分割算法有了更深入的了解,也为其在实际应用中的选择提供了一定的指导。
希望我们的研究能够为图像分割技术的发展做出一定的贡献。
图像分割处理实验报告
一、实验目的:1.学会对图像进行二值化处理和直方图均衡化处理2.进一步了解数字图像处理的知识以及matlab软件的使用3.掌握基本的查资料方法二、实验内容把这幅图像分成同样大小的10幅人脸图片然后分别对第一行5幅人脸图像的第3 第4 第5 第二行5幅人脸图像的第1 第5 进行如下处理:1.进行大津法阈值分割的二值化处理2.进行直方图均衡化处理三、实验具体代码以及结果1.实验代码%clcclearsrc_path='D:\histogram matching.bmp'; %原始图片路径dst_path='D:\picture\'; %分割图片后保存路径mkdir(dst_path);A = imread(src_path); %读入原始图片[m,n,l] = size(A); %获得尺寸for i = 1:2for j = 1:5m_start=1+(i-1)*fix(m/2);m_end=i*fix(m/2);n_start=1+(j-1)*fix(n/5);n_end=j*fix(n/5);AA=A(m_start:m_end,n_start:n_end,:); %将每块读入矩阵imwrite(AA,[dst_path num2str(i) '-' num2str(j) '.jpg'],'jpg'); %保存每块图片endendcd 'D:\pic'x1=imread('1-3.jpg');%%%%%%%%%目标读取图像x2=imread('1-4.jpg');x3=imread('1-5.jpg');x4=imread('2-1.jpg');x5=imread('2-5.jpg');% matlab 自带的自动确定阈值的方法level1=graythresh(x1);level2=graythresh(x2);level3=graythresh(x3);level4=graythresh(x4);level5=graythresh(x5);%用得到的阈值直接对图像进行二值化处理并显示BW1=im2bw(x1,level1);BW2=im2bw(x2,level2);BW3=im2bw(x3,level3);BW4=im2bw(x4,level4);BW5=im2bw(x5,level5);figure(1),imshow(BW1);figure(2),imshow(BW2);figure(3),imshow(BW3);figure(4),imshow(BW4);figure(5),imshow(BW5);%直方图均衡化处理%%%%%%%%%%调用直方图均衡化函数 histeq()%%%%%均衡化处理后的灰度级直方图分布figure(6),imhist(histeq(rgb2gray(x1))); figure(7),imhist(histeq(rgb2gray(x2))); figure(8),imhist(histeq(rgb2gray(x3))); figure(9),imhist(histeq(rgb2gray(x4))); figure(10),imhist(histeq(rgb2gray(x5)));%%%均衡化处理后的图像%%%%%%figure(11),imshow(histeq(rgb2gray(x1))); figure(12),imshow(histeq(rgb2gray(x2))); figure(13),imshow(histeq(rgb2gray(x3))); figure(14),imshow(histeq(rgb2gray(x4))); figure(15),imshow(histeq(rgb2gray(x5)));。
完整word版数字图像处理实验报告6
数字图像处理与分析实验报告学院:班级:姓名:学号:实验六细胞图像的分割与测量一、实验目的1. 通过分析细胞图像特点,完成细胞图像的分割和测量,并分析测量结果。
2. 将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。
二、实验要求1. 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法2. 运用大津阈值对细胞图像分割,观察分割后噪声情况,观察目标边缘处的分割效果;(使用函数:im2bw)3. 实现连通区域的编号;(使用函数:bwlabel)4. 计算各连通区域的相关信息,如面积、重心等。
(使用函数:regionprops )三、实验步骤预处理去噪大津阈值分割目标编号标记测量各个细胞的面积等参数输出测量结果、预处理去噪1); x=imread( \CHEN2-7.BMP'桌面Settings\Administrator\'C:\Documents andy=medfilt2(rgb2gray(h));subplot(2,2,1)imshow(x)); title(''原图像subplot(2,2,2)imshow(y));title('中值滤波处理'I=fspecial() 'average'z=imfilter(rgb2gray(x),I);subplot(2,3,4)imshow(z)title(); ''均值滤波处理se = strel(,5,5);'ball'm = imopen(rgb2gray(x),se);subplot(2,3,5)imshow(m)title(); '形态学开运算处理'se = strel(,5,5); 'ball'n = imclose(rgb2gray(x),se);subplot(2,3,6)imshow(n)title(); ''形态学闭运算处理2、大津阈值分割先做出灰度图像的直方图,根据直方图选取合适的分割灰度值);桌面\CHEN2-7.BMP'x=imread('C:\Documents andSettings\Administrator\b=rgb2gray(x);imhist(b);title('灰度直方图');由上图可知,选择阈值在附近可以达到最好的分割效果,则有:185/255);\CHEN2-7.BMP''C:\Documents and Settings\Administrator\桌面x=imread(b=rgb2gray(x);y1=medfilt2(b);w1=im2bw(y1,185/255);) ;h=fspecial('average'y2=imfilter(b,h);w2=im2bw(y2, 185/255);,11,90);se=strel('line'y3=imopen(b,se);w3=im2bw(y3, 185/255);y4=imclose(b,se);w4=im2bw(y4, 185/255);figure subplot(2,2,1)imshow(w1));''中值大津阈值分割title(subplot(2,2,2) imshow(w2));'均值大津阈值分割title('subplot(2,2,3)imshow(w3););开运算大津阈值分割'title('subplot(2,2,4)imshow(w4);); 闭运算大津阈值分割title(''3、目标编号标记);桌面\CHEN2-7.BMP'x=imread('C:\Documents and Settings\Administrator\b=rgb2gray(x);,5,5);'ball'se=strel(y4=imclose(b,se);w4=im2bw(y4, 185/255); z=imcomplement(w4);subplot(2,2,1)imshow(z);title('取反后图像')z=bwareaopen(z,200);subplot(2,2,2);imshow(z);title('去除像素点小于200的部分')BW = logical(z);L = bwlabel(BW,4);subplot(2,2,3);imshow(L);title('四连通')M=bwlabel(BW,8);Subplot(2,2,4)imshow(M);)'八连通'title(4、测量各个细胞的面积等参数);\CHEN2-7.BMP' x=imread('C:\Documents andSettings\Administrator\桌面b=rgb2gray(x);se = strel(,5,5); 'ball'I0=imclose(b,se);I11=im2bw(I0,185/256);I12=imcomplement(I11);I13= bwlabel(I12);s = regionprops(I13, ); 'centroid'centroids = cat(1, s.Centroid);figure(1);imshow(I13)title(); '重心标记图'hold on plot(centroids(:,1), centroids(:,2), ) 'r*'hold off m=regionprops(I13,); 'Area'areas=cat(1, m.Area);figure(3);plot(areas)如图为重心标记和各区域面积分布图:1.为何需要预处理?直接分割的效果如何?答:如果不进行预处理,在后续处理时如进行阈值分割会产生边缘毛刺,使效果不明显;2.选择何种预处理方法?a)中值适合于去除脉冲噪声和图像扫描噪声,同时不会使图像变模糊,但对消除细节较多的图像不适合用中值滤波;b)均值可以有效的是噪声得到消除,但同时图像变得模糊,丢失了一些图像的细节部分;c)形态学开运算对于消除背景噪声有很好的效果,尤其是一些胡椒噪声;d)形态学闭运算对消除前景噪声效果较好,如:沙眼噪声;通过以上分析及结合图像处理效果可以得出,利用形态学开闭运算对滤除图像中的沙眼噪声和胡椒噪声效果较好;3.分析预处理的目的,有针对性的选择合适的方法答:预处理的目的是为了事先消除图像的噪声,好为后处理做准备;四、思考题1.若将预处理去噪的步骤省掉,则如何在目标编号的过程中加入滤波处理;答:若预处理中没有去噪步骤,从图像处理结果可以看出,经过阈值分割后,图像中还有很多椒盐噪声,要在编号中滤除这些噪声,可通过形态学开运算后,再进行取反操作等后续操作;2.将去噪过程与阈值分割前后调换,选择哪种滤波方法可以滤除二值图像上的噪声;答:通过阈值分割之后,图像中有很多胡椒噪声,可通过形态学开操作将其去除;3.总结大津阈值在细胞图像分割中存在的问题,想一想你所学的算法中哪种算法更适合于细胞图像的分割。
图像分割实验报告汇总
一、实验目的
1.掌握图像分割的基本思想,了解其分割技术及其计算策略;
2.学会从图像处理到分析的关键步骤,掌握图像分割过程;
3.了解图像分割的意义,进一步加深对图像分析和理解;
4.掌握基本分割方法:迭代分割和OTSU图像分割,并编程实现。
二、实验原理
(一)迭代阈值分割选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似阈值作为初始阈值,一个较好的方法就是将图像的灰度均值作为初始阈值,然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值。迭代式阈值选取过程可描述如下:
由图3可得:对于直方图双峰不明显或图像目标和背景比例差异悬殊迭代法所选取的阈值不如最大类间方差法(OTSU)(差异不是很大,很细微)。
但是对于直方图双峰明显谷底较深的图像迭代分割可以较快地获得满意结果。
五、实验程序段(具体见实验框架)
1.迭代图像分割:
void CImageProcessingDoc::Onimagediedaifenge()
msg.Format("分割阈值T=%d",T);
AfxMessageBox(msg);
for(j=0;j<m_Height;j++)
{
for(i=0;i<m_Width;i++)
{
if (m_pDibInit->m_pDibBits[j*m_SaveWidth + i]>=T)
m_pDibInit->m_pDibBits[j*m_SaveWidth + i]=255;
1.计算初始化阈值 = ;
2.根据 ,将图像分为两部分,分别计算灰度值期望,取其平均值为g1;
图像分割实验报告
实验七图像分割一、实验目的利用光谱特征进行遥感图像的分割和分割后处理。
二、实验要求1. 能够根据图像的特征,综合使用不同的方法分割出地物对象。
2. 熟练掌握图像直方图的应用。
3. 掌握彩色图像分割的基本方法4. 掌握利用波段组合进行图像分割的工作流程5. 熟悉数学形态学基本方法的应用。
三、实验准备●软件准备:ENVI软件●数据:兰花.jpg文字测原始图像.bmpIKNOSm14 nj Hroad●基本知识:➢图像分割的原则:(1)依据像素灰度值的不连续性进行分割。
假定不同区域像素的灰度值具有不连续性,因而可以对其进行分割。
(2)依据同一区域内部像素的灰度值具有相似性进行分割。
这种方法一般从一个点(种子)出发,将其邻域中满足相似性测量准则的像素进行合并从而达到分割的目的。
依据像素的不连续性进行分割的方法只要是区域增长法。
➢图像分割的工作流程:(1)确定待分割的对象;(2)选择对分割对象敏感的波段;(3)选择分割方法进行分割;(4)将分割后的结果图像转为矢量图。
➢图像分割:(1)图像分割是指把图像分成各具特性的区域并提取出感兴趣的目标的技术和过程。
从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。
图像分割的过程也是一个标记的过程,即将属于同一个区域的像素赋予相同的编号的过程。
(2)目的:将一幅图像分为几个区域,这几个区域之间具有不同的属性,同一区域中各像素具有某些相同的性质。
➢图像分割的方法:(1)灰度阀值法,它在目标与背景之间存在强对比时特别有效(直方图方法);(2)数学形态学方法,腐蚀、膨胀、开运算和闭运算;➢波段运算:ENVI Band Math是一个灵活的图像处理工具,其中许多功能是无法在任何其它的图像处理系统中获得的。
由于每个用户都有独特的需求,利用此工具用户自己定义处理算法,应用到在ENVI打开的波段或整个图像中,用户可以根据需要自定义简单或复杂的处理程序。
例如:可以对图像进行简单加、减、乘、除运算,或使用IDL编写更复杂的处理运算功能。
图像分割实验报告
医学图像处理实验报告实验名称:图像分割设计实验姓名:gaojunqiang学号:20105405班级:生医 1001指导教师:……2013年6月5日一、实验目的1、编程实现下列功能:读出存储的黑白灰度图象并显示,用拉普拉斯算子对图象进行边缘检测,显示处理后图象,存储处理后图象。
2、编程实现下列功能:读出存储的黑白灰度图象并显示,用鼠标点击图象上某一点,以灰度相近原则进行区域生长,显示处理后图象,存储处理后图象。
二、实验原理1、拉普拉斯边缘检测二维函数f(x,y)的拉普拉斯是一个二阶的微分定义为:∇2f = [∂2f / ∂x2 ,∂2f / ∂y2]一般情况下可以用一个拉普拉斯模板算子。
模板算子分为4邻域和8邻域,如下∇2f = 4z5 – (z2 + z4 + z6 + z8)∇2f = 8z5 – (z1 + z2 + z3 + z4+z5 + z6 + z7+ z8)2、区域增长区域增长是通过一个起始点作为种子点对他周围的点进行选择。
它采取的是一种迭代的思想。
区域增长也分为四邻域和八邻域两种方式。
通过像素的集合进行区域增长的算法如下:1)根据图像的不同应用选择一个或一组种子,它或者是最亮或最暗的点,或者是位于点簇中心的点。
2)选择一个描述符(条件)3)从该种子开始向外扩张,首先把种子像素加入集合,然后不断将与集合中各个像素连通、且满足描述符的像素加入集合4)上一过程进行到不再有满足条件的新结点加入集合为止。
三、实验代码及结果1、拉普拉斯边缘检测代码如下:%主函数如下:clc;close all;clear all;Imag = imread('lena.tiff');ImagGray = rgb2gray(Imag); %将彩色图片转换成灰度图片figure()imshow(ImagGray),title('灰度图像');% T = graythresh(ImagGray); %用大津法自动确定阈值% I=edge(ImagGray,'log',0.004);% figure(),imshow(I), title('laplace边缘图像');ImagGray = double(ImagGray);T = 60; %设置阈值LapModType = 8; %设置laplace模板方式ImagLapEdge = LaplaceEdge(ImagGray,LapModType,T); %laplace边缘检测ImagLapEdge = uint8(ImagLapEdge);figure()imshow(ImagLapEdge),title('laplace边缘图像');%拉普拉斯边缘检测函数如下:function ImagLapEdge = LaplaceEdge(ImagGray,MoldType,Thresh)%-----------------参数介绍--------------------%输入参数:% ImagGray: 输入的灰度图像% MoldType: 摸板类型,包括四邻域和八邻域% Thresh: 边缘检测阈值%输出参数:% ImagEdge:边缘像素点,存储的是二值化图像[r,c] = size(ImagGray);ImagLapEdge = zeros(r,c);%四邻域拉普拉斯边缘检测算子if 4 == MoldTypefor i = 2:r-1for j = 2:c-1Temp =-4*ImagGray(i,j)+ImagGray(i-1,j)+ImagGray(i+1,j)+ImagGray(i,j-1)+ImagGray(i,j+1); if Temp > ThreshImagLapEdge(i,j) = 255;elseImagLapEdge(i,j) = 0;endendendend%八邻域拉普拉斯边缘检测算子if 8 == MoldTypefor i = 2:r-1for j = 2:c-1Temp =-8*ImagGray(i,j)+ImagGray(i-1,j)+ImagGray(i+1,j)+ImagGray(i,j-1)+ImagGray(i,j+1)+ImagGray(i-1,j-1)+ImagGray(i+1,j+1)+ImagGray(i+1,j-1)+ImagGray(i-1,j+1);if Temp > ThreshImagLapEdge(i,j) = 255;elseImagLapEdge(i,j) = 0;endendendend拉普拉斯边缘检测实验结果如下:图1 原灰度图像图2 拉普拉斯8邻域模板边缘检测图像图3拉普拉斯4邻域模板边缘检测图像2、区域增长实验代码:主函数如下:clc;close all;clear all;Imag = imread('lena.jpg');figure()imshow(Imag), title('原灰度图片');n = 4; %设置区域增长的种子点数[x,y] = ginput(n); %在图像上取点V = [y,x];V = uint16(V);thresh = 33; %区域增长的阈值growingtype = 8; %增长方式[regionGet,imout,regionsize]=regiongrowing(V,Imag,thresh,growingtype); %区域增长函数figure()imshow(imout), title('区域分割后的图片');hold onplot(x,y,'+');由于区域增长代码老师已给这里就不在写出。
数字图像实验报告 图像分割一 报告
数字图像实验报告实验4 图像分割实验目的:1.了解图像分割的基本理论和方法;2.掌握对图像进行点、线和边缘检测的方法;3.掌握阈值分割的方法和阈值的选择;4.熟悉区域生长法和分水岭分割算法实验内容:1.P294例10.4,比较各种算子的异同。
2.(1)对图片lung.bmp用im2bw进行处理,其分割的阈值分别设为0.05,0.15和0.7,分析哪个效果好(结合图像的直方图)。
第二个效果比较好。
(2)用全局阈值法或Otsu算法计算出合适的阈值。
P306 T2=graythresh(f);T2 =0.1647(3)提高题:对分割出来的二值图像运用所学的形态学知识,得到肺部图像。
提示:如f为原图像,fillhole为处理后的二值图像(其中肺部为白色,其他为黑色),则以下语句可以得到原图中的肺部图像。
f(fillhole==0)=255; %或f(fillhole==0)=0也可以3.编写m文件globalthreshold.m,完成对输入图片全局阈值的计算(参见课本305页的算法),输入参数为图片f,初始阈值T(默认为min+max/2),还有差值范围T0(默认5)(T0表示这一次计算得到的T与上一次的T值之差<T0,则当前的T值为结果阈值,否则再重复调用),返回为符合条件的全局阈值gT。
用计算得到的阈值对lung.bmp进行处理,看看效果如何?M文件:function dabendan=globalthreshold(f,T,T0)T=0.5*(double(min(f(:)))+double(max(f(:)))); T0=5;done=false;while ~doneg=f>T;Tnext=0.5*(mean(f(g))+mean(f(~g)));done=abs(T-Tnext)<T0;T=Tnext;enddabendan=T;>> f=imread('lung.bmp');>> T=0.5*(max(max(f))+min(min(f)));>> T0=5;>> g=globalthreshold(f,T,T0);>> g1=im2bw(f,g/255);>> imshow(g1);4.(2班选做题)区域生长法利用图像像素间的相似性进行分割,调用regiongrow函数对图像weld.tif进行处理,注意参数中S(种子值),T(阈值)的选择对分割效果的影响。
数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
遥感数字图像处理图像分割与线性地物信息提取实验报告
(2)线性地物信息提取效果较好,能够准确地提取出不同的线性地物信息,如 道路、河流等。
1.
实验总结与展望
通过本次实验,我们学习了利用 ENVI 软件进行 RS 图像分割和线性地物信息提
取的方法。我们发现,分割和信息提取的效果都受到算法和参数的选择影响。因
此,在实际应用中,需要根据不同的场景和需求选择合适的算法和参数,以达到
最佳的处理效果。同时,我们也需要注意图像预处理的重要性,它能够有效地提
高后续处理的准确性和可靠性。
未来,随着遥感技术的不断发展和应用场景的扩大,RS 图像分割和信息提取的 需求也将越来越大。因此,我们需要不断学习和掌握最新的算法和技术,以应对 不同场景和需求的处理要求,并且不断完善和优化处理流程,提高处理效率和精 度。
1.
实验背景与目的
遥感图像是一种重要的地学信息获取手段,可以获取大面积的地表信息。但是, 由于图像中存在着大量的地物信息,对于这些信息的快速、准确的提取是遥感研
究中的一个重要问题。本实验旨在利用 ENVI 软件对 RS 图像进行分割,并提取 其中的线性地物信息,为遥感图像处理提供实际的应用。
1.
实验步骤
(1)数据准备:获取需要处理的遥感图像,并导入 ENVI 软件中。
(2)图像预处理:对导入的遥感图像进行预处理,包括辐射校正、大气校正、 几何校正等,以便于后续的处理。
(3)图像分割:利用 ENVI 软件提供的图像分割工具,对遥感图像进行分割。 其中,可以根据需要选择不同的分割算法和参数设置,以达到最佳的分割效果。
(4)线性地物信息提取:根据已分割好的图像,利用 ENVI 软件提供的特征提
取工具,提取其中的线性地物信息。其中,可以根据需要选择不同的特征提取算 法和参数设置,以达到最佳的信息提取效果。
图像分割实验报告
图像分割实验报告
《图像分割实验报告》
图像分割是计算机视觉领域的一项重要技术,它能够将图像分割成不同的区域或对象,为图像识别、目标检测等任务提供了重要的基础。
本实验报告将介绍我们在图像分割领域的研究成果及实验结果。
实验目的
本次实验的目的是通过对图像分割算法的研究和实验,探讨不同算法在图像分割任务中的表现,并对比它们的优缺点,为进一步的研究提供参考。
实验方法
我们选取了常用的图像分割算法,包括基于阈值的分割、区域增长法、边缘检测法、基于聚类的分割等,对这些算法进行了实验比较。
我们使用了多种类型的图像数据集,包括自然场景图像、医学影像等,以验证算法在不同场景下的表现。
实验结果
通过实验,我们发现不同的图像分割算法在不同的图像类型下表现出不同的优劣势。
基于阈值的分割算法在简单的图像中表现较好,但在复杂的场景下效果有限;区域增长法对于连续性较强的对象分割效果较好;边缘检测法在处理边缘清晰的图像时表现出色;基于聚类的分割算法对于复杂背景下的对象分割有一定优势。
结论
通过本次实验,我们对图像分割算法的优劣势有了更深入的了解,不同的算法适用于不同的场景。
在未来的研究中,我们将进一步探索图像分割算法的改进
和优化,以提高图像分割的准确性和效率,为计算机视觉领域的发展贡献力量。
机器视觉相关实验报告
一、实验目的1. 理解机器视觉图像分割的基本概念和常用算法。
2. 掌握利用OpenCV库进行图像分割的方法和技巧。
3. 通过实验验证不同分割算法的效果,为实际应用提供参考。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发环境:PyCharm4. 库:OpenCV 4.0.0.21三、实验内容1. 图像分割概述图像分割是将图像分割成若干个互不重叠的区域,每个区域代表图像中的一个目标。
常见的图像分割方法有阈值分割、边缘检测、区域生长等。
2. 实验步骤(1)导入OpenCV库```pythonimport cv2import numpy as np```(2)读取图像```pythonimage = cv2.imread('test.jpg')```(3)阈值分割```python# 设定阈值threshold_value = 127# 二值化_, binary_image = cv2.threshold(image, threshold_value, 255, cv2.THRESH_BINARY)```(4)边缘检测```python# Canny边缘检测edges = cv2.Canny(image, 50, 150)```(5)区域生长```python# 设置种子点seed_points = [(10, 10), (100, 100)]# 设置区域生长参数newseed = Truelabel = 1num_labels = 0labels = np.zeros_like(image)labels.dtype = np.uint8for point in seed_points:if newseed:newseed = Falselabels[point] = labelnum_labels += 1label += 1# 定义区域生长函数def region_grow(seed, label, labels, image, threshold):x, y = seedneighbors = [(x + 1, y), (x, y + 1), (x - 1, y), (x, y - 1)]for x, y in neighbors:if (x, y) not in seed_points and (x, y) in range(image.shape[0]) and (y, x) in range(image.shape[1]):if abs(image[y, x] - image[seed[1], seed[0]]) < threshold:labels[y, x] = labelseed_points.append((x, y))# 对种子点进行区域生长for seed in seed_points:region_grow(seed, label, labels, image, 20)```(6)显示分割结果```pythoncv2.imshow('Binary Image', binary_image)cv2.imshow('Edges', edges)cv2.imshow('Labels', labels)cv2.waitKey(0)cv2.destroyAllWindows()```四、实验结果与分析1. 阈值分割效果:阈值分割能够将图像分割成前景和背景两部分,但对于复杂背景的图像,效果可能不太理想。
实验六指导书 图像分割
实验六图像分割一、实验目的利用光谱特征进行遥感图像的分割和分割后处理。
二、实验内容1、利用直方图进行图像分割2、提取指定颜色的对象3、去除图片的背景噪声4、提取厦门市TM遥感影像中的水体信息5、提取线性地物信息6、图像形态学基本方法三、实验条件电脑、ENVI软件。
厦门市TM遥感影像、实验数据四、实验步骤1.利用直方图进行图像分割图像:地物与直方图DSCF0153.JPG打开图像,并显示图像的直方图在直方图窗口,移动RGB拉伸的最小值分别为150,160,150,并分别应用,查看拉伸后的图像。
使用下面的表达式去除天空,其中,b1,b2,b3对应图像的R,G,B通道,b4对应原始图像。
b4*(1-b1 lt 150)* (b2 lt 160) * (b3 lt 150)2.彩色图像的分割(1)提取图像中的兰花关闭所有打开的窗口和文件图像:兰花.jpg要求:将兰花从图像分割出来主要操作:利用直方图,查看当前像素值工具比较兰花在各个通道上的灰度值的差异,确定兰花与周围物体最大的通道或通道的组合。
提示:兰花是蓝色的。
表达式:(b1 gt b2)* (b1 gt b3),其中b1是蓝通道,b2,b3对应绿和红通道。
(2)去除背景噪声,提取图像中的娃娃关闭所有打开的窗口和文件图像:娃娃.jpg选择“波段“作为直方图数据来源,进行图像拉伸。
思考以下问题①直方图有什么特征?②任意对RGB波段进行拉伸,图像发生了什么变化?③按照如下设置进行图像拉伸,R:154~184,G:8~100,B:0~160,图像发生了什么变化?④如何去除背景中的噪声?步骤:使用float(b1)/ float(b2)对通道R和G进行代数运算,产生图像m1;对于m1图像,使用b1 gt 0.98进行代数运算,产生图像m2;使用原始图像的RGB作为b1(在变量与波段匹配的对话框中,点击按钮Map Variable to input file),使用m2作为b2,进行代数运算b1*b2,产生新的图像m3,按照R,G,B顺序合成显示。
word实验报告样例(1)
word实验报告样例(1)Word实验报告样例一、实验目的本次实验的主要目的是熟悉Word软件的基本操作和功能,通过具体操作,掌握文档编辑、格式调整、页面设置等技能,提高书写文档的规范性和可视性。
二、实验步骤1.新建文档:打开Word软件,点击“文件-新建”,选择“空白文档”。
2.编辑文档:在文档中输入实验报告标题、“实验目的”、“实验步骤”等内容。
可以使用快捷键或工具栏来加粗、斜体、下划线等。
3.设置页面格式:点击“页面布局”,选择“纸张尺寸、边距、方向”等选项,设置合适的高度、宽度、上下左右边距,以及横向或纵向排版方式。
4.插入文本框:点击“插入”选项卡,选择“文本框”,选择合适的框架布局,编辑框内内容,并设置框架的外观和样式。
5.插入图片:点击“插入”选项卡,选择“图片”,选择所需图片,进行剪切、复制、旋转和调整大小等操作,以达到最佳效果。
6.设置页眉页脚:点击“插入”选项卡,选择“页眉”,可以从模板中选择适合本次实验报告的样式,也可以自己编辑,再设置“页脚”,添加页码、日期、文本等内容。
7.保存文档:点击“文件”选项卡,选择“保存”,可指定保存位置、文件类型和命名规则等。
三、实验结果本次实验可以看到,经过不断尝试和调整,最终得到了一份规范、清晰、美观的实验报告,其中使用了文字、图片、文本框和页眉页脚等多种元素,让报告更加生动和直观。
四、实验心得通过本次实验,我进一步了解了Word软件的基本操作和功能,方便了自己日后的文档编辑和排版。
同时,在实验中也发现自己在使用Word 时还存在一些问题,如没有熟练掌握一些常用快捷键、格式调整不够细致等,需要日后不断探索和练习。
希望通过不断实践,能够更好地提高自己的文档编辑能力,为以后的工作打下更加坚实的基础。
图像分割实验报告
图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的重要研究方向之一,它旨在将一幅图像分割成若干个具有相似特征的区域。
图像分割在许多应用中都起着关键作用,如目标检测、图像识别、医学图像处理等。
本实验旨在探究不同的图像分割算法的性能和适用场景。
二、实验方法本次实验选取了常用的两种图像分割算法:基于阈值的分割算法和基于边缘检测的分割算法。
实验使用的图像为一幅自然风景图。
1. 基于阈值的分割算法基于阈值的分割算法是最简单且常用的分割方法之一。
该方法通过设置一个或多个阈值,将图像中像素的灰度值与阈值进行比较,将像素分为不同的区域。
实验中,我们通过观察图像的灰度直方图,选择合适的阈值对图像进行分割。
2. 基于边缘检测的分割算法基于边缘检测的分割算法通过检测图像中的边缘信息来实现分割。
实验中,我们选取了经典的Canny边缘检测算法。
该算法首先对图像进行高斯滤波,然后计算图像的梯度,最后通过非极大值抑制和双阈值处理来提取图像的边缘。
三、实验结果1. 基于阈值的分割算法通过观察图像的灰度直方图,我们选择了适当的阈值对图像进行分割。
实验结果显示,该方法能够将图像中的前景物体与背景分离,并得到清晰的边界。
然而,该方法对光照变化和噪声比较敏感,当图像中存在复杂的纹理和颜色变化时,分割效果较差。
2. 基于边缘检测的分割算法使用Canny边缘检测算法对图像进行分割,实验结果显示,该方法能够有效地提取图像中的边缘信息。
与基于阈值的方法相比,基于边缘检测的方法对光照变化和噪声有较好的鲁棒性。
然而,该方法在分割复杂纹理和颜色变化较小的区域时,容易产生边缘断裂的问题。
四、讨论与总结通过本次实验,我们对比了基于阈值的分割算法和基于边缘检测的分割算法的优缺点。
基于阈值的方法简单直观,适用于对比较简单的图像进行分割;而基于边缘检测的方法能够提取图像中的边缘信息,适用于复杂的图像分割任务。
然而,两种方法都存在一定的局限性,需要根据具体的应用场景选择合适的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此法将背景和边缘用二值图像表示,便于研究边缘所在位置。
2.Sobel算子法
Sobel相对于先对图像进行加权平均再做差分。
a
对于图像的3×3窗口d
g
则定义Sobel算子为g(x,y) X2Y2简化成模板可以表示成如下形式:
3. 拉普拉斯运算法
式中,T是一个非负的阈值,适当选取T,既可以使明显的边缘得到突出,又不会破坏原来灰度变化比较平缓的背景。
给边缘指定一个特定的灰度级
式中LG是根据需要指定的一个灰度级, 它将明显的边缘用一个固定的灰度级表现, 而其他 的非边缘区域的灰度级仍保持不变。
给背景指定一个特定的灰度级
度级差别,只关心每个像素是边缘像素还是非边缘像素,这时可采用二值化图像输出方式,其
Robert梯度算子
0 1 1 0
当梯度计算完后,可采用以下几种形式突出图像的轮廓。
梯度直接输出
使各点的灰度g(x,y)等于该点的梯度,即
g(x,y) G f x, y
这种方法简单、直接。但增强的图像仅显示灰度变化比较陡的边缘轮廓,而灰度变换比较 平缓的区域则呈暗色。
加阈值的梯度输出
加阈值的梯度输出表达式为
评分
实验报告
课程名称 医学图像处理
实验名称 图像分割
专业班级
姓名
学号Байду номын сангаас
实验日期
实验地点
2015
一、实验目的掌握常用的边缘提取算法,从图像中提取感兴趣的区域,实现图像分割。在图像中,寻找灰 度相同或相似的区域,区分图像中的背景区域和目标区域,利用Matlab实现图像的边缘检测, 进行图像分割。
二、实验环境
G f x,y
xy
梯度的方向在函数f(x,y)最大变化率的方向上,梯度的幅值为
梯度的数值就是f(x,y)在其最大变化率方向上的单位距离所增加的量。对于图像而言,微分 运算可以用差分运算来近似。
x y f(x,y) f(x 1,y) f(x,y) f(x,y 1)
简化成模板可以表示成如下形式:
1 0 0 1
图像分割处理主要用于检测出图像中的轮廓边缘、细节以及灰度跳变部分,形成完整的物 体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。常用的 分割方法是边缘检测。边缘检测是采用多种边缘算子实现突出图像边缘,抑制图像中非边缘信 息,使图像轮廓更加清晰。
1. 梯度算子法 对于图像f(x,y),它在点f(x,y)处的梯度是一个矢量,定义为
1、硬件配置:Intel(R)Core(TM) i5-4210U CPU @1.7GHz 1.7GHz安装内存(RAM):4.00GB系统类型:64位操作系统
2、软件环境:MATLAB R2013b软件
三、实验内容
(包括本实验要完成的实验问题及需要的相关知识简单概述)
图像边缘是图像中特性(如像素灰度、纹理等)分布的不连续处,图像周围特性有阶跃变 化或屋脊状变化的那些像素的集合。图像边缘存在于目标与背景、目标与目标、基元与基元的 边界,标示出目标物体或基元的实际含量,是图像识别信息最集中的地方。