计算机组成原理实验报告_存储器
计算机组成原理与汇编实验报告
计算机组成原理与汇编实验报告姓名:学号:学院:信息科学与工程学院班级:实验1 存储器实验实验目的⏹掌握静态存储随机存储器RAM的工作特性⏹掌握静态存储随机存储器RAM的读写方法实验设备74LS273(一片),静态存储器MEMORY 6116(一片),与门(一片),与非门(一片),单脉冲(一片),开关若干,灯泡若干实验原理在微机系统中,常用的静态RAM 有6116、6264、62256 等。
在本实验中使用的是6116。
6116 为2K╳8 位的静态RAM,其逻辑图3.1如下:图3.1 6116逻辑图其中A0~10 为11 根地址线,I/O0~7 为8 根数据线,CS 为片选端,OE 为数据输出选通端,WR 为写信号端。
其工作方式见下表3-1:表3-1工作方式表实验所用的半导体静态存储器电路原理如图3.2 所示,实验中的静态存储器一片6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。
地址灯AD0—AD7 与地址线相连,显示地址线内容。
数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。
图3.2 存储器实验原理图因地址寄存器为8 位,接入6116 的地址A7—A0,而高三位A8—A10 接地,所以其实际容量为256 字节。
6116 有三个控制线:CE(片选线)、OE(读线)、WE(写线)。
当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。
本实验中将OE 常接地,在此情况下,当CE=0、WE=0 时进行读操作,CE=0、WE=1 时进行写操作,其写时间与T3 脉冲宽度一致。
控制信号SW-B 为低电平有效,控制信号LDAR 为高电平有效。
实验步骤1. 选择实验设备:根据实验原理图,将所需要的组件从组件列表中拖到实验设计流程栏中。
搭建实验流程:将已选择的组件进行连线(鼠标从一个引脚的端点拖动到另一组件的引脚端,即完成连线)。
组成原理-实验1报告
计算机组成原理实验报告实验序号:实验一实验名称: 静态随机存储器实验专业:计算机科学与技术班级:学号: 姓名:任课教师:一.实验目的:掌握静态随机存储器 RAM 工作特性及数据的读写方法。
二.实验设备:PC 机一台,TD-CMA 实验系统一套。
三.实验原理:实验所用的静态存储器由一片 6116(2K×8bit)构成(位于MEM 单元),如图2-1-1 所示。
6116 有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1-1 所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。
由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU能控制MEM 的读写,实验中的读写控制逻辑如图2-1-2 所示,由于T3 的参与,可以保证MEM的写脉宽与T3 一致,T3 由时序单元的TS3 给出(时序单元的介绍见附录2)。
IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1 时为读,WR=1 时为写。
实验原理图如图 2-1-3 所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0 的内容。
地址线接至地址总线,地址总线上接有8 个LED 灯显示A7…A0 的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。
数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
地址寄存器为8 位,接入6116 的地址A7…A0,6116 的高三位地址A10…A8 接地,所以其实际容量为256 字节。
实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。
实验时T3 由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD、WR 高有效,MR 和MW 低有效,LDAR 高有效。
计算机组成原理实验报告(运算器组成存储器)
计算机组成原理实验报告(运算器组成存储器)计算机组成原理实验报告(运算器组成、存储器)计算机组成原理实验报告一、实验1quartusⅱ的采用一.实验目的掌控quartusⅱ的基本采用方法。
了解74138(3:8)译码器、74244、74273的功能。
利用quartusⅱ检验74138(3:8)译码器、74244、74273的功能。
二.实验任务熟悉quartusⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。
新建项目,利用原理编辑方式输出74138、74244、74273的功能特性,依照其功能表分别展开仿真,检验这三种期间的功能。
三.74138、74244、74273的原理图与仿真图1.74138的原理图与仿真图74244的原理图与仿真图1.4.74273的原理图与仿真图、实验2运算器组成实验一、实验目的1.掌握算术逻辑运算单元(alu)的工作原理。
2.熟悉简单运算器的数据传送通路。
3.检验4十一位运算器(74181)的女团功能。
4.按给定数据,完成几种指定的算术和逻辑运算。
二、实验电路附录中的图示出了本实验所用的运算器数据通路图。
8位字长的alu由2片74181构成。
2片74273构成两个操作数寄存器dr1和dr2,用来保存参与运算的数据。
dr1接alu的a数据输入端口,dr2接alu的b数据输入端口,alu的数据输出通过三态门74244发送到数据总线bus7-bus0上。
参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到dr1或dr2暂存。
图中尾巴上拎细短线标记的信号都就是掌控信号。
除了t4就是脉冲信号外,其他均为电位信号。
nc0,nalu-bus,nsw-bus均为低电平有效率。
三、实验任务按右图实验电路,输出原理图,创建.bdf文件。
四.实验原理图及仿真图给dr1取走01010101,给dr2取走10101010,然后利用alu的直通功能,检查dr1、dr2中是否保存了所置的数。
计算机组成原理实验_存储器部件教学实验
实验题目存储器部件教学实验一、实验目的:1. 熟悉ROM芯片和RAM芯片在功能和使用方法等方面的相同和差异之处。
学习用编程器设备向EEPROM芯片内写入一批数据的过程和方法。
2. 理解并熟悉通过字、位扩展技术实现扩展存储器系统容量的方案。
3. 了解静态存储器系统使用的各种控制信号之间正常的时序关系。
4. 了解如何通过读、写存储顺的指令实现对58C65 ROM芯片的读、写操作。
加深理解存储器部件在计算机整机系统中的作用。
二、实验设备与器材:TEC-XP+教学实验系统和仿真终端软件PCEC。
三、实验说明和原理:1、内存储器原理内存储器是计算机中存放正在运行中的程序和相关数据的部件。
在教学计算机存储器部件设计中,出于简化和容易实现的目的,选用静态存储器芯片实现内存储器的存储体,包括唯读存储区和随读写存储区两部分,ROM存储区选用4片长度8位、容易8KB的58C65芯片实现,RAM存储区选用2片长度8位、容量2KB的6116芯片实现,每2个8位的芯片合成一组用于组成16位长度的内存字,6个芯片被分成3组,其地址空间分配关系是:0-1777h用于第一组ROM,固化监控程序,2000-2777h用于RAM,保存用户程序和用户数据,其高端的一些单元作监控程序的数据区,第二组ROM的地址范围可以由用户选择,主要用于完成扩展内存容量的教学实验。
地址总线的低13位送到ROM芯片的地址线引脚,用于选择芯片内的一个存储字。
用于实现存储字的高位字节的3个芯片的数据线引脚、实现低位字节的3个芯片的数据线引脚分别连接在一起接到数据总线的高、低位字节,是实现存储器数据读写的信息通路。
数据总线要通过一个双向三态门电路与CPU一侧的内部总线IB 相连接,已完成存储器、接口电路和CPU之间的数据通讯。
2、扩展教学机的存储空间四、实验内容:1) 要完成存储器容量扩展的教学实验,需为扩展存储器选择一个地址,并注意读写和OE等控制信号的正确状态。
计算机组成原理实验报告_存储系统设计实验
实验四存储系统设计实验一、实验目的本实训项目帮助大家理解计算机中重要部件—存储器,要求同学们掌握存储扩展的基本方法,能设计MIPS 寄存器堆、MIPS RAM 存储器。
能够利用所学习的cache 的基本原理设计直接相联、全相联,组相联映射的硬件cache。
二、实验原理、内容与步骤实验原理、实验内容参考:1、汉字字库存储芯片扩展设计实验1)设计原理该实验本质上是8个16K×32b 的ROM 存储系统。
现在需要把其中一个(1 号)16K×32b 的ROM 芯片用4个4K×32b 的芯片来替代,实际上就是存储器的字扩展问题。
a) 需要4 片4个4K×32b 芯片才可以扩展成16K×32b 的芯片。
b) 目标芯片16K个地址,地址线共14 条,备用芯片12 条地址线,高两位(分线器分开)用作片选,可以接到2-4 译码器的输入端。
c) 低12 位地址直接连4K×32b 的ROM 芯片的地址线。
4个芯片的32 位输出直接连到D1,因为同时只有一个芯片工作,因此不会冲突。
芯片内数据如何分配:a) 16K×32b 的ROM 的内部各自存储16K个地址,每个地址里存放4个字节数据。
地址范围都一样:0x0000~0x3FFF。
b) 4个4K×32b 的ROM,地址范围分别是也都一样:0x000~0xFFF,每个共有4K个地址,现在需要把16K×32b 的ROM 中的数据按照顺序每4个为一组分为三组,分别放到4个4K×32b 的ROM 中去。
HZK16_1 .txt 中的1~4096个数据放到0 号4K 的ROM 中,4097~8192 个数据放到 1 号4K 的ROM 中,8193~12288 个数据放到2 号4K 的ROM 中,12289~16384个数据放到3 号4K 的ROM 中。
c) 注意实际给的16K 数据,倒数第二个4K(8193~12288 个数据)中部分是0,最后4K(12289~16384 数据)全都是0。
西安交通大学计算机组成原理实验报告
西安交通大学计算机组成原理实验报告姓名:***班级:物联网**学号:实验一存储器的访问与实现一、实验目的1、理解计算机主存储器的分类及作用;2、掌握ROM、RAM的读写方法。
二、实验原理存储器按存取方式分,可分为随机存储器和顺序存储器。
如果存储器中的任何存储单元的内容都可随机存取,称为随机存储器,计算机中的主存储器都是随机存储器。
如果存储器只能按某种顺序存取,则称为顺序存储器,磁带是顺序存储器,磁盘是半顺序存储器,它们的特点是存储容量大,存取速度慢,一般作为外部存储器使用。
如果按存储器的读写功能分,有些存储器的内容是固定不变的,即只能读出不能写入,这种存储器称为只读存储器(ROM);既能读出又能写入的存储器,称为随机读写存储器(RAM)。
实际上真正的ROM基本上不用了,用的是光可擦除可编程的ROM(EPROM)和电可擦除可编程的ROM(EEPROM)。
EEPROM用的越来越多,有取代EPROM之势,比如容量很大的闪存(FLASH)现在用的就很广泛,常说的U盘就是用FLASH做的。
按信息的可保存性分,存储器可分为非永久性记忆存储器和永久性记忆存储器。
ROM、EPROM、EEPROM都是永久记忆存储器,它们断电后存储内容可保存。
RAM则是非永久性记忆存储器,断电后存储器中存储的内容丢失。
随机读写存储器类型随机存储器按其元件的类型来分,有双极存储器和MOS存储器两类。
在存取速度和价格两方面,双极存储器比MOS存储器高,故双极存储器主要用于高速的小容量存储体系。
在MOS存储器中,根据存储信息机构的原理不同,又分为静态随机存储器(SRAM)和动态随机存储器(DRAM)。
静态随机存储器采用双稳态触发器来保存信息,只要不断电,信息就不会丢失;动态随机存储器利用记忆电容来保存信息,使用时只有不断地给电容充电才能使信息保持。
静态随机存储器的集成度较低,功耗也较大;动态随机存储器的集成度较高,功耗低。
现在计算机中,内存容量较大,常由动态随机存储器构成。
计算机组成原理 实验报告
计算机组成原理实验报告专业网络工程班级学号099074姓名指导教师安徽工业大学计算机学院二○一二年五月实验报告使用新设备做的实验:寄存器实验(A,w寄存器实验,R0 R1 R2 R3寄存器实验)运算器实验存储器EM实验一. 寄存器实验实验1:A,W 寄存器实验连接线表:系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。
将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将66H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W 寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
实验2:R0,R1,R2,R3 寄存器实验连接线表将11H写入R0寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据11H置控制信号为:按住STEP 脉冲键,CK 由高变低,这时寄存器R0 的黄色选择指示灯亮,表明选择R0 寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据11H 被写入R0 寄存器。
将22H写入R1寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据22H置控制信号为:按住STEP 脉冲键,CK 由高变低,这时寄存器R1 的黄色选择指示灯亮,表明选择R1 寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据22H被写入R1 寄存器。
将33H写入R2寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据33H置控制信号为:按住STEP 脉冲键,CK 由高变低,这时寄存器R2 的黄色选择指示灯亮,表明选择R2 寄存器。
计算机组成原理存储器读写实验报告
计算机组成原理存储器读写实验报告《计算机组成原理》实验报告
实验名称:存储器读写实验班级:
学号:姓名:
3.存储器实验单元电路:
存储器实验单元电路控制信号逻辑功能表:
4.存储器实验电路:
存储器读写实验需三部分电路共同完成:存储器单元、地址寄存器单元和输入、输出单元。
存储器单元以6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送人地址寄存器,向存储器单元电路提供地址信息,输入、输出单元作用与以前相同。
四、实验结果记录
(1)连线准备
1.连接输入、输出实验的全部连线。
2.按实验逻辑原理图连接M-W、M-R两根信号低电平有效信号线。
3.连接A7—A0 8根地址线。
4.连接B-AR正脉冲有效信号线。
计算机组成原理实验报告,存储器的原理及应用
初:未知 当前:2016-7-3 主笔:Angel 联系方式:QQ :1219818801 版本:1实 验 报 告课程名称: 计算机组成原理 实验项目: 存储器的原理及应用姓 名: 刘斌专 业: 计算机科学与技术 班 级: 计算机14-6班 学 号:1404010612计算机科学与技术学院实验教学中心2016 年 6 月 20日初:未知当前:2016-7-3 主笔:Angel 联系方式:QQ:1219818801 版本:1实验项目名称:存储器的原理及应用一、实验目的1.了解程序存储器EM 的工作原理及控制方法2.了解存储器读写方法。
二、实验内容利用 COP2000 实验仪上的 K16..K23 开关做为 DBUS 的数据,其它开关做为控制信号,实现程序存储器EM 的读写操作。
三、实验用设备仪器及材料计算机、伟福 COP2000系列计算机组成原理实验系统四、实验原理及接线内存中通常存放指令和数据,当内存存放指令时,将指令送指令总线;当内存存放数据时,将数据送数据总线。
如图所示,它主要由一片RAM 6116 组成,RAM6116是静态2048X8位的RAM,有11 条地址线,在COP2000 模型机中只使用8 条地址线A0-A7 ,而A8-A10接地。
存储器EM通过1片74HC245 与数据总线相连。
存储器EM的地址可由PC或MAR提供。
存储器EM 的数据输出直接接到指令总线IBUS,指令总线IBUS 的数据还可以来自一片74HC245。
当ICOE 为0 时,这片74HC245 输出中断指令B8。
EM原理图初:未知当前:2016-7-3 主笔:Angel 联系方式:QQ:1219818801 版本:12存储器 uM 由三片 6116RAM 构成,共 24 位微指令。
存储器的地址由 uPC 提供, 片选及读信号恒为低, 写信号恒为高. 存储器uM 始终输出uPC 指定地址单元的数据。
连接线表五、实验操作步骤1, 1、控制 k4、k5开关,观察PC\MAR输出地址选择:1、K5、输出地址(PC红色灯亮)2、K5、输出地址(PC红色灯亮)2、K5、没有灯亮2、K5、、PC同时输出地址(MAR、PC红色灯同时亮)2、存储器EM 写、读实验(1)将地址 0写入MAR二进制开关K23-K16 用于DBUS[7:0]的数据输入,置数据00HK3连接MAREN端,当低电平(0)时,MAR写允许按CLOCK键, 将地址 0 写入MAR(2)将数据11H写入地址00H二进制开关K23-K16 用于DBUS[7:0]的数据输入,置数据11HK4连接MAROE,当低电平(0)时,MAR输出地址K2连接EEMEN,当低电平(0)时,存储器与数据总线连接K0连接EMWR,当低电平(0)时,存储器写允许按CLOCK键, 将地址11H写入EM(3)读地址00H 中的数据11HK4连接MAROE,,MAR输出地址K1连接EMRD,当低电平(0)时,存储器读允许学生做:将数据55H写入地址22H,并读出将数据45H写入地址33H,并读出3、将数据打入地址为00的IR 指令寄存器/uPC实验(1)将地址 0写入MAR二进制开关K23-K16 用于DBUS[7:0]的数据输入,置数据00HK3连接MAREN端,当低电平(0)时,MAR写允许按CLOCK键, 将地址 0 写入MAR(2)将数据11H写入地址00H二进制开关K23-K16 用于DBUS[7:0]的数据输入,置数据11HK4连接MAROE,当低电平(0)时,MAR输出地址K2连接EEMEN,当低电平(0)时,存储器与数据总线连接K0连接EMWR,当低电平(0)时,存储器写允许按CLOCK键, 将地址11H写入EM(3)读地址00H 中的数据11HK4连接MAROE,,MAR输出地址K1连接EMRD,当低电平(0)时,存储器读允许(4)写地址00H数据11H入 IR及 uPC学生做:将数据22H、33H打入地址为01H、02H的IR 指令寄存器/uPC实验实验 1:微程序存储器 uM 读出置控制信号为:K0为1uM 输出uM[0]的数据按一次CLOCK脉冲键,CLOCK产生一个上升沿,数据uPC 被加一。
储存器实验报告
储存器实验报告储存器实验报告一、引言储存器是计算机中重要的组成部分,它用于存储和读取数据。
在计算机科学领域,储存器的设计和性能对计算机的运行速度和效率有着重要的影响。
本实验旨在通过设计和实现一个简单的储存器,来深入了解储存器的工作原理和性能指标。
二、实验目的1. 了解储存器的基本概念和分类;2. 掌握储存器的存储原理和读写操作;3. 分析和评估储存器的性能指标。
三、实验过程1. 储存器的分类储存器按照存储介质的不同可以分为随机存储器(RAM)和只读存储器(ROM)。
RAM是一种易失性存储器,它可以随机读写数据。
ROM则是一种非易失性存储器,主要用于存储固定的程序和数据。
2. 储存器的存储原理储存器的存储原理是通过电子元件的状态来表示数据的存储状态。
在RAM中,每个存储单元由一个电容和一个晶体管组成。
当电容充电时表示存储单元存储的是1,当电容放电时表示存储单元存储的是0。
在ROM中,存储单元由一组可编程的开关组成,每个开关的状态决定了存储单元存储的数据。
3. 储存器的读写操作储存器的读操作是通过将地址信号传递给储存器来选择要读取的存储单元,然后将存储单元的数据输出。
储存器的写操作是通过将地址信号传递给储存器来选择要写入的存储单元,然后将要写入的数据输入。
四、实验结果在实验中,我们设计并实现了一个8位的RAM储存器。
通过对储存器进行读写操作,我们成功地将数据存储到储存器中,并成功地从储存器中读取数据。
实验结果表明,储存器的读写操作是可靠和有效的。
五、实验分析1. 储存器的性能指标储存器的性能指标包括存储容量、存取时间和存储器的可靠性。
存储容量是指储存器可以存储的数据量,通常以位或字节为单位。
存取时间是指从发出读写指令到数据可以被读取或写入的时间间隔。
存储器的可靠性是指储存器的故障率和故障恢复能力。
2. 储存器的应用储存器广泛应用于计算机、手机、平板电脑等电子设备中。
在计算机中,储存器用于存储程序和数据,是计算机的核心组件之一。
计组存储器实验实验报告(3篇)
第1篇一、实验目的1. 理解存储器的基本组成和工作原理;2. 掌握存储器的读写操作过程;3. 熟悉存储器芯片的引脚功能及连接方式;4. 了解存储器与CPU的交互过程。
二、实验环境1. 实验设备:TD-CMA计算机组成原理实验箱、计算机;2. 实验软件:无。
三、实验原理1. 存储器由地址线、数据线、控制线、存储单元等组成;2. 地址线用于指定存储单元的位置,数据线用于传输数据,控制线用于控制读写操作;3. 存储器芯片的引脚功能:地址线、数据线、片选线、读线、写线等;4. 存储器与CPU的交互过程:CPU通过地址线访问存储器,通过控制线控制读写操作,通过数据线进行数据传输。
四、实验内容1. 连线:按照实验原理图连接实验箱中的存储器芯片、地址线、数据线、控制线等;2. 写入操作:将数据从输入单元IN输入到地址寄存器AR中,然后通过控制线将数据写入存储器的指定单元;3. 读取操作:通过地址线指定存储单元,通过控制线读取数据,然后通过数据线将数据输出到输出单元OUT;4. 实验步骤:a. 连接实验一(输入、输出实验)的全部连线;b. 按实验逻辑原理图连接两根信号低电平有效信号线;c. 连接A7-A0 8根地址线;d. 连接13-AR正脉冲有效信号线;e. 在输入数据开关上拨一个地址数据(如00000001,即16进制数01H),拨下开关,把地址数据送总线;f. 拨动一下B-AR开关,实现0-1-0”,产生一个正脉冲,把地址数据送地址寄存器AR保存;g. 在输入数据开关上拨一个实验数据(如10000000,即16进制数80H),拨下控制开关,把实验数据送到总线;h. 拨动控制开关,即实现1-0-1”,产生一个负脉冲,把实验数据存入存储器的01H号单元;i. 按表2-11所示的地址数据和实验数据,重复上述步骤。
五、实验结果与分析1. 通过实验,成功实现了存储器的读写操作;2. 观察到地址线、数据线、控制线在读写操作中的协同作用;3. 理解了存储器芯片的引脚功能及连接方式;4. 掌握了存储器与CPU的交互过程。
淮海工学院存储器实验报告
淮海工学院计算机工程学院实验报告书课程名《计算机组成原理》题目:存储器实验班级:软件122学号:2012122734姓名:韩莹一、实验目的掌握静态随机存取存储器RAM工作特性及数据的读写方法。
二、实验原理主存储器单元电路主要用于存放实验机的机器指令,如图2.5.1所示,它的数据总线挂在外部数据总线EXD0~EXD7上;它的地址总线由地址寄存器单元电路中的地址寄存器74LS273(U37)给出,地址值由8个LED灯LAD0~LAD7显示,高电平亮,低电平灭;在手动方式下,输入数据由8位数据开关KD0~KD7提供,并经一三态门74LS245(U51)连至外部数据总线EXD0~EXD7,实验时将外部数据总线EXD0~EXD7用8芯排线连到内部数据总线BUSD0~BUSD7,分时给出地址和数据。
它的读信号直接接地;它的写信号和片选信号由写入方式确定。
该存储器中机器指令的读写分手动和自动两种方式。
手动方式下,写信号由W/R` 提供,片选信号由CE`提供;自动方式下,写信号由控制CPU的P1.2提供,片选信号由控制CPU的P1.1提供。
由于地址寄存器为8位,故接入6264的地址为A0~A7,而高4位A8~A12接地,所以其实际使用容量为256字节。
6264有四个控制线:CS1 第一片选线、CS2第二片选线、OE读线、WE写线。
其功能如表3—4所示。
CS1片选线由CE`控制(对应开关CE)、OE读线直接接地、WE写线由W/R`控制(对应开关WE)、CS2直接接+5V。
图中信号线LDAR由开关LDAR提供,手动方式实验时,跳线器LDAR拨在左边,脉冲信号T3由实验机上时序电路模块TS3提供,实验时只需将J22跳线器连上即可,T3的脉冲宽度可调。
三、实验电路1、实验接线图⑴MBUS连BUS2;⑵EXJ1连BUS3;⑶跳线器J22的T3连TS3;⑷跳线器J16的SP连H23;⑸跳线器SWB、CE、WE、LDAR拨在左边(手动位置)。
计算机组成原理存储器实验报告
计算机组成原理存储器实验报告一、实验目的本次实验的目的是通过实际操作,了解存储器的组成和工作原理,掌握存储器的读写操作。
二、实验原理存储器是计算机中的重要组成部分,用于存储程序和数据。
存储器按照存储介质的不同可以分为内存和外存,按照存储方式的不同可以分为随机存储器(RAM)和只读存储器(ROM)等。
本次实验使用的是随机存储器,随机存储器是一种易失性存储器,数据在断电后会丢失。
随机存储器按照存储单元的位数可以分为8位、16位、32位等,按照存储单元的数量可以分为256×8、512×16、1024×32等。
随机存储器的读写操作是通过地址线和数据线来实现的。
读操作时,CPU将要读取的地址通过地址线发送给存储器,存储器将该地址对应的数据通过数据线返回给CPU。
写操作时,CPU将要写入的数据通过数据线发送给存储器,存储器将该数据写入到对应的地址中。
三、实验器材1. 存储器芯片:AT24C022. 单片机:STC89C523. 电源、示波器、万用表等四、实验步骤1. 连接电路将AT24C02存储器芯片和STC89C52单片机按照电路图连接好,连接好电源和示波器等设备。
2. 编写程序编写程序,实现对AT24C02存储器的读写操作。
程序中需要设置存储器的地址和数据,以及读写操作的指令。
3. 烧录程序将编写好的程序通过编程器烧录到STC89C52单片机中。
4. 运行程序将电源接通,运行程序,观察示波器上的信号波形,检查读写操作是否正确。
五、实验结果经过实验,我们成功地实现了对AT24C02存储器的读写操作。
通过示波器观察到了地址线和数据线的信号波形,证明了程序的正确性。
六、实验总结通过本次实验,我们深入了解了存储器的组成和工作原理,掌握了存储器的读写操作。
同时,我们也学会了如何编写程序并将程序烧录到单片机中。
这些知识对于我们深入学习计算机组成原理和嵌入式系统开发都具有重要的意义。
计算机组成原理存储器实验报告
计算机组成原理存储器实验报告一、实验目的本实验旨在通过实践了解存储器的基本原理和实现方式,掌握存储器的读写操作。
二、实验原理存储器是计算机中用于存储数据和程序的设备,其按照不同的存取方式可分为随机存储器(RAM)和只读存储器(ROM)。
其中RAM是一种易失性存储器,其存储的数据会随着电源关闭而丢失;而ROM则是一种非易失性存储器,其存储的数据在电源关闭后仍能保持不变。
本实验使用的是一个8位RAM,其具有256个存储单元,每个存储单元可以存储8位数据。
RAM可以进行读写操作,读操作是将存储单元中的数据读取到CPU中,写操作是将CPU中的数据写入到存储单元中。
存储单元的地址是由地址线来控制的,本实验中使用的是8位地址线,因此可以寻址256个存储单元。
三、实验仪器本实验使用的主要仪器有:存储器板、八位开关、八位数码管、八位LED灯、地址选择开关和地址计数器等。
四、实验过程1. 准备工作:将存储器板与开发板进行连接,并将八位开关、八位数码管、八位LED灯、地址选择开关和地址计数器等连接到存储器板上。
2. 设置地址:使用地址选择开关来设置需要读写的存储单元的地址。
3. 写操作:将需要存储的数据通过八位开关输入到CPU中,然后将CPU中的数据通过写信号写入到存储单元中。
4. 读操作:将需要读取的存储单元的地址通过地址选择开关设置好,然后通过读信号将存储单元中的数据读取到CPU中。
5. 显示操作:使用八位数码管或八位LED灯来显示读取到的数据或写入的数据。
6. 重复上述操作,进行多次读写操作,观察存储器的读写效果和数据变化情况。
五、实验结果通过本次实验,我们成功地进行了存储器的读写操作,并观察到了存储器中数据的变化情况。
在实验过程中,我们发现存储器的读写速度非常快,可以满足计算机的高速运算需求。
同时,存储器的容量也非常大,可以存储大量的数据和程序,为计算机提供了强大的计算和存储能力。
六、实验总结本次实验通过实践掌握了存储器的基本原理和实现方式,了解了存储器的读写操作。
计算机组成原理存储器实验报告
计算机组成原理存储器实验报告
实验名称:计算机组成原理存储器实验
实验目的:通过实验验证存储器的基本原理,掌握存储器的基本操作方法。
实验原理:
计算机系统中的存储器是计算机系统中最基本的组成部分之一,也是最重要的组成部分之一。
存储器主要是用来储存计算机程序和数据的,计算机在执行程序时需要从存储器中读取指令和数据,将结果写回存储器中。
根据存储器的类型,存储器可以分为RAM和ROM两种类型。
RAM(Random Access Memory)是一种随机读写存储器,它能够随机存取任意地址的数据。
RAM又分为静态RAM(SRAM)和动态RAM (DRAM)两种类型。
其中,静态RAM(SRAM)是使用闪存电路实现的,其速度快、性能优异,但成本相对较高;而动态RAM(DRAM)是使用电容储存信息的,价格相对较低,但性能相对较差。
ROM(Read Only Memory)是只读存储器,它不能被随意修改,只能被读取。
ROM主要用来存储程序中需要固化的数据和指令,如BIOS和系统引导程序等。
实验步骤:
1. 打开计算机,将存储器连接到计算机主板上的插槽上。
2. 打开计算机并进入BIOS设置。
3. 在BIOS设置中进行存储器检测。
4. 在操作系统中查看存储器容量。
实验结果:
本次实验中,存储器检测结果显示正常,存储器容量为8GB,符合预期。
实验总结:
本次实验通过了解存储器的基本原理和操作方法,掌握了存储器
的检测和使用方法。
同时也深入了解了计算机系统中存储器的重要性和种类。
对于今后的计算机学习和使用将具有重要的帮助作用。
计算机组成原理存储器读写和总线控制实验实验报告
千里之行,始于足下。
计算机组成原理存储器读写和总线控制实验实验报告计算机组成原理存储器读写和总线控制实验实验报告摘要:本实验主要通过使用计算机系统的存储器读写和总线控制实验来深入了解计算机组成原理中存储器的工作原理和总线控制的相关知识。
实验过程中,我们通过搭建实验平台、编写程序,并通过数据传输和总线控制,实现了存储器的数据读写功能。
通过实际操作和观察实验结果,对存储器读写和总线控制有了更深刻的理解。
1. 引言计算机组成原理是计算机科学与技术专业的重要课程之一,它涵盖了计算机硬件的各个方面,包括处理器、存储器、总线等。
存储器是计算机中储存数据的地方,而总线则负责处理信息传输。
了解存储器读写和总线控制的原理对于理解计算机工作方式至关重要。
2. 实验目的本实验的主要目的是通过实际操作了解存储器读写和总线控制的原理,并掌握相应的实验技能。
具体来说,我们要搭建实验平台、编写程序,并通过数据传输和总线控制,实现存储器的数据读写功能。
3. 实验内容第1页/共3页锲而不舍,金石可镂。
3.1 实验平台搭建首先,我们需要搭建实验平台。
根据实验要求,我们使用了一个基于Xilinx FPGA的开发板,并连接上需要的外设设备。
3.2 编写程序接下来,我们需要编写程序,以完成存储器读写和总线控制的功能。
我们使用了Verilog语言,通过编写相应的模块和逻辑电路,实现了存储器的数据读写。
3.3 数据传输和总线控制在编写程序后,我们开始进行数据传输和总线控制。
通过向存储器发送读写指令,并传输相应的数据,我们能够实现存储器数据的读取和写入。
同时,通过总线的控制,我们能够实现数据在各个设备之间的传输。
4. 实验步骤1. 搭建实验平台;2. 编写程序;3. 数据传输和总线控制。
5. 实验结果与分析在实验过程中,我们成功搭建了实验平台,并完成了程序的编写。
通过数据传输和总线控制,我们能够准确读取和写入存储器中的数据。
通过观察实验结果,我们发现存储器读写和总线控制的效果良好,能够满足我们的需求。
计算机组成原理实验(存储器)
实验一 存储器实验
• 实验接线 ⑴ MBUS连BUS2; ⑵ EXJ1连BUS3; ⑶ 跳线器J22的T3连TS3; ⑷ 跳线器J16的SP连H23; ⑸ 跳线器SWB、CE、WE、LDAR拨在左边 (手动位置)。
实验一 存储器实验
• 实验步骤 给存储器的00地址单元中写入数据11 一.写存储器 1.写地址: 关掉存储器的片选(CE=1),打开地址锁存器门控信号 (LDAR=1),打开数据开关三态门(SW-B=0),由开关给出要写 入的存储单元地址,T3产生一正向脉冲将地址打入到地址锁存器中。 此时总线地址显示灯应显示开关输入的数。 2. 写数据: 关掉地址锁存器门控信号(LDAR=0),打开存储器的片选 (CE=0),使之处于写状态(WE=1),由开关给出此单元要写入的 数据,T3给一正向脉冲将数据写入到当前的地址单元中。此时总线数 据显示灯应显示开关输入的数。
15H 0 1 0 1 0 0 1 1 53H
实验一 存储器实验
• 对随机存储器的操作有写操作和读操作。 • CPU对存储器进行读/写操作,首先由地址 总线给出地址信号,然后要发出读操作或写 操作的控制信号,最后在数据总线上进行信 息交流。因此,存储器同CPU连接时,要 完成地址线的连接、数据线的连接和控制线 的连接。
实验一 存储器实验
• 存储器实验报告册要求: 1.画出实验原理简图(其中八位线即用 一根连接线表示即可)。 2.要求写清实验步骤(最好用图示意)。 3.要求写清实验结果。
•
• •
问题
• 从计算机体系结构的角度来看,计算机是 由哪几部分组成的? • 运算器是由哪些部件组成的? • CPU是由哪几部分组成的?
解答
• 从计算机体系结构的角度来看,计算机是 由运算器、存储器、控制器、输入设备和 输出设备组成。 • 运算器是由算术逻辑部件(ALU)和若干通 用寄存器组成。 • 运算器和控制器合在一起称为CPU。
计算机组成原理实验-双端口存储器实验
计算机组成原理课程实验报告9.4双端口存储器实验姓名:曾国江学号:系别:计算机工程学院班级:网络工程1班指导老师:完成时间:评语:得分:一、实验目的(1)了解双端口静态随机存储器IDT7132的工作特性及使用方法。
(2)了解半导体存储器怎样存储和读出数据。
(3)了解双端口存储器怎样并行读写,产生冲突的情况如何。
二、实验电路图9.6示出了双端口存储器的实验电路图。
这里使用了一片IDT7132(U36)(2048×8位),两个端口的地址输入A8—A10引脚接地,因此实际使用存储容量为256字节。
左端口的数据部分连接数据总线DBUS7—DBUS0,右端口的数据部分连接指令总线INS7—INS0。
存储器IDT7132有6个控制引脚:CEL#、LRW、OEL#、CER#、RRW、OER#。
CEL#、LRW、OEL#控制左端口读、写操作,CER#、RRW、OER#控制右端口读、写操作。
CEL#为左端口选择引脚,低有效。
当CEL# =1 时,禁止左端口读、写操作;当CEL# =0 时,允许左端口读、写操作。
当LRW为高时,左端口进行读操作;当LRW为低时,左端口进行写操作。
当OEL#为低时,将左端口读出的数据放到数据总线DBUS上;当OEL#为高时,禁止左端口读出的数据放到数据总线DBUS上。
CER#、RRW、OER#控制右端口读、写操作的方式与CEL#、LRW、OER#控制左端口读、写操作的方式类似,不过右端口读出的数据放到指令总线上而不是数据总线上。
实验台上的OEL#由LRW经反相产生。
当CEL#=0且LRW=1时,左端口进行读操作,同时将读出的数据放到数据总线DBUS上。
当CER#=0且LRW=0时,在T3的上升沿开始进行写操作,将数据总线上的数据写入存储器。
实验台上已连接T3到时序发生器的T3输出。
实验台上OER#已固定接地,RRW固定接高电平,CER#由CER反相产生,因此当CER=1且LDIR=1时,右端口读出的指令在T4的上升沿打入IR 寄存器。
储存原理实验报告总结(3篇)
第1篇一、实验背景随着计算机技术的飞速发展,存储器作为计算机系统的重要组成部分,其性能直接影响着计算机系统的整体性能。
为了深入了解存储器的原理及其在实际应用中的表现,我们进行了储存原理实验。
二、实验目的1. 理解存储器的基本概念、分类、组成及工作原理;2. 掌握存储器的读写操作过程;3. 了解不同类型存储器的优缺点;4. 分析存储器性能的影响因素。
三、实验内容1. 静态随机存储器(SRAM)实验(1)实验目的:掌握SRAM的读写操作过程,了解其优缺点。
(2)实验内容:通过实验,观察SRAM的读写过程,记录读写时序,分析读写速度。
(3)实验结果:SRAM读写速度快,但价格较高,功耗较大。
2. 动态随机存储器(DRAM)实验(1)实验目的:掌握DRAM的读写操作过程,了解其优缺点。
(2)实验内容:通过实验,观察DRAM的读写过程,记录读写时序,分析读写速度。
(3)实验结果:DRAM读写速度较SRAM慢,但价格低,功耗小。
3. 只读存储器(ROM)实验(1)实验目的:掌握ROM的读写操作过程,了解其优缺点。
(2)实验内容:通过实验,观察ROM的读写过程,记录读写时序,分析读写速度。
(3)实验结果:ROM只能读,不能写,读写速度较慢。
4. 固态硬盘(SSD)实验(1)实验目的:掌握SSD的读写操作过程,了解其优缺点。
(2)实验内容:通过实验,观察SSD的读写过程,记录读写时序,分析读写速度。
(3)实验结果:SSD读写速度快,功耗低,寿命长。
四、实验分析1. 不同类型存储器的读写速度:SRAM > SSD > DRAM > ROM。
其中,SRAM读写速度最快,但价格高、功耗大;ROM读写速度最慢,但成本较低。
2. 存储器性能的影响因素:存储器容量、读写速度、功耗、成本、可靠性等。
在实际应用中,需要根据具体需求选择合适的存储器。
3. 存储器发展趋势:随着计算机技术的不断发展,存储器性能不断提高,功耗不断降低,成本不断降低。
计算机组成原理实验报告
实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。
2.了解通用寄存器的构成和运用。
二、实验要求掌握通用寄存器R3~R0的读写操作。
三、实验原理实验中所用的通用寄存器数据通路如下图所示。
由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。
图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。
RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。
DRCK信号为寄存器组打入脉冲,上升沿有效。
准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。
图2-3-3 通用寄存器数据通路四、实验内容1. 实验连线 K23~K0置“1”,灭M23~M0控位显示灯。
然后按下表要求“搭接”部件控制电路。
连线 信号孔 接入孔 作用有效电平 1 DRCK CLOCK单元手动实验状态的时钟来源上升沿打入 2 X2 K10(M10) 源部件译码输入端X2 三八译码 八中选一 低电平有效3 X1 K9(M9) 源部件译码输入端X14 X0 K8(M8) 源部件译码输入端X05 XP K7(M7)源部件奇偶标志:0=偶寻址,1=奇寻址6 SI K20(M20) 源寄存器地址:0=CX ,1=DX7 RWR K18(M18) 通用寄存器写使能低电平有效8 DI K17(M17) 目标寄存器地址:0=CX ,1=DX9OPK16(M16) 目标部件奇偶标志:0=偶寻址,1=奇寻址2. 寄存器的读写操作 ① 目的通路当RWR=0时,由DI 、OP 编码产生目的寄存器地址,详见下表。
通用寄存器“手动/搭接”目的编码目标使能通用寄存器目的编址功能说明 RW(K18) DI(K17) OP(K16) T0 0 0↑ R0写 0 0 1 ↑ R1写 0 1 0 ↑ R2写 011↑R3写② 通用寄存器的写入通过“I/O 输入输出单元”向R0、R1寄存器分别置数11h 、22h ,操作步骤如下:通过“I/O 输入输出单元”向R2、R3寄存器分别置数33h 、44h ,操作步骤如下:③ 源通路当X2~X0=001时,由SI 、XP 编码产生源寄存器,详见下表。