指数函数与对数函数(综合训练)
全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练

全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练单选题1、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A2、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比SN 从1000提升至5000,则C 大约增加了( )(附:lg2≈0.3010) A .20%B .23%C .28%D .50% 答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解. 将信噪比SN 从1000提升至5000时,C 大约增加了Wlog 2(1+5000)−Wlog 2(1+1000)Wlog 2(1+1000)=log 25001−log 21001log 21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.3、设函数f (x )=lg (x 2+1),则使得f (3x −2)>f (x −4)成立的x 的取值范围为( )A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x<−1或x>32,故选:D.4、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K 时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5、若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2 答案:B分析:设f(x)=2x +log 2x ,利用作差法结合f(x)的单调性即可得到答案.设f(x)=2x +log 2x ,则f(x)为增函数,因为2a +log 2a =4b +2log 4b =22b +log 2b所以f(a)−f(2b)= 2a +log 2a −(22b +log 22b)= 22b +log 2b −(22b +log 22b) =log 212=−1<0,所以f(a)<f(2b),所以a <2b .f(a)−f(b 2)= 2a +log 2a −(2b 2+log 2b 2)= 22b +log 2b −(2b 2+log 2b 2)= 22b −2b 2−log 2b , 当b =1时,f(a)−f(b 2)=2>0,此时f(a)>f(b 2),有a >b 2当b =2时,f(a)−f(b 2)=−1<0,此时f(a)<f(b 2),有a <b 2,所以C 、D 错误. 故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题. 6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).7、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .8、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C9、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.10、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1 x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.填空题11、已知a=lg5,用a表示lg20=__________.答案:2−a分析:直接利用对数的运算性质求解因为a=lg5,所以lg20=lg1005=lg100−lg5=2−a,所以答案是:2−a12、函数y=a x+1(a>0,a≠1)恒过定点___________.答案:(−1,1)分析:利用指数型函数的特征,求解函数恒过的定点坐标.当x+1=0,即x=−1时,y=a0=1,所以y=a x+1(a>0,a≠1)恒过定点(−1,1).所以答案是:(−1,1)13、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题14、已知a 12+a−12=3,求下列各式的值.(1)a+a−1;(2)a2+a−2;(3)a 32+a−32+2a2+a−2+3.答案:(1)7(2)47(3)25分析:(1)将所给的等式两边平方,整理即可求得a+a−1的值;(2)将(1)中所得的结果两边平方,整理即可求得a2+a−2的值;(3)首先利用立方差公式可得a 32+a−32=(a12+a−12)(a−1+a−1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a−12=3两边平方,得a +a −1+2=9,所以a +a −1=7. (2)将a +a −1=7两边平方,得a 2+a −2+2=49, 所以a 2+a 2=47. (3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47, ∴a 32+a−32=(a 12)3+(a −12)3=(a 12+a −12)(a −1+a −1)=3×(7−1)=18,∴a 32+a−32+2a 2+a −2+3=18+247+3=25.15、已知函数f (x )=log a (a x −1)(a >0,a ≠1) (1)当a =12时,求函数f (x )的定义域;(2)当a =2时,存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立,求实数m 的取值范围. 答案:(1)(−∞,0);(2)m <log 279,.分析:(1)利用真数大于0,即可求解定义域;(2)令g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),由题意可知m <g (x )max ,令t =2x −12x +1,求解t 的取值范围,然后可求g (x )max ,从而求出m 的取值范围.(1)当a =12时,f (x )=log 12(12x −1),故:12x −1>0,解得:x <0,故函数f (x )的定义域为(−∞,0);(2)由题意知,f (x )=log 2(2x −1)(a >1),定义域为x ∈(0,+∞),易知f (x )为x ∈(0,+∞)上的增函数, 设g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),x ∈[1,3],设t =2x −12x +1=1−22x +1,x ∈[1,3],故2x +1∈[3,9],t =1−22x +1∈[13,79],因为g (x )=log 2t 单调递增,则g (x )∈[log 213,log 279].因为存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立故:m <g (x )max ,即m <log 279.。
指数函数及对数函数综合题目和答案解析

指数函数、幂函数、对数函数增长的比较,指数函数和对数函数综合指数函数、幂函数、对数函数增长的比较【要点链接】1.指数函数、幂函数、对数函数增长的比较:对数函数增长比较缓慢,指数函数增长的速度最快.2.要能熟练掌握指数函数、幂函数、对数函数的图像,并能利用它们的图像的增减情况解决 一些问题. 【随堂练习】 一、选择题1.下列函数中随x 的增大而增大速度最快的是( )A .1100xy e =B .100ln y x =C .100y x =D .1002x y =⨯ 2.若1122a a -<,则a 的取值范围是( )A .1a ≥B .0a >C .01a <<D .01a ≤≤3.x x f 2)(=,x x g 3)(=,xx h )21()(=,当x ∈(-)0,∞时,它们的函数值的大小关系是( )A .)()()(x f x g x h <<B .)()()(x h x f x g <<C .)()()(x f x h x g <<D .)()()(x h x g x f <<4.若b x <<1,2)(log x a b =,x c a log =,则a 、b 、c 的关系是( )A .c b a <<B .b c a <<C .a b c <<D .b a c <<二、填空题5.函数x e y x x y x y x y ====,ln ,,32在区间(1,)+∞增长较快的一个是__________. 6.若a >0,b >0,ab >1,a 21log =ln2,则log a b 与a 21log 的关系是_________________.7.函数2x y =与xy 2=的图象的交点的个数为____________.三、解答题8.比较下列各数的大小: 52)2(-、21)23(-、3)31(-、54)32(-.9.设方程222xx =-在(0,1)内的实数根为m ,求证当x m >时,222xx >-.答案1.A 指数增长最快.2.C 在同一坐标系内画出幂函数21x y =及21-=xy 的图象,注意定义域,可知10<<a .3.B 在同一坐标系内画出x x f 2)(=,xx g 3)(=,xx h )21()(=的图象,观察图象可知.4.D b x <<1,则0log log 1b b x b <<=,则10<<a ,则01log log =<a a x , 可知b a c <<<<10.5.x y e = 指数增长最快.6.log a b <a 21log 由a 21log =ln20>,则10<<a ,而ab >1,则1>b ,则0log <b a ,而0log 21>a ,则log a b <a 21log .7.3 在同一坐标系内作出函数2x y =与x y 2=的图象,显然在0<x 时有一交点, 又2=x 时,2222=,3=x 时,3223>,4=x 时,4224=,而随着x 的增大,指数函数增长的速度更快了,则知共有3个不同的交点.8.解: 52)2(-=522、21)23(-=21)32(、3)31(-=-271、54)32(-=54)32(.∵52)2(->1、3)31(-<0,而21)23(-、54)32(-均在0到1之间.考查指数函数y =x )32(在实数集上递减,所以21)32(>54)32(.则52)2(->21)23(->54)32(->3)31(-.9.证明:设函数2()22x f x x =+-,方程222x x =-在(0,1)内的实数根为m , 知()f x 在(0,1)有解x m =,则()0f m =.用定义容易证明()f x 在(0,)+∞上是增函数,所以()()0f x f m >=,即2()220x f x x =+->,所以当x m >时,222xx >-.备选题1.设7210625.0=y ,74203.0=y ,7832.0=y ,则( )A .123y y y >>B .132y y y >>C .213y y y >>D .123y y y >>1.B 74125.0=y ,74304.0=y ,而幂函数74x y =在0>x 上为增函数,则132y y y >>.2.图中曲线是对数函数y =log a x 的图象,已知a 取101,53,54,3四个值,则相应于C 1, C2, C 3,C 4的a 值依次为( )A .101,53,34,3 B .53,101,34,3C .101,53,3,34D .53,101,3,342.C 作直线1=y ,与四个函数的图象各有一个交点,从左至右的底数是逐渐增大的,则知则相应于C 1,C 2, C 3,C 4的a 值依次为101,53,3,34.指数函数复习【要点链接】1.掌握指数的运算法则;2.熟练掌握指数函数的图像,并会灵活运用指数函数的性质,会解决一些较为复杂的 有关于指数函数复合的问题. 【随堂练习】 一、选择题1.函数a y x +=2的图象一定经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知三个实数a ,ab a =,bc a =,其中10<<a ,则这三个数之间的大小关系是( )A .b a c <<B .a b c <<C .a c b <<D .c a b << 3.设1()()2xf x =,x ∈R ,那么()f x 是( )A .奇函数且在(0,)+∞上是增函数B .偶函数且在(0,)+∞上是增函数C .奇函数且在(0,)+∞上是减函数D .偶函数且在(0,)+∞上是减函数 4.函数121xy =-的值域是( ) A .(,1)-∞ B .(,1)(0,)-∞-+∞ C .(1,)-+∞ D .(,0)(0,)-∞+∞二、填空题5.若函数()f x =_______________.6.函数x a a a x f )33()(2+-=是指数函数,则a 的值为_________.7.方程2|x |=2-x 的实数解有_________个.三、解答题8.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.9.若函数y =1212·---xx aa 为奇函数. (1)确定a 的值;(2)求函数的定义域;(3)讨论函数的单调性.答案1.A 当0=a ,图象不过三、四象限,当1-=a ,图象不过第一象限.而由图象知函数a y x+=2的图象总经过第一象限.2.C 由10<<a ,得101=<<a a a a ,则1<<b a ,所以1a a ab a >>,即ac b <<.3.D 因为函数1()()2x f x ==⎪⎩⎪⎨⎧≥)0(,2)0(,)21(<x x x x,图象如下图.由图象可知答案显然是D .4.B 令12-=x t ,02>x,则12->x ,又作为分母,则1->t 且0≠t ,画出ty 1=的图象,则1->t 且0≠t 时值域是(,1)(0,)-∞-+∞. 5.(,0]-∞ 由1-2x 0≥ 得2x≤1,则x ≤0.6.2 知1332=+-a a , 0>a 且1≠a ,解得2=a .7.2 在同一坐标系内画出y=2|x |和 y=2-x 的图象,由图象知有两个不同交点. 8.解:∵()g x 是一次函数,可设为)0()(≠+=k b kx x g , 则[()]f g x bkx +=2,点(2,2)在函数[()]f g x 的图象上,可得bk +=222,得12=+b k .又可得[()]g f x b k x+⋅=2,由点(2,5)在函数[()]g f x 的图象上, 可得b k +=45.由以上两式解得3,2-==b k , ∴()23g x x =-.9.解:先将函数y =1212·---x x aa 化简为y =121--x a .(1)由奇函数的定义,可得f (-x )+f (x )=0,即121---x a +121--x a =0,∴2a +xx2121--=0,∴a =-21.(2)∵y =-21-121-x ,∴x2-1≠0.∴函数y =-21-121-x 定义域为{x |x ≠0}.(3)当x >0时,设0<x 1<x 2,则y 1-y 2=1212-x -1211-x =)12)(12(221221---x x x x . ∵0<x 1<x 2,∴1<12x <22x.∴12x-22x<0,12x -1>0,22x-1>0.∴y 1-y 2<0,因此y =-21-121-x 在(0,+∞)上递增. 同样可以得出y =-21-121-x 在(-∞,0)上递增.备选题1.函数(1)xy a a =>在区间[0,1]上的最大值是4,则a 的值是( )A .2B .3C .4D .51.C 函数(1)xy a a =>在区间[0,1]上为增函数,则最大值是=1a 4,则4=a .2.函数y =xx a 22-(a >1)的定义域___________,值域___________. 2. {x |x ≥2,或x ≤0} {y |y ≥1}由022≥-x x ,得定义域为{x |x ≥2,或x ≤0}; 此时022≥-x x ,则值域为{y |y ≥1}.对数函数【要点链接】1.掌握对数的运算法则;2.熟练掌握对数函数的图像,并会灵活运用对数函数的性质,会解决一些较为复杂的 有关于对数函数复合的问题. 【随堂练习】 一、选择题1.4123log =x,则x 等于( ) A .91=x B .33=x C .3=x D .9=x2.函数y =lg (x-12-1)的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称3.已知log 0log log 31212>==+x x x a a a, 0<a<1,则x 1、x 2、x 3的大小关系是( )A .x 3<x 2<x 1B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 14.若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a 等于( )A .12B .2二、填空题5.函数23log 12-=-x y x 的定义域是 .6.设函数()f x 满足21()1()log 2f x f x =+⋅,则(2)f = . 7.已知3log 21=a ,31log 21=b ,21log 31=c ,则a 、b 、c 按大小关系排列为___________.三、解答题8.若)(x f 3log 1x +=, )(x g 2log 2x =,试比较)(x f 与)(x g 的大小.9.若不等式0log 2<-x x m 在(0,21)内恒成立,求实数m 的取值范围.答案1.A 2log 24123-==x,则2log 3-=x ,则9132==-x . 2.C y =lg (x -12-1)=xx-+11lg ,易证)()(x f x f -=-,所以为奇函数,则图象关于原点对称.3.D ∵0<a<1,∴a<1<a+1<a2,∴x 2<1<x 3<x 1. 4.A 10≤≤x 时,11121≤+≤x ,要使值域也是[0,1],就有0)(≥x f ,则10<<a , 则)(x f 在[0,1]为增函数,则01log =a ,121log =a ,解得=a 12.5.2(,1)(1,)3+∞ 可知023>-x ,012>-x 且112≠-x ,解得32>x 且1≠x .6.23由已知得2log )21(1)21(2⋅+=f f ,则21)21(=f ,则x x f 2log 211)(⋅+=,则=⋅+=2log 211)2(2f 23.7.b c a <<03log 2<-=a ,13log 2>=b ,2log 3=c ,则10<<c ,那么有b c a <<.8.解:43log 4log )3(log )()(xx x g x f x x x =-=-.当10<<x 时,1430<<x ,则043log >x x ,则)()(x g x f >; 当34=x 时,143=x,则)()(x g x f =; 当341<<x 时,1430<<x ,则043log <xx ,则)()(x g x f <; 当34>x 时,143>x ,则043log >xx ,则)()(x g x f >.9.解:由0log 2<-x x m 得x x m log 2<.在同一坐标系中作2x y =和x y m log =的图象.要使x x m log 2<在(0,21)内恒成立, 只要x y m log =在(0,21)内的图象在2x y =的上方,于是0<m<1.∵x=21时y=x 2=41,∴只要x=21时21log m y =≥41. ∴21≤m 41,即161≤m. 又0<m<1,∴所求实数m 的取值范围161≤m<1.备选题1.下列函数中,是奇函数,又在定义域内为减函数的是( )A .1()2xy = B .xy 1=C .)(log 3x y -=D .3x y -= 1.D A 、C 是非奇非偶函数,B 是奇函数,但在定义域内不为减函数,则选D .2.10002.11=a ,10000112.0=b,则=-ba 11( ) A .1 B .2 C .3 D .42.A2.11log 11000=a ,0112.0log 11000=b , 则11000log 0112.02.11log 1110001000===-b a .3.如果函数()(3)x f x a =-,()log a g x x =它们的增减性相同,则a 的取值范围 是______________.3.21<<a由03>-a 且13≠-a ,及0>a 且1≠a ,得10<<a ,或21<<a ,或32<<a .当10<<a 或32<<a 时,)(x f 与)(x g 一增一减,当21<<a 时,)(x f 与)(x g 都为增函数.同步测试题 A 组一、选择题1.已知32a=,那么33log 82log 6-用a 表示是( )A .2a -B .52a -C .23(1)a a -+ D .23a a -2.若函数)(log b x y a +=(0>a 且1≠a )的图象过两点)0,1(-和)1,0(,则 ( )A . 2,2==b a B .2,2==b aC .1,2==b aD .2,2==b a3.已知(),()log x a f x a g x x ==,(01)a a >≠且,若(3)(3)0f g ⋅< , 则()f x 与()g x4.若函数xx f 211)(+=,则)(x f 在R 上是( ) A .单调递减,无最小值 B .单调递减,有最小值 C .单调递增,无最大值 D .单调递增,有最大值5.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([])[(+∈=N n y f x f xy f nn n6.函数f (x )=log a 1+x ,在(-1,0)上有f (x )>0,那么( )A .f (x )(- ∞,0)上是增函数B .f (x )在(-∞,0)上是减函数C .f (x )在(-∞,-1)上是增函数D .f (x )在(-∞,-1)上是减函数二、填空题7.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则1[()]4f f = .8.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 .9.已知)23(log )(221x x x f --=,则值域是 ;单调增区间是 .三、解答题10.求函数10(|1|)(≠>-+=a a a a x f x x 且)最小值.11.已知函数),()(,0|,lg |)(b f a f b a x x f ><<=且如果证明:1<ab .12.已知函数()m mx x x f --=221log )(.(1)若m =1,求函数)(x f 的定义域;(2)若函数)(x f 的值域为R ,求实数m 的取值范围;(3)若函数)(x f 在区间()31,-∞-上是增函数,求实数m 的取值范围.B 组一、选择题1.已知函数y=kx 与y=12log x 图象的交点横坐标为2,则k 的值为( )A . 12- B .14 C .12 D .14-2.已知函数b a y x+=的图象不经过第一象限,则下列选项正确是( )A .2,21-==b a B .3,2-==b a C .1,21==b a D .0,3==b a3.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( )A .14 B .12 4.若函数()11x mf x e =+-是奇函数,则m 的值是( )A .0B .21C .1D .2二、填空题5.如图,开始时桶1中有a 升水,t 分钟后剩余的水符合指数衰减曲线1nt y ae -=,那么桶2中水就是2nt y a ae -=-. 假设过5分钟时桶1和桶2的水相等,则再经过______ 分钟桶1中的水只有8a .6.已知y =a log (2-ax )在[0,1]上是x 的减函数, 则a 的取值范围是__________.三、解答题7.已知函数xxa b y 22++=(a 、b 是常数且a>0,a ≠1)在区间[-23,0]上有y max =3, y min =25,试求a 和b 的值.8.设函数2221()log log (1)log ()1x f x x p x x +=+-+--.)1(>p (1)求()f x 的定义域;(2)()f x 是否存在最大值或最小值?如果存在,请把它求出来;若不存在,请说明理由.答案A 组1.A 32a=,则2log 3=a ,33log 82log 6-=+-=)2log 1(22log 3332a -. 2.B 由已知可得)1(log 0-=b a ,则2=b ,又2log log 1a a b ==,则2=a . 3.C (3)(3)0f g ⋅<,则(3)0g <,则10<<a ,则()f x 与()g x 都为减函数.4.A 121>+x,则12110<+<x,则)(x f 无最大值,也无最小值,而显然)(x f 为减函数5.D 逐个验证可知D 不正确6.D 01<<-x 时,110<+<x ,而f (x )>0,则10<<a ,画出f (x )=log a 1+x 的图象,知f (x )在(-∞,-1)上是减函数.7.91 241log )41(2-==f ,则913)]41([2==-f f . 8.D 、C 、B 、A 画出图象可知.9.[)+∞-,2,[)1,1-有0232>--x x ,则13<<-x ,在1-=x 时223x x --有最大值4, 令223x x t --=,则40≤<t ,则24log log 2121-=≥t ,则值域是[)+∞-,2,在[)1,1-上,223x x t --=递减,则)23(log )(221x x x f --=单调增区间是[)1,1-.10.解:当1>a 时,⎩⎨⎧<≥-=)0(,1)0(,12)(x x a x f x 画出图象,知此时1)(min =x f .当10<<a 时,⎩⎨⎧>≤-=)0(,1)0(,12)(x x a x f x 画出图象,知此时1)(min =x f .由以上讨论知函数10(|1|)(≠>-+=a a a a x f xx且)最小值为1. 11.证明:画出函数x x f lg )(=的图象,可以看出在]1,0(上为减函数,在),1[+∞上为增函数, ∵b a <<0时有)()(b f a f >,则不可能有b a <≤1, 则只有10≤<<b a 及b a ≤<<10这两种情况. 若10≤<<b a ,显然1<ab ;若b a ≤<<10,则)()(b f a f >化为b a lg lg >,则b a lg lg >-,则0lg lg <+b a ,0)lg(<ab ,可得1<ab . 由以上讨论知,总有1<ab .12.解:(1)方程012=--x x 的根为251±=x , 所以012>--x x 的解为251-<x 或251+>x ,于是函数的定义域为),251()251,(+∞+⋃--∞.(2)因为函数的值域为R ,所以(){}m mx x u u --=⊆+∞2,0,故04042≥-≤⇒≥+=∆m m m m 或.(3)欲使函数在区间()31,-∞-上是增函数,则只须()()⎪⎩⎪⎨⎧≥----≤-031312312m m m ⎩⎨⎧≤-≥⇒2322m m , 所以2322≤≤-m .B 组1.A 由y=12log x ,当2=x 时,1-=y ,代入y=kx 中,有k 21=-,则21-=k . 2.A 当2,21-==b a 时,2)21(-=x y ,其图象是x y )21(=的图象向下平移了2个 单位,则就不会经过第一象限了.3.C 知)(x f 在]2,[a a 上为减函数,则最大值是1log =a a ,最小值是2log 1)2(log a a a +=,则)2log 1(31a +=,则322log -=a , 23log 2-=a ,42223==-a . 4.D 由)()(x f x f -=-,得1111---=-+-x x e m e m ,则112--=-+x x x e m e me , 可得112---=x x x e m e me ,则2=m . 5.10 根据题设条件得:55n n ae a ae --=-,所以512n e -=. 令8nt a ae -=,则18nt e -=,所以3151()2nt n e e --==, 所以t=15.15-5=10(分钟),即再经过10分钟桶1中的水就只有8a . 6.a ∈(1,2)a >0且a ≠1⇒μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0⇒a <x2(0<x 1≤)⇒a <2,所以a ∈(1,2) 7.解:令u =x 2+2x =(x +1)2-1 x ∈[-23,0] , ∴当x =-1时,u min =-1 ; 当x =0时,u max =0 ..233222233225310)2222531)10110⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧==⎪⎩⎪⎨⎧=+=+<<⎩⎨⎧==⎪⎩⎪⎨⎧=+=+>--b a b a b a a b a b a b a a b a b a 或综上得解得时当解得时当 8.解:(1)由⎪⎪⎩⎪⎪⎨⎧>->->-+001011x p x x x 得1x x p >⎧⎨<⎩, 所以f (x )的定义域为(1,p ).(2)∵22221(1)()log [(1)()]log [()]24p p f x x p x x -+=+-=--+. ∴当112p -≤,即13p <≤时,()f x 既无最大值又无最小值; 当112p p -<<,即3p >时,当12p x -=时,()f x 有最大值22(1)log 4p +, 但没有最小值.综上可知:当13p <≤时,()f x 既无最大值又无最小值; 当3p >时,()f x 有最大值22(1)log 4p +,但没有最小值.备选题1.若log 4[log 3(log 2x )]=0,则21-x 等于( )A .42B .22C .8D .41.A 依题意可得x =8,则21-x =42.2.函数|,12|)(-=x x f 若a <b <c ,且)()()(b f c f a f >>,则下面四个式子中成立的是() A .0,0,0<<<c b a B .0,0,0>≥<c b aC .c a 22<-D .222<+a c2.D 画出函数|12|)(-=x x f 的图象,可知a <0,c >0,所以2a -1<0, 2c -1>0,又由)()(c f a f >,得1-2a >2c -1,所以222<+a c .3.比较log 20.4,log 30.4,log 40.4的大小.3.解:∵对数函数y =log 0.4x 在(0,+∞)上是减函数, ∴log 0.44<log 0.43<log 0.42<log 0.41=0.又反比例函数y =x 1在(-∞,0)上也是减函数.所以2log 14.0<3log 14.0<4log 14.0,即log 20.4<log 30.4<log 40.4.4.已知函数x x f 2)(=.(1)判断函数)(x f 的奇偶性;(2)把)(x f 的图像经过怎样的变换,能得到函数22)(+=x x g 的图像; (3)在直角坐标系下作出函数)(x g 的图像.4.解:(1)函数)(x f 定义域为R ,又 ()22()x x f x f x --===,∴函数)(x f 为偶函数.(2)把)(x f 的图像向左平移2个单位得到.(3)函数)(x f 的图像如右图所示.。
(完整版)指数函数对数函数专练习题(含答案).docx

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。
(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
(完整版)指数函数与对数函数练习题(40题)

(完整版)指数函数与对数函数练习题(40题)指数函数与对数函数试题训练1、若01x y <<<,则( )A .33yx< B .log 3log 3x y < C .44log log x y < D .11()()44x y <2、函数y =( )A 。
(3,+∞) B.[3, +∞) C 。
(4, +∞) D.[4, +∞)3.82log 9log 3的值是 A23, B 1 C 32D 24.化简55log 8log 2可得 A 5log 4 B 53log 2 C 5log 6 D 35.已知8log 3p =,3log 5q =,则lg 5= A35p q+ B 13pq p q ++ C 313pq pq + D22p q +6.已知1()102x f x -=-,则1(8)f -=A 2B 4C 8D 127.设log x a a =(a 为大于1的整数),则x 的值为A lg 10a aB 2lg10a aC lg 10a aD1lg10a a8.已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>>9.函数21log y x=的图像大致是10.已知01a <<,则函数x y a =和2(1)y a x =-在同一坐标系中的图象只可能是图中的11.若372log πlog 6log 0.8a b c ===,,,则( ) (A )a 〉b 〉c (B)b 〉a >c (C )c 〉a 〉b(D )b>c 〉a 12.设3log 5a =,则5log 27=CA B C D(完整版)指数函数与对数函数练习题(40题)A 3aB 3aC 3a -D 3a13.方程212233210x x +--⋅+=的解是A {2-,3}-B {2,3}-C {2,3}D {2-,3}14.若110x <<,则2(lg )x 、2lg x 、lg(lg )x 的大小关系是A 22(lg )lg lg(lg )x x x <<B 22lg (lg )lg(lg )x x x <<C 22(lg )lg(lg )lg x x x <<D 22lg(lg )(lg )lg x x x << 15.若log 4log 40(m n m <<、n 均为不等于1的正数),则A 1n m <<B 1m n <<C 1n m <<D 1m n <<16.若log (3)log (3)0m n ππ-<-<,m 、n 为不等于1的正数,则A 1n m <<B 1m n <<C 1n m << D1m n <<17.如图,指数函数x y a =,x y b =,x y c =,x y d =在同一坐标系中,则a ,b ,c ,d 的大小顺序是A a b c d <<<B aC b a d c <<<D b a c d <<<18. 如图,设a ,b ,c ,d 都是不等于1坐标系中,函数log a y x =,log b y x =,log y =log d y x =的图象如图,则a ,b ,c ,d 关系是A a b c d >>>BC a b d c >>>D b a d c >>>19。
指数对数函数 专题训练

巩固知识 提升能力 针对训练 高效复习指数对数函数 专题训练一、选择题1.函数)10(12≠>+=-a a a y x 且的图像必经过点( ) A.(0,1) B.(1,1) C.(2,0) D.(2,2)9l o g 27log .222的值是( ) A.3 B.2 C.32 D.233.计算:98427log log ⋅等于( )34.A B.1 C.32 D.944.下列函数属于指数函数的是( )x y A 2.= x y B 2,-= 2.x y C = xy D 2log .=5.已知指数函数)1,0()(≠>=a a a x f x 的图像经过点()21,1--,则A.6B.21 C.81 D.86.函数)1(log )(21-=x x f 的定义域是( ))1.(∞+,A B.),(∞+2 C.)2(,-∞ D.(]2,1 7.函数6.0log a y =的定义区间大于零时,a 满足的条件是( )10<<∙a A B.1<a C.0<a D.0>a8.函数2)1(log +-=x y a 过定点( )A.(1,0)B.(1,1)C.(2,2)D.(2,0) 9.下列等式中成立的共有( ))lg(lglg)1(baba=+;(2)baba lglg)lg(+=+;(3)baba lglg)lg(-=-;(4)31lg3lgaa=;(5)aa lg31lg3=;(6)baba lglglg=-A.1个B.2个C.3个D.4个3log2log3log)2.(log1066626+⋅+等于()A.1B.2C.0.5D.311.如果函数xay)1(2-=在R上是减函数,那么实数a的取值范围是.1||.>aA B.2||<a C.3||>a D.2||1<<a12. 若1log31>a则a的取值范围是())31.(,A B.),(∞+31 C.)2(,-∞ D.),(131二、高考针对性训练的图象可能是()且与函数数在同一直角坐标系中函)1(y.13≠>=+=aaaaxy x是(a)1(-x巩固知识提升能力针对训练高效复习。
第四章 指数函数与对数函数【章节复习专项训练】(解析版)

第四章指数函数与对数函数【章节复习专项训练】【考点1】:指数、对数的运算例题1.下列各式正确的是()A .248πππ=B .23e =C .ln 6ln 2ln 3=D .lg 4lg 252+=【答案】D 【分析】由指数的运算法则可判断AB ;由换底公式可判断C ;由对数的加法运算法则可判断D.【详解】对于A ,22644ππππ+==,故A 错误;对于B ,23e =,故B 错误;对于C ,3ln 6log 6ln 3=,故C 错误;对于D ,()lg 4lg 25lg 425lg1002+=⨯==,故D 正确.故选:D.【变式1】以下对数式中,与指数式56x =等价的是()A .5log 6x =B .5log 6x =C .6log 5x =D .log 65x =【答案】A 【分析】根据指数式和对数式的关系即可得出.【详解】根据指数式和对数式的关系,56x =等价于5log 6x =.故选:A.【变式2】已知log 92a =-,则a 的值为()A .3-B .13-C .3D .13【答案】D 【分析】直接将对数式化为指数式求解即可.【详解】∵log 92a =-,0a >,∴29a -=,解得13a =,故选:D.【点睛】本题主要考查了对数的概念,属于基础题.【变式3】若1log 24a =,则a =()A .2B .4C .12D .14【答案】C 【分析】利用指数式与对数式的互化以及指数幂的运算即可求解.【详解】2111log 2442aa a =⇒=⇒=.故选:C 【点睛】本题考查了指数式与对数式的互化,考查了基本知识的掌握情况,属于基础题.【变式4】计算122121(2)()248n n n ++-⋅⋅(n ∈N *)的结果为()A .416B .22n+5C .2n 2-2n +6D .1(22n -7【答案】D 【分析】结合指数的运算公式化简即可求出结果.【详解】原式272221722626222122222n n n n n n -+-----⋅⎛⎫==== ⎪⋅⎝⎭,故选:D.【考点2】:指数函数、对数函数的概念例题1.下列函数表达式中,是对数函数的有()①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1).A .1个B .2个C .3个D .4个【答案】B 【分析】根据对数函数的概念确定正确选项.【详解】形如log a y x =(0a >且1a ≠)的函数为对数函数,故③④为对数函数,所以共有2个.故选:B 【点睛】本小题主要考查对数函数的概念,属于基础题.【变式1】已知正整数指数函数()(2)x f x a a =-,则(2)f =()A .2B .3C .9D .16【答案】C 【分析】由函数是指数函数可求出3a =,即可求出(2)f .【详解】因为函数()(2)x f x a a =-是指数函数,所以21a -=,则3a =,所以()3x f x =,+∈x N ,所以2(2)39f ==.故选:C.【点睛】本题考查指数函数概念的理解,属于基础题.【变式2】若函数()f x 是指数函数,且()22f =,则()f x =()A .xB .2xC .12x⎛⎫ ⎪⎝⎭D .2x⎫⎪⎪⎝⎭【答案】A 【分析】利用待定系数法求解即可.【详解】解:由题意,设()(0xf x a a =>且)1a ≠,因为()22f =所以22a =,解得a =所以()xf x =.故选:A.【点睛】本题考查待定系数法求指数函数解析式,是基础题.【变式3】已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=()A .不确定B . 0C .1D . 2【答案】C 【分析】根据指数函数的概念,得到1a =,0b =,即可求出结果.【详解】因为函数2x y a =⋅是指数函数,所以1a =,由2x b y +=是指数函数,得0b =,所以1a b +=.故选:C.【点睛】本题主要考查由指数函数概念求参数的问题,属于基础题型.【变式4】已知函数f (x )=log a (x +1),若f (1)=1,则a =()A .0B .1C .2D .3【答案】C 【分析】根据指数式与对数式互化公式,结合代入法进行求解即可.【详解】∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选:C.【考点3】:指数函数、对数函数的图像和性质例题1.如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则()A .01a b <<<B .01b a <<<C .1a b >>D .b a l>>【答案】B 【分析】根据对数函数的图象特征,即可直接得到,a b 大小关系.【详解】根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <.故选:B 【点睛】本题考查根据对数函数图象求参数范围,注意规律的总结,属简单题.【变式1】函数()()ln 31y x x =-+的定义域是()A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】A 【分析】由对数函数定义要求其真数大于零构建不等式,求解即可.【详解】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-.故选:A 【点睛】本题考查求对数函数的定义域,属于基础题.【变式2】函数12(1)log 1y x =+-的图象一定经过点()A .()1,1B .()1,0C .()2,1D .()2,0【答案】C 【分析】根据对数函数的性质,结合图象的平移变换规律进行求解即可.【详解】把12log y x =的图象向右平移1个单位,再向上平移1个单位即可得到12(1)log 1y x =+-的图象,因为12log y x =的图象恒过(1,0)点,所以12(1)log 1y x =+-的图象经过点(2,1).故选:C 【点睛】本题考查了对数型函数恒过定点问题,考查了函数图象的平移变换性质,属于基础题.【变式3】已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是()A .3a >B .23a <<C .4a >D .34a <<【答案】B 【分析】利用指数函数的性质求解即可【详解】当0x <时,1021y a >∴<-<,,解得23a <<,故选:B.【变式4】函数y =2|x |的图象是()A .B .C.D.【答案】B 【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y =2|x |=2,01,02x x x x ⎧≥⎪⎨⎛⎫<⎪ ⎪⎝⎭⎩,故当0x ≥时,函数图象同2x y =单调递增;当0x <时,函数图象同1()2xy =单调递减,且0x =时,1y =.满足以上条件的只有B .故选:B .【点睛】本题考查指数型函数的图象,属简单题.【考点4】:函数的零点与方程的解整式的乘法例题1.设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是()A .[2,)+∞B .(2,)+∞C .[3,)+∞D .(3,)+∞【答案】D 【分析】解法一:(图象法)根据题意可知12,x x 分别为x y a =与1y x =和log a y x =与1y x=交点的横坐标,,再根据同底数的指数对数函数互为反函数,有121x x =.代入1222122x x x x +=+,再根据区间(1,)+∞上单调递增,所以1223x x +>.解法二:(定义法)根据函数零点的定义可知1x 、2x 是方程1x a x=和1log a x x =的根,又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.代入1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.【详解】解:解法一:(图象法)根据函数零点的定义可知函数x y a =与1y x =的图象交点为111,x x ⎛⎫ ⎪⎝⎭,同理可得函数log a y x =与1y x =的图象交点为221,x x ⎛⎫ ⎪⎝⎭.又因为函数x y a =与log a y x =的图象关于直线y x =对称,函数1y x=的图象也关于直线y x =对称,所以点111,x x ⎛⎫ ⎪⎝⎭与点221,x x ⎛⎫ ⎪⎝⎭关于直线y x =对称,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D解法二:(定义法)根据函数零点的定义可知1x 是方程1xa x=的根,所以1x 也是函数1()xF x a x=-的零点.同理可得2x 是方程1log a x x=的根,即221log a x x =,所以212x ax =,所以21x 也是函数1()xF x a x=-的零点.又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D 【点睛】本题考查了方程的根的确定、反函数性质的应用以及利用函数的单调性求最值,属于基础题.【变式1】函数()33x f x x =+的零点所在区间为()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】A 【分析】判断出所给区间的端点值的乘积小于0可得答案.【详解】()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<.故选:A.【变式2】已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()g x f x a =+,若()g x 恰有2个零点,则实数a的取值范围是()A .()1,0-B .[)1,0-C .()0,1D .(]0,1【答案】B 【分析】利用数形结合的方法,作出函数()f x 的图象,简单判断即可.【详解】依题意,函数()y f x =的图象与直线y a =-有两个交点,作出函数图象如下图所示,由图可知,要使函数()y f x =的图象与直线y a =-有两个交点,则01a <-≤,即10a -≤<.故选:B .【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.【变式3】函数()232f x x x =-+的零点是()A .()1,0B .()1,0和()2,0C .1和2D .以上都不是【答案】C 【分析】当()0f x =时对应的x 的值即为所求的零点.【详解】令()0f x =,即2320x x -+=,解得:1x =或2x =,()f x ∴的零点是1和2.故选:C .【点睛】本题考查函数零点的求解问题,易错点是误认为零点为一个点的坐标,实际零点是函数值为零时,对应的自变量的值.【变式4】已知函数21ln ()xf x x -=,那么方程f (x )=0的解是()A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C 【分析】通过解方程求得()0f x =的解.【详解】依题意()21ln 0xf x x -==,所以1ln 0,ln 1,x x x e -===.故选:C 【点睛】本小题主要考查函数零点的求法,属于基础题.【考点5】:用二分法求方程的近似解例题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定【答案】B 【分析】根据零点存在性定理即可判断零点所在区间.【详解】∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5).故选:B.【变式1】下列函数不宜用二分法求零点的是()A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2++2D .f (x )=-x 2+4x -1【答案】C 【分析】根据二分法的概念可知,只有存在区间[](),a b a b <,使得()()0f a f b <,才能应用二分法求零点,即可判断出各选项对应的函数是否可用二分法求零点.【详解】对于A ,存在区间[]0,2,使得()()020f f <,所以A 宜用;对于B ,存在区间4,1e -⎡⎤⎣⎦,使得()()410f e f -<,所以B 宜用;对于C ,()(20f x x =≥,不存在区间[](),a b a b <,使得()()0f a f b <,所以C 不宜用;对于D ,存在区间[]0,1,使得()()010f f <,所以D 宜用.故选:C .【点睛】本题主要考查二分法的概念的理解以及应用,属于容易题.【变式2】函数33()log 2f x x x=-在区间[1,3]内有零点,则用二分法判断含有零点的区间为()A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】先求(1),(3)f f ,再求(2)f ,发现(3),(2)f f 异号,再求5(2f 的值,再利用零点存在性定理判断即可【详解】解:因为31(1)0,(3)022f f =-<=>,3433333(2)log 2log 2log 3log log 04f =-=-==<,353333355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭因此,函数f (x )的零点在区间52,2⎡⎤⎢⎥⎣⎦内,故选:C.【点睛】此题考查二分法判断零点,考查了零点存在性定理的应用,属于基础题.【变式3】用二分法求函数()f x 在(,)a b 内的唯一零点时,精确度为0.001,则经过一次二分就结束计算的条件是()A .||0.2a b -<B .||0.002a b -<C .||0.002a b ->D .||0.002a b -=【答案】B【分析】根据二分法的步骤分析可得.经过一次二分后,零点所在区间长度为||2b a -,结束计算的条件是零点所在区间的长度满足精确度,由此可得.【详解】据二分法的步骤知,经过一次二分后,零点所在区间长度为||2b a -,此时结束计算,所以||2b a -0.001<,所以||0.002b a -<.故选B【点睛】本题考查了二分法的步骤,属于基础题.【变式4】下面关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【答案】B【分析】A C D进行判断,可以排除,从而选B.根据二分法的概念对,,【详解】只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,オ可以用二分法求函数的零点的近似值,故A错;二分法有规律可循,可以通过计算机来进行,故C错;求方程的近似解也可以用二分法,故D错.故选B.【点睛】本题考查了二分法的概念,属于基础题.。
高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
单招指数函数与对数函数复习题

单招指数函数与对数函数复习题一、选择题1. 指数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b2. 对数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b3. 如果指数函数y = 2^x的图像向右平移2个单位,新的函数表达式是:A. y = 2^(x-2)B. y = 2^(x+2)C. y = 2^(x/2)D. y = 2^(2x)4. 对数函数y = log_2(x)的图像向上平移1个单位,新的函数表达式是:A. y = log_2(x) + 1B. y = log_2(x-1)C. y = log_2(x+1)D. y = log_2(x) - 15. 指数函数y = 3^x的增长速度比y = 2^x的增长速度:A. 更快B. 更慢C. 相同D. 无法比较二、填空题6. 指数函数y = a^x的图像在x轴的正半轴上是_________的。
7. 对数函数y = log_a(x)的图像在y轴的正半轴上是_________的。
8. 如果指数函数y = a^x经过点(1, b),则a的值为_________。
9. 对数函数y = log_a(x)的底数a的取值范围是_________。
10. 对数函数y = log_a(x)的图像与x轴的交点是_________。
三、解答题11. 求函数y = 2^x的值域。
12. 求函数y = log_2(x)的定义域。
13. 证明指数函数y = a^x (a > 0, a ≠ 1)的图像总是单调的。
14. 证明对数函数y = log_a(x) (a > 0, a ≠ 1)的图像总是单调的。
15. 解方程:2^x = 8。
四、应用题16. 某细菌的初始数量是100,如果每3小时数量翻倍,求12小时后细菌的总数。
17. 某公司的股票价格从100元开始,每年增长10%,求5年后的股票价格。
指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,指数函数习题一、选择题 1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎪⎨⎪⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =1()2[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1l o g (1),l o g ,l o g 1y aa a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++= 的两根是,αβ,则αβ 的值是( )A 、lg5lg 7B 、lg 35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
人教版A版(2019)高中数学必修第一册: 第四章 指数函数与对数函数 综合测试(附答案与解析)

第四章综合测试
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1.已知集合 M = x | x <3 , N = x | log3 x<1 ,则 M N 等于( )
A.
B.x | 0<x<3
在
R
上有最大值,则
a
的
取值范围为( )
A.
−
2 2
,
−
1 2
B.
−1,
−
1 2
C.
−
2 2
,
−
1 2
D.
−
2 2
,
0
0,
1 2
11.某公司为激励创新,计划逐年加大研发资金投入,若该公司 2015 年全年投入研发资金 130 万元,在此基 础上,每年投入的研发资金比上一年增加 12%,则该公司全年投入的研发资金开始超过 200 万元的年份是 (参考数据: lg1.12 0.05,lg1.3 0.11,lg 2 0.30 )( )
【解析】 Q f (x) = log2 (ax −1) 在 (−3, −2) 上为减函数,
a<0 且 ax −1>0 在 (−3, −2) 上恒成立,−2a −1≥0 ,
a≤ − 1 . 2
又
g(
x)
在
R
上有最大值,且
g
(x)
在
−,
1 2
上单调递增,
g
(
x)
在
1 2
,
+
上单调递减,且
log
,当
log z
x
=
指数函数和对数函数练习题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数函数和对数函数练习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章指数函数和对数函数§1正整数指数函数§2指数扩充及其运算性质1.正整数指数函数函数y=ax(a>0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数.2.分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的 eq \f(m,n) 次幂,记作b=;(2)正分数指数幂写成根式形式:= eq \r(n,am) (a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________.3.有理数指数幂的运算性质(1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0).一、选择题1.下列说法中:①16的4次方根是2;② eq \r(4,16) 的运算结果是±2;③当n为大于1的奇数时, eq \r(n,a) 对任意a∈R都有意义;④当n 为大于1的偶数时, eq \r(n,a) 只有当a≥0时才有意义.其中正确的是( )A.①③④ B.②③④ C.②③ D.③④2.若2<a<3,化简 eq \r(2-a2) + eq \r(4,3-a4) 的结果是( )A.5-2a B.2a-5 C.1 D.-13.在(- eq \f(1,2) )-1、、、2-1中,最大的是( )A.(- eq \f(1,2) )-1 B. C. D.2-14.化简 eq \r(3,a\r(a)) 的结果是( )A.a B. C.a2 D.5.下列各式成立的是( )A. eq \r(3,m2+n2) = B.( eq \f(b,a) )2=C. eq \r(6,-32) =D. eq \r(\r(3,4)) =6.下列结论中,正确的个数是( )①当a<0时,=a3;② eq \r(n,an) =|a|(n>0);③函数y=-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1C.2 D.3二、填空题7. eq \r(6\f(1,4)) - eq \r(3,3\f(3,8)) + eq \r(3,0.125) 的值为________.8.若a>0,且ax=3,ay=5,则=________.9.若x>0,则(2+)(2-)-4·(x-)=________.三、解答题10.(1)化简: eq \r(3,xy2·\r(xy-1)) · eq \r(xy) ·(xy)-1(xy≠0);(2)计算:+ eq \f(-40,\r(2)) + eq \f(1,\r(2)-1) - eq \r(1-\r(5)0) ·.11.设-3<x<3,求 eq \r(x2-2x+1) - eq \r(x2+6x+9) 的值.12.化简:÷(1-2 eq \r(3,\f(b,a)) )× eq \r(3,a) .13.若x>0,y>0,且x- eq \r(xy) -2y=0,求 eq \f(2x-\r(xy),y +2\r(xy)) 的值.§3指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=ax(a>0,且a≠1)的图像和性质一、选择题1.下列以x为自变量的函数中,是指数函数的是( )A.y=(-4)x B.y=πxC.y=-4x D.y=ax+2(a>0且a≠1) 2.函数f(x)=(a2-3a+3)ax是指数函数,则有( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.函数y=a|x|(a>1)的图像是( )4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为( )A.-9 B. eq \f(1,9)C.- eq \f(1,9) D.95.如图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图像,则a、b、c、d与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=( eq \f(1,2) )x-2的图像必过( )A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题7.函数f(x)=ax的图像经过点(2,4),则f(-3)的值为________.8.若函数y=ax-(b-1)(a>0,a≠1)的图像不经过第二象限,则a,b必满足条件________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)和;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n=-2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴).(5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a⊕b= eq \b\lc\{\rc\(\a\vs4\al\co1(a a≤b,b a>b)) ,则函数f(x)=1⊕2x的图像是( )13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).(1)求f(1)的值;(2)若f( eq \f(1,2) )>0,解不等式f(ax)>0.(其中字母a为常数).§3指数函数(二)1.下列一定是指数函数的是( )A.y=-3x B.y=xx(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1- eq \r(2) )x 2.指数函数y=ax与y=bx的图像如图,则( )A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若( eq \f(1,2) )2a+1<( eq \f(1,2) )3-2a,则实数a的取值范围是( )A.(1,+∞) B.( eq \f(1,2) ,+∞) C.(-∞,1) D.(-∞, eq \f(1,2) ) 5.设 eq \f(1,3) <( eq \f(1,3) )b<( eq \f(1,3) )a<1,则( ) A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( )A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.QP B.QPC.P∩Q={2,4} D.P∩Q={(2,4)}2.函数y= eq \r(16-4x) 的值域是( )A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6 B.1 C.3 D. eq\f(3,2)4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数 D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图像与函数g(x)=ex+2的图像关于原点对称,则f(x)的表达式为( )A.f(x)=-ex-2 B.f(x)=-e-x+2C.f(x)=-e-x-2 D.f(x)=e-x+26.已知a=,b=,c=,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<aC.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<- eq \f(1,2) 的解集是________________.9.函数y=的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[- eq \f(1,2) , eq\f(1,2) ].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图像大致是( )13.已知函数f(x)= eq \f(2x-1,2x+1) .(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)< eq \f(15,17) .习题课1.下列函数中,指数函数的个数是( )①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0 B.1 C.2 D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( )A.-3 B.-1 C.1 D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是( )A.1 B.0C.-1 D.无最大值4.将 eq \r(2\r(2)) 化成指数式为________.5.已知a=40.2,b=80.1,c=( eq \f(1,2) )-0.5,则a,b,c的大小顺序为________.6.已知+=3,求x+ eq \f(1,x) 的值.一、选择题1.的值为( )A. eq \r(2) B.- eq \r(2) C. eq\f(\r(2),2) D.- eq \f(\r(2),2)2.化简 eq \r(3,a-b3) + eq \r(a-2b2) 的结果是( ) A.3b-2a B.2a-3bC.b或2a-3b D.b3.若0<x<1,则2x,( eq \f(1,2) )x,(0.2)x之间的大小关系是( ) A.2x<(0.2)x<( eq \f(1,2) )x B.2x<( eq\f(1,2) )x<(0.2)xC.( eq \f(1,2) )x<(0.2)x<2xD.(0.2)x<( eq \f(1,2) )x<2x4.若函数则f(-3)的值为( )A. eq \f(1,8)B. eq\f(1,2)C.2 D.85.函数f(x)=ax-b的图像如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)= eq \f(4x+1,2x) 的图像( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:-(- eq \f(1,4) )0+160.75+=________________.8.已知10m=4,10n=9,则=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)( eq \r(2) )-1.2和( eq \r(2) )-1.4;(3)和;(4)π-2和( eq \f(1,3) )-1.311.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大 eq \f(a,2) ,求a的值.能力提升12.已知f(x)= eq \f(a,a2-1) (ax-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图像,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§4对数(一)1.对数的概念如果ab=N(a>0,且a≠1),那么数b叫做______________,记作__________,其中a叫做__________,N叫做________.2.常用对数与自然对数通常将以10为底的对数叫做__________,以e为底的对数叫做__________,log10N可简记为________,logeN简记为________.3.对数与指数的关系若a>0,且a≠1,则ax=N⇔logaN=____.对数恒等式:=____;logaax=____(a>0,且a≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确命题的个数为( )A.1 B.2C.3 D.42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( )A.①③ B.②④C.①② D.③④3.在b=log(a-2)(5-a)中,实数a的取值范围是( )A.a>5或a<2 B.2<a<5 C.2<a<3或3<a<5 D.3<a<44.方程= eq \f(1,4) 的解是( )A.x= eq \f(1,9) B.x= eq\f(\r(3),3)C.x= eq \r(3) D.x=95.若loga eq \r(5,b) =c,则下列关系式中正确的是( )A.b=a5c B.b5=acC.b=5ac D.b=c5a6.的值为( )A.6 B. eq \f(7,2)C.8 D. eq \f(3,7)二、填空题7.已知log7[log3(log2x)]=0,那么=________.8.若log2(logx9)=1,则x=________.9.已知lg a=2.431 0,lg b=1.431 0,则 eq \f(b,a) =________.三、解答题10.(1)将下列指数式写成对数式:①10-3= eq \f(1,1 000) ;②0.53=0.125;③( eq \r(2) -1)-1= eq \r(2) +1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知logax=4,logay=5,求A=的值.能力提升12.若loga3=m,loga5=n,则a2m+n的值是( )A.15 B.75C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=- eq \f(2,5) ;②logx3=- eq \f(1,3) .(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.§4对数(二)1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga eq \f(M,N) =________;(3)logaMn=__________(n∈R).2.对数换底公式logbN= eq \f(logaN,logab) (a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( )A.logax·logay=loga(x+y) B.(logax)n=nlogaxC. eq \f(logax,n) =loga eq \r(n,x)D. eq \f(logax,logay) =logax-logay2.计算:log916·log881的值为( )A.18 B. eq \f(1,18) C. eq \f(8,3) D. eq \f(3,8)3.若log5 eq \f(1,3) ·log36·log6x=2,则x等于( )A.9 B. eq \f(1,9) C.25D. eq \f(1,25)4.已知3a=5b=A,若 eq \f(1,a) + eq \f(1,b) =2,则A等于( )A.15 B. eq \r(15) C.± eq \r(15)D.2255.已知log89=a,log25=b,则lg 3等于( )A. eq \f(a,b-1)B. eq \f(3,2b-1)C. eq\f(3a,2b+1) D. eq \f(3a-1,2b)6.若lg a,lg b是方程2x2-4x+1=0的两个根,则(lg eq\f(a,b) )2的值等于( )A.2 B. eq \f(1,2) C.4 D. eq\f(1,4)二、填空题7.2log510+log50.25+( eq \r(3,25) - eq \r(125) )÷ eq\r(4,25) =______________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M= eq \f(2,3) lg E-3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.三、解答题10.(1)计算:lg eq \f(1,2) -lg eq \f(5,8) +lg 12.5-log89·log34;(2)已知3a=4b=36,求 eq \f(2,a) + eq \f(1,b) 的值.11.若a、b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.能力提升12.下列给出了x与10x的七组近似对应值:假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( )A.二 B.四C.五 D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的 eq \f(1,3) ?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)§5对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数.2.对数函数的图像与性质3.反函数对数函数y=logax(a>0且a≠1)和指数函数____________________互为反函数.一、选择题1.函数y= eq \r(log2x-2) 的定义域是( )A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)2.设集合M={y|y=( eq \f(1,2) )x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N是( )A.(-∞,0)∪[1,+∞) B.[0,+∞)C.(-∞,1] D.(-∞,0)∪(0,1)3.已知函数f(x)=log2(x+1),若f(α)=1,则α等于( )A.0 B.1 C.2 D.3 4.函数f(x)=|log3x|的图像是( )5.已知对数函数f(x)=logax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )A.g(x)=4x B.g(x)=2x C.g(x)=9x D.g(x)=3x6.若loga eq \f(2,3) <1,则a的取值范围是( )A.(0, eq \f(2,3) ) B.( eq \f(2,3) ,+∞) C.( eq \f(2,3) ,1) D.(0, eq \f(2,3) )∪(1,+∞)二、填空题7.如果函数f(x)=(3-a)x,g(x)=logax的增减性相同,则a的取值范围是________.8.已知函数y=loga(x-3)-1的图像恒过定点P,则点P的坐标是________.9.给出函数,则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=x,y=x,y=x,y=x 的图像,则a1,a2,a3,a4的大小关系是( )A.a4<a3<a2<a1 B.a3<a4<a1<a2 C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-logmx<0在(0, eq \f(1,2) )内恒成立,求实数m的取值范围.§5对数函数(二)1.函数y=logax的图像如图所示,则实数a的可能取值是( )A.5 B. eq \f(1,5)C. eq \f(1,e)D. eq \f(1,2)2.下列各组函数中,表示同一函数的是( )A.y= eq \r(x2) 和y=( eq \r(x) )2B.|y|=|x|和y3=x3C.y=logax2和y=2logaxD.y=x和y=logaax3.若函数y=f(x)的定义域是[2,4],则y=f(x)的定义域是( )A.[ eq \f(1,2) ,1] B.[4,16]C.[ eq \f(1,16) , eq \f(1,4) ] D.[2,4]4.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=loga(x+b)(a>0且a≠1)的图像经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点________________________________________________________________________.一、选择题1.设a=log54,b=(log53)2,c=log45,则( )A.a<c<b B.b<c<aC.a<b<c D.b<a<c2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为( )A.[-1,1] B.[ eq \f(1,2) ,2]C.[1,2] D.[ eq \r(2) ,4]3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有( )A.f(2)>f(-2) B.f(1)>f(2)C.f(-3)>f(-2) D.f(-3)>f(-4)4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. eq \f(1,4)B. eq \f(1,2) C.2 D.45.已知函数f(x)=lg eq \f(1-x,1+x) ,若f(a)=b,则f(-a)等于( )A.b B.-bC. eq \f(1,b) D.- eq \f(1,b)6.函数y=3x(-1≤x<0)的反函数是( )A.y=x(x>0) B.y=log3x(x>0)C.y=log3x( eq \f(1,3) ≤x<1) D.y=x( eq\f(1,3) ≤x<1)二、填空题7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是________.9.若loga2<2,则实数a的取值范围是______________.三、解答题10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.11.已知函数f(x)= eq \f(1-ax,x-1) 的图像关于原点对称,其中a 为常数.(1)求a的值;(2)若当x∈(1,+∞)时,f(x)+(x-1)<m恒成立.求实数m的取值范围.能力提升12.若函数f(x)=loga(x2-ax+ eq \f(1,2) )有最小值,则实数a的取值范围是( )A.(0,1) B.(0,1)∪(1, eq \r(2) ) C.(1, eq \r(2) ) D.[ eq \r(2) ,+∞)13.已知logm4<logn4,比较m与n的大小.习题课1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是( )A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,logam<logan<0,则( )A.1<n<m B.1<m<n C.m<n<1 D.n<m<13.函数y= eq \r(x-1) + eq \f(1,lg2-x) 的定义域是( ) A.(1,2) B.[1,4]C.[1,2) D.(1,2]4.给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①② B.②③ C.③④ D.①④5.设函数f(x)=loga|x|,则f(a+1)与f(2)的大小关系是________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是( )A.log0.52.7>log0.52.8 B.log34>log65 C.log34>log56 D.logπe>logeπ2.若log37·log29·log49m=log4 eq \f(1,2) ,则m等于( )A. eq \f(1,4)B. eq \f(\r(2),2)C. eq \r(2) D.43.设函数若f(3)=2,f(-2)=0,则b等于( )A.0 B.-1 C.1 D.24.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, eq \f(1,2) )内恒有f(x)>0,则f(x)的单调递增区间为( )A.(-∞,- eq \f(1,4) ) B.(- eq \f(1,4) ,+∞) C.(0,+∞) D.(-∞,- eq \f(1,2) )5.若函数若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.已知f(x)是定义在R上的奇函数,f(x)在(0,+∞)上是增函数,且f( eq \f(1,3) )=0,则不等式f(x)<0的解集为( )A.(0, eq \f(1,2) ) B.( eq\f(1,2) ,+∞)C.( eq \f(1,2) ,1)∪(2,+∞) D.(0, eq\f(1,2) )∪(2,+∞)二、填空题7.已知loga(ab)= eq \f(1,p) ,则logab eq \f(a,b) =________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)= eq \f(1,8) ,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,求不等式loga(x-1)>0的解集.13.已知函数f(x)=loga(1+x),其中a>1.(1)比较 eq \f(1,2) [f(0)+f(1)]与f( eq \f(1,2) )的大小;(2)探索 eq \f(1,2) [f(x1-1)+f(x2-1)]≤f( eq \f(x1+x2,2) -1)对任意x1>0,x2>0恒成立.§6指数函数、幂函数、对数函数增长的比较1.当a>1时,指数函数y=ax是________,并且当a越大时,其函数值增长越____.2.当a>1时,对数函数y=logax(x>0)是________,并且当a越小时,其函数值________.3.当x>0,n>1时,幂函数y=xn是________,并且当x>1时,n越大,其函数值__________.一、选择题1.今有一组数据如下:现准备了如下四个答案,哪个函数最接近这组数据( )A.v=log2t B.v=t C.v= eq \f(t2-1,2) D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数 C.指数型函数 D.对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(bx)≥f(cx) B.f(bx)≤f(cx) C.f(bx)<f(cx)D.f(bx),f(cx)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是( )A.45.606 B.45.6 C.45.56 D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b= eq \f(2,3) ,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=,销售量g(t)与时间t满足关系g(t)=- eq \f(1,3) t+ eq\f(43,3) (0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=该商品的日销售量Q(件)与时间t(天)的函数关系式为Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N+)时的销售量增加10%.(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 eq \f(a,4) L?第三章章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f(x)=lg(4-x)的定义域为M,函数g(x)= eq \r(0.5x-4) 的值域为N,则M∩N等于( )A.M B.NC.[0,4) D.[0,+∞)2.函数y=3|x|-1的定义域为[-1,2],则函数的值域为( )A.[2,8] B.[0,8]C.[1,8] D.[-1,8]3.已知f(3x)=log2 eq \r(\f(9x+1,2)) ,则f(1)的值为( )A.1 B.2 C.-1 D. eq\f(1,2)4.等于( )A.7 B.10 C.6 D. eq\f(9,2)5.若100a=5,10b=2,则2a+b等于( )A.0 B.1C.2 D.36.比较、23.1、的大小关系是( )A.23.1<< B.<23.1<C.<<23.1 D.<<23.17.式子 eq \f(log89,log23) 的值为( )A. eq \f(2,3)B. eq \f(3,2)C.2 D.38.已知ab>0,下面四个等式中:①lg(ab)=lg a+lg b;②lg eq \f(a,b) =lg a-lg b;③ eq \f(1,2) lg( eq \f(a,b) )2=lg eq \f(a,b) ;④lg(ab)= eq \f(1,logab10) .其中正确的个数为( )A.0 B.1 C.2 D.39.为了得到函数y=lg eq \f(x+3,10) 的图像,只需把函数y=lg x 的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度10.函数y=2x与y=x2的图像的交点个数是( )A.0 B.1C.2 D.311.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1) B.f(-4)=f(1)C.f(-4)<f(1) D.不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)= eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,2)x,x≥4f x+1, x<4)) ,则f(2+log23)的值为______.14.函数f(x)=loga eq \f(3-x,3+x) (a>0且a≠1),f(2)=3,则f(-2)的值为________.15.函数y=(x2-3x+2)的单调递增区间为______________.16.设0≤x≤2,则函数y=-3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f(x)=ax(a>0且a≠1).(1)求f(x)的反函数g(x)的解析式;(2)解不等式:g(x)≤loga(2-3x).18.(12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.19.(12分)已知x>1且x≠ eq \f(4,3) ,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x), eq \f(1,4) ≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=loga eq \f(1+x,1-x) (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)= eq \f(-2x+b,2x+1+2) 是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.。
(完整版)高职数学第四章指数函数与对数函数题库

高职数学第四章指数函数与对数函数题库一、选择题01-04-01.= ( ) A.52a B.2ab - C.12a b D.32b02-04-01.下列运算正确的是( ) A.342243⋅=2 B.4334(2)=2C.222log 2log x x =D.lg11=03-04-01.若0a >,且,m n 为整数,则下列各式中正确的是( ) A.m m n na a a ÷= B.m n m n a a a =C.()n m m n a a +=D.01n n a a -÷= 04-04-01.=⋅⋅436482( )A.4B.8152C.272 D.805-04-01.求值1.0lg 2log ln 2121-+e 等于( ) A.12- B.12 C.0 D.106-04-01.将25628=写成对数式( )A.2256log 8=B.28log 256=C.8256log 2=D.2562log 8=07-04-01.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A.x y 3.0log = (x >0)B. y=x 2+x (x ∈R) C.y=3x (x ∈R) D.y=x 3(x ∈R)08-04-01.下列函数,在其定义域内,是减函数的是( ) A.12y x = B.2x y = C.3y x = D.x y 3.0log = (x >0)09-04-01.下列各组函数中,表示同一函数的是( )A.2x y x=与y x = B.y x =与yC.y x =与2log 2x y =D.0y x =与1y =09-04-01. 化简10021得( )A.50B.20 C .15 D .1010-04-01. 化简832_得( ) A.41 B. 21 C.2 D .4 11-04-01.化简232-⎪⎪⎭⎫ ⎝⎛y x 的结果是( )A.64y x - B .64-y x C .64--y x D .34y x12-04-01.求式子23-·1643的值,正确的是( ) A.1 B .2 C .4 D .813-04-01.求式子42·48的值,正确的是( )A.1 B .2 C .4 D .814-04-01.求式子573⎪⎭⎫ ⎝⎛·08116⎪⎭⎫ ⎝⎛÷479⎪⎭⎫ ⎝⎛的值,正确的是( ) A. 1281 B .1891 C .2561 D .1703 15-04-01.求式子23-·45·0.255的值,正确的是( ) A.1 B .21 C .41 D .81 16-04-01. 已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),则函数的解析式是( )A.x y 2= B .x y 3= C .x y 4= D .xy 8= 17-04-01. 已知指数函数y=a x(a >0,且a ≠1)的图象经过点(2,16),则函数的值域是( )A.()+∞,1B.()+∞,0 C .[)+∞,0 D .()0,∞-18-04-01.已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),x=3时的函数值是( )A.4 B .8 C .16 D .6419-04-01.下列函数中,是指数函数的是( )A.y=(-3)xB.y=x-⎪⎭⎫ ⎝⎛52 C.y= x 21 D.y=3x 420-04-01.下列式子正确是( ) A.log 2(8—2)=log 28—log 22 B.lg (12—2)=2lg 12lg ; C.9log 27log 33=log 327—log 39. D.()013535≠=-a a a 21-04-01.计算22log 1.25log 0.2+=( )A.2-B.1-C.2D.122-04-01.当1a >时,在同一坐标系中,函数log a y x =与函数1x y a ⎛⎫= ⎪⎝⎭的图象只可能是( )23-04-01.设函数()log a f x x = (0a >且1a ≠),(4)2f =,则(8)f =( )A.2B.12C.3D. 13二、填空题 24-04-01. 将分数指数幂53-b 写成根式的形式是 。
人教版高中数学第四章指数函数与对数函数考点精题训练

人教版高中数学第四章指数函数与对数函数考点精题训练单选题1、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.2、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1,b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减; (2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.3、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.4、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m及a10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m⋅a1020%=m⋅a20,解得m=120,a10=2,当ℎ=40%时,40%=120⋅a t,即40%=120⋅a10⋅a t−10,解得a t−10=4=(a10)2=a20,于是得t−10=20,解得t=30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1 答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 8、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( )A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.9、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C10、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题11、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也称取整函数,例如:[−3.7]=−4,[2.3]=2,已知f(x)=e xe x+1−12,则函数y=2[f(x)]+[f(−x)]的函数值可能为()A.−2B.−1C.0D.1答案:ABC分析:利用定义可知函数f(x)为奇函数,根据解析式可得f(x)∈(−12,12),分三种情况讨论f(x)可求得结果.因为f(x)=e xe x+1−12,所以f(−x)=e−xe−x+1−12=11+e x−12,所以f(x)+f(−x)=e xe x+1−12+1e x+1−12=0,即f(−x)=−f(x),因为f(x)=e xe x+1−12=e x+1−1e x+1−12=12+−1e x+1,因为e x>0,e x+1>1,所以0<1e x+1<1,所以−1<−1e x+1<0,所以−12<12+−1e x +1<12即f(x)∈(−12,12)当f(x)∈(−12,0)时,f(−x)∈(0,12),所以[f(x)]=−1,[f(−x)]=0,此时y =−2,当f(x)=0时,f(−x)=0,所以[f(x)]=0,[f(−x)]=0,此时y =0,当f(x)∈(0,12)时,f(−x)∈(−12,0),此时[f(x)]=0,[f(−x)]=−1,此时y =−1, 所以函数y =2[f(x)]+[f(−x)]的值域为{−2,−1,0}. 故选:ABC12、若函数f(x)的图像在R 上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的是( ) A .f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 答案:ABD解析:根据f (x )的图像在R 上连续不断,f (0)<0,f (1)>0,f (2)>0,结合零点存在定理,判断出在区间(0,1)和(1,2)上零点存在的情况,得到答案.由题知f (0)⋅f (1)<0,所以根据函数零点存在定理可得f (x )在区间(0,1)上一定有零点, 又f (1)⋅f (2)>0,无法判断f (x )在区间(1,2)上是否有零点,在区间(1,2)上可能有零点. 故选:ABD .13、下列各选项中,值为1的是( ) A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项. 对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意. 对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D 选项不符合题意. 故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.14、已知函数f(x)=2x2x +1+m(m ∈R)则下列说法正确的是( ) A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 答案:ABD分析:根据函数的定义域的求法,可判定A 正确;根据函数的奇偶性列出方程,求得m 的值,可判定B 正确,化简f(x)=−12x +1+m +1,结合指数函数的单调性,可判定C 错误;化简函数f(x)=1−12x +1,结合指数函数的值域,可判定D 正确.由题意,函数f(x)=2x2x +1+m(m ∈R),对于A 中,由2x +1≠0,所以函数f (x )的定义域为R ,所以A 正确;对于B 中,由函数f (x )为奇函数,则满足f (−x )=−f (x ),即2−x 2−x +1+m =−2x2x +1−m ,所以2m =−2x2x +1−2−x2−x +1=−2x2x +1−12x 12x+1=−2x2x +1−12x +1=−1,即m =−12,所以B 不正确;对于C 中,由f(x)=2x 2x +1+m =2x +1−12x +1+m =−12x +1+m +1,因为函数y =2x +1为单调递增函数,则y =−12x +1递增函数, 所以f (x )函数在R 上单调递减,所以C 不正确;对于D 中,当m =0时,可得f(x)=2x 2x +1=1−12x +1,因为2x +1>1,可得−1<−12x +1<0,所以1−12x +1∈(0,1), 即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD.15、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.双空题16、已知函数f(x)=ln(ax2+2x+1),若f(x)的定义域为R,则实数a的取值范围为______;若f(x)的值域为R,则实数a的取值范围为______.答案:(1,+∞)[0,1]分析:由f(x)的定义域为R知u=ax2+2x+1的图象恒在x轴的上方,由二次函数性质可构造不等式组求得结果;由f(x)的值域为R知u=ax2+2x+1要取遍所有的正数,由二次函数值域可构造不等式组求得结果.若f(x)的定义域为R,则u=ax2+2x+1的图象恒在x轴的上方,∴{a>0Δ=4−4a<0,解得:a>1,即实数a的取值范围是(1,+∞);若f(x)的值域为R,则u=ax2+2x+1要取遍所有的正数,∴a=0或{a>0Δ=4−4a≥0,解得:0≤a≤1,即实数a的取值范围是[0,1].所以答案是:(1,+∞);[0,1].17、若函数f(x)=ln(ax+11−x)+b是奇函数,则a=___________,b=___________.答案: 1 0分析:根据奇函数在x =0处有定义则f (0)=0可得b ,再根据奇函数的满足f (x )+f (−x )=0求解a 即可 因为函数f (x )=ln (ax+11−x )+b 是奇函数,故f (0)=0,即ln 1+b =0,即b =0.又f (x )+f (−x )=0,故ln (ax+11−x )+ln (−ax+11+x )=0,即(ax+11−x )⋅(−ax+11+x )=1,1−a 2x 21−x 2=1恒成立,故a 2=1,所以a =1或a =−1,当a =−1时f (x )=ln (−x+11−x)=ln (−1)无意义.当a =1时f (x )=ln (x+11−x )满足奇函数.故a =1 综上,a =1,b =0所以答案是:1;018、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站______km 处,最少费用为______万元.答案: 5 8解析:根据题意设出y 1和y 2的函数表达式,利用“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”列方程,由此求得y 1和y 2的解析式.利用基本不等式求得费用的最小值和建站位置.设仓库与车站距离为x ,依题意y 1=k 1x ,y 2=k 2x .由于“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”,所以2=k 110,8=k 2⋅10,解得k 1=20,k 2=45.所以y 1=20x ,y 2=45x ,所以总费用20x +45x ≥2√20x ⋅45x =8,当且仅当20x =45x ,即x =5时,取得最小值.所以答案是:(1)5;(2)8.小提示:本小题主要考查函数模型在实际生活中的运用,考查利用基本不等式求最值,属于基础题. 解答题19、(1)已知函数g (x )=(a +1)x−2+1(a >0)的图像恒过定点A ,且点A 又在函数f (x )=log √3(x +a )的图像上,求不等式g (x )>3的解集;(2)已知−1≤log 12x ≤1,求函数y =(14)x−1−4(12)x +2的最大值和最小值.答案:(1)(3,+∞);(2)y min =1,y max =54.分析:(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设t =(12)x ,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.(1)由题意知定点A 的坐标为(2,2),∴2=log √3(2+a )解得a =1.∴g (x )=2x−2+1.∴由g (x )>3得,2x−2+1>3.∴2x−2>2.∴x −2>1.∴x >3.∴不等式g (x )>3的解集为(3,+∞).(2)由−1≤log 12x ≤1得12≤x ≤2令t =(12)x ,则14≤t ≤√22, y =4t 2−4t +2=4(t −12)2+1. ∴当t =12,即(12)x =12,x =1时,y min =1,当t =14,即(12)x =14,x =2时,y max =54. 小提示:本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.20、已知函数f(x)=2x −12x .(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
指数函数与对数函数专项训练(原卷版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪⎝⎭C .()5,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭D .5,3⎛⎫+∞ ⎪⎝⎭2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪⎝⎭D .()2,33.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .45.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a<<B .<<b c aC .<<c a bD .a b c<<6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b>>B .b c a>>C .a b c>>D .a c b>>7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.13.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n Na a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.。
2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。
新教材2024年秋高中数学章末综合测评4指数函数与对数函数新人教A版必修第一册

章末综合测评(四) 指数函数与对数函数(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a<,则化简的结果是( )A.B.-C.D.-2.函数y=·ln (2-x)的定义域为( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]3.函数f(x)=的零点个数为( )A.0 B.1C.2 D.34.(2024·河南信阳高一期末)若4m=3,则log312=( )A. B. C. D.5.函数y=log2(2x+1)的值域是( )A.[1,+∞)B.(0,1)C.(-∞,0) D.(0,+∞)6.(2024·四川泸州高一期末)在α型病毒病情初始阶段,可以用指数函数模型I(t)=e rt 描述累计感染病例数I(t)随时间t(单位:天)的改变规律.指数增长率r与R0、T近似满意R0=1+rT,其中R0为病毒基本再生数,T为两代间传染所需的平均时间,有学者基于已有数据估计出R0=3.22,T=10.据此,在α型病毒病情初始阶段,累计感染病例数增加至I(0)的4倍,至少须要(参考数据:ln 2≈0.69)()A.6天B.7天C.8天D.9天7.设a,b,c均为正数,且2a=,=b=log2c,则( )A.a<b<c B.c<b<aC.c<a<b D.b<a<c8.若函数f(x)=(k-1)a x-a-x(a>0且a≠1)在R上既是奇函数,又是减函数,则g(x)=log a|x +k|的大致图象是( )A BC D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2024·河南南阳高一期中)已知函数f(x)=a x+1+2(a>0且a≠1)的图象过定点(a-3,3),则( )A.a=3B.f(1)=6C.f(x)为R上的增函数D.f(x)>10的解集为(2,+∞)10.(2024·江苏淮安高一期中)已知正实数a,b满意b a=4,且a+log2b=3,则a+b的值可以为( )A.2 B.3 C.4 D.511.若f(x)=lg (|x-2|+1),则下列命题正确的是( )A.f(x+2)是偶函数B.f(x)在区间(-∞,2)上是减函数,在(2,+∞)上是增函数C.f(x)没有最大值D.f(x)没有最小值12.已知正实数x,y满意log2x+y-,则下列结论肯定正确的是( ) A.B.x3<y3C.ln (y-x+1)>0 D.2x-y<三、填空题:本题共4小题,每小题5分,共20分.13.若f(x)=为R上的奇函数,则实数a的值为________.14.已知函数f(x)=a x-1+1(a>0,a≠1)的图象恒过点A,试写出一个满意下列条件的对数型函数g(x)的解析式________.①图象恒过点A;②是偶函数;③在(0,+∞) 上单调递减.15.(2024·江苏南京高一期末)闻名数学家、物理学家牛顿曾提出:物体在空气中冷却,假如物体的初始温度为θ1℃,空气温度为θ0℃,则t分钟后物体的温度θ(单位:℃)满意:θ=θ0+(θ1-θ0)e-kt.若当空气温度为30℃时,某物体的温度从90℃下降到60℃用时14分钟.则再经过28分钟后,该物体的温度为________℃.16.已知幂函数y=f(x)的图象过点(8,m)和(9,3).(1)实数m的值为________;(2)若函数g(x)=a f(x)(a>0,a≠1)在区间[16,36]上的最大值等于最小值的两倍,则实数a 的值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2024·湖北襄阳五中期中)(1)求(×)6+×+lg 500-lg 0.5的值;(2)设2x=3y=72,求的值.18.(本小题满分12分)已知指数函数f(x)=a x(a>0,且a≠1)过点(-2,9).(1)求函数f(x)的解析式;(2)若f(2m-1)-f(m+3)<0,求实数m的取值范围.19.(本小题满分12分)已知指数函数f(x)=a x(a>0,且a≠1)过点(m,n);在+2x+4的顶点坐标为(m,n),③函数y=log b x+3(b>0,且b≠1)过定点(m,n)这三个条件中任选一个,回答下列问题.(1)求f(x)的解析式,推断并证明g(x)=f(x)+的奇偶性;(2)解不等式:log a(1+x)<log a(2-x).20.(本小题满分12分)设函数f(x)=log2(a x-b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)求函数f(x)的零点;(3)设g(x)=a x-b x,求g(x)在[0,4]上的值域.21.(本小题满分12分)(2024·山东德州市第一中学期末)某医药公司研发的一种新药,假如成年人按规定的剂量服用,由监测数据可知,服用后6小时内每毫升血液中含药量y(单位:微克)与时间t(单位:时)之间的关系满意如图所示的曲线,当t∈[0,1.5)时,曲线是二次函数图象的一部分,当t∈[1.5,6]时,曲线是函数y=log a(t+2.5)+5(a>0,a≠1)图象的一部分,依据进一步测定,每毫升血液中含药量不少于2微克时,治疗有效.(1)试求服药后6小时内每毫升血液中含药量y与时间t之间的函数关系式;(2)问服药多久后起先有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据≈1.414)22.(本小题满分12分)若在定义域内存在实数x0,使f(x0+1)=f(x0)+f(1)成立,则称函数有“漂移点”x0.(1)请推断函数f(x)=是否有漂移点?并说明理由;(2)求证:函数f(x)=x2+3x在(0,1)上存在漂移点;(3)若函数f(x)=lg在(0,+∞)上有漂移点,求实数a的取值范围.章末综合测评(四)1.C2.B3.B4.A5.D6.B7.A8.B9.BCD[由题意可得a a-2+2=3恒成立,故a=2,A错误;依据题意,得a=2,∴f (x)=2x+1+2,∴f (1)=22+2=6,故B正确;∵f (x)=2x+1+2,∴f (x)为R上的增函数,C正确;f (x)=2x+1+2>10,解得x>2,D正确.故选BCD.]10.CD[因为b a=4,所以log b4=a,故a+log2b=log b4+log2b=2log b2+log2b=3,设log2b=x,则log b2=故x=3,解得x=1或2,当x=1时,log2b=1,故b=2,a=log24=2,故a+b=4;当x=2时,log2b=2,故b=4,a=log44=1,故a+b=5.故选CD.]11.ABC[f (x)=lg (|x-2|+1),所以f (x+2)=lg (|x|+1)为偶函数,故A正确.画出函数的图象,如图所示,所以函数在(-∞,2)上为减函数,在(2,+∞)上为增函数,且存在最小值,没有最大值,故ABC正确.故选ABC.]12.BC[∵正实数x,y满意log2x+log<∴log2x-<log2y-.易知f (x)=log2x-(0,+∞)上为增函数,故x<y,∴>x3<y3,故A错误、B正确;∴y-x>0,y-x+1>1,ln (y-x+1)>0,故C正确;2x-y<20=1,故D不肯定正确.故选BC.] 13.[因为f (x)=R上的奇函数,所以f (0)=0,即=0,所以a =.经检验,a=.]14.g(x)=+2(答案不唯一) [函数f (x)=a x-1+1中,令x-1=0,解得x=1,f (1)=a0+1=2,所以f (x)的图象恒过点A(1,2).取g(x)=2,则g(1)=2,满意条件①;g(x)=g(-x),定义域为(-∞,0)∪(0,+∞),则g(x)是偶函数,满意条件②;易知g(x)在(0,+∞)内单调递减,满意条件③.]15.37.5 [由题知θ0=30,θ1=90,θ=60,所以,60=30+(90-30)e-14k,可得e-14k=再经过28分钟后,该物体的温度为θ=30+(90-30)e-42k=30+(90-30)(e-14k)3=37.5.]16.(1)2(2)或[(1)设f (x)=xα,依题意可得9α=3,∴α=,f (x)=,∴m=f (8)==2.(2)g(x)=a,∵x∈[16,36],∴∈[4,6],当0<a<1时,g(x)max=a4,g(x)min=a6,由题意得a4=2a6,解得a=;当a>1时,g(x)max=a6,g(x)min=a4,由题意得a6=2a4,解得a=.综上,所求实数a的值为或.]17.解:(1) (×)6+×+lg 500-lg 0.5=23×32+3×4+lg =72+12+3=87.(2)依题意有x=log272,y=log372,=log722,=log723,所以+=3log722+2log723=log72(8×9)=1.18.解:(1)将点(-2,9)代入f (x)=a x(a>0,a≠1)中得a-2=9,解得a=∴f (x)=.(2)∵f (2m-1)-f (m+3)<0,∴f (2m-1)<f (m+3).∵f (x)=∴2m-1>m+3,解得m>4,∴实数m的取值范围为(4,+∞).19.解:(1)由①可知,+=0,即解得由②可知函数y=x2-2x+4=(x-1)2+3的顶点坐标为(1,3),则由③可知,函数y=log b x +3(b>0,且b≠1)过定点(1,3),则综上,三个条件中任选一个,均有即f (x)=a x过(1,3),即a=3,f (x)=3x.g(x)为偶函数.证明如下:g(x)=f (x)+=3x+3-x,x∈R,g(-x)=f (-x)+=3x+3-x=g(x),∴g(x)为偶函数.(2)log a(1+x)<log a(2-x),即log3(1+x)<log3(2-x),可化为2-x>1+x>0,∴-1<x<.即不等式log a(1+x)<log a(2-x)的解集为.20.解:(1)由已知得得解得a=4,b=2.(2)由(1)知f (x)=log2(4x-2x),令f (x)=0得4x-2x=1,即(2x)2-2x-1=0,解得2x=,又2x>0,∴2x=,解得x=log2.(3)由(1)知g(x)=4x-2x,令2x=t,则g(t)=t2-t=-,t∈[1,16],所以g(x)∈[0,240].21.解:(1)当0≤t<1.5时,由图象可设y=k(t-1)2+4,将点(0,0)的坐标代入函数表达式,解得k=-4,即当0≤t<1.5时,y=-4(t-1)2+4,当1.5≤t≤6时,将点(1.5,3)的坐标代入函数y=log a(t+2.5)+5中,解得a=.故y=(2)令-4(t-1)2+4≥2,解得1-≤t≤1+0.3≤t≤1.7,又0≤t<1.5,∴0.3≤t<1.5,故服药0.3小时之后起先有治疗效果,+5≥2,解得-2.5<t≤5.5,又1.5≤t≤6,故1.5≤t≤5.5,综上,0.3≤t≤5.5,所以服药后的治疗效果能持续5.2小时.22.解:(1)假设函数f (x)=“漂移点”x0,则2,x0+1=0,因为此方程无实根,与题设冲突,所以函数f (x)=.(2)证明:令h(x)=f (x+1)-f (x)-f (1)=(x+1)2+3x+1-(x2+3x)-4=2×3x+2x-3,所以h(0)=-1,h(1)=5.所以h(0)h(1)<0.又h(x)的图象在(0,1)上连续,所以h(x)=0在(0,1)上至少有一个实根x0,即函数f (x)=x2+3x在(0,1)上存在漂移点.(3)若f (x)=lg (0,+∞)上有漂移点x0,所以lg =lg lg a成立,即a,a>0,整理得a=由x0>0,0<<1,则0<a<1.则实数a的取值范围是{a|0<a<1}.。
高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高

第四章综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若n ∈N ,a ∈R ,给出下列式子:①4-42n;②4-42n +1;③5a 4;④4a 5.其中恒有意义的式子的个数是( B )A .1B .2C .3D .4 [解析] 根据根指数是偶数时,被开方数非负,可知②无意义;当a <0时,④无意义;恒有意义的是①③.故选B .2.函数y =log 12x -3的定义域为( C )A .(-∞,18]B .[18,+∞)C .(0,18]D .(0,8][解析] 要使函数y =log 12x -3有意义,应满足log 12x -3≥0, ∴log 12x ≥3,∴⎩⎪⎨⎪⎧x >0x ≤⎝ ⎛⎭⎪⎫123=18,∴0<x ≤18,故选C .3.下列不等式中正确的是( C ) A .lg 0.1>lg 0.2 B .0.20.1<0.20.2C .0.20.1>lg 0.1D .0.10.2<lg 0.2[解析] lg 0.1<0,0.20.1>0,∴0.20.1>lg 0.1,故选C . 4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >0⎝ ⎛⎭⎪⎫12xx ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( D ) A .-18B .18C .-8D .8[解析] f ⎝ ⎛⎭⎪⎫127=log 3127=log 33-3=-3,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D .5.若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 令a =4,b =2,c =12,则a c =412 =2,b c =212 =2,∴a c >b c,排除A ;ab c =42,ba c =4,∴ab c >ba c ,排除B ;log a c =log 412=-12,log b c =log 212=-1,∴log a c >log b c ,排除D ,故选C .6.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图像是( C )[解析] 因为函数y =log 2x 的反函数是y =2x ,所以f (x )=2x .故f (1-x )=21-x,因为此函数在R 上是减函数,且过点(0,2).因此选C .7.下列函数中,满足“f (x +y )=f (x )f (y )”的增函数是( B ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x[解析] 对于函数f (x )=x 3,f (x +y )=(x +y )3,f (x )f (y )=x 3·y 3,而(x +y )3≠x 3y 3,所以f (x )=x 3不满足f (x +y )=f (x )f (y ),故A 错误; 对于函数f (x )=3x,f (x +y )=3x +y=3x ·3y =f (x )f (y ),因此f (x )=3x满足f (x +y )=f (x )f (y ),且f (x )=3x是增函数,故B 正确;对于函数f (x )=x 12 ,f (x +y )=(x +y )12 ,f (x )f (y )=x 12 y 12 =(xy )12 ,而(x +y )12 ≠(xy )12 ,所以f (x )=x 12 不满足f (x +y )=f (x )f (y ),故C错误;对于函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y=f (x )·f (y ),因此f (x )=⎝ ⎛⎭⎪⎫12x 满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,故D 错误.8.设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f [f (a )]=2f (a )的a 的取值X 围是( C )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[解析] 由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知实数a ,b 满足等式3a=6b,给出下列四个关系式:①a =b ;②0<b <a ;③a <b <0;④b <0<A .其中可能成立的是( ABC )A .①B .②C .③D .④[解析] 在同一个坐标系中画出函数y =3x,y =6x的图象如图所示.由图像,可知当a =b =0时,3a=6b,故①可能成立;作出直线y =k ,如图所示,当k >1时,若3a=6b,则0<b <a ,故②可能成立;当0<k <1时,若3a=6b,则a <b <0,故③可能成立.故选ABC .10.对于0<a <1,下列四个不等式中成立的是( BD )A .log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a B .log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1aC .a1+a<a1+1aD .a1+a>a1+1a[解析] 因为0<a <1,所以a <1a ,从而1+a <1+1a,所以log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .又因为0<a <1,所以a1+a>a1+1a.11.设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ACD ) A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2) C .f x 1-f x 2x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22[解析] 2x 1·2x 2=2x 1+x 2,所以A 成立,2x 1+2x 2≠2x 1·x 2,所以B 不成立,函数f (x )=2x,在R 上是单调递增函数,若x 1>x 2则f (x 1)>f (x 2),则f x 1-f x 2x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f x 1-f x 2x 1-x 2>0,故C 正确;f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22说明函数是凹函数,而函数f (x )=2x是凹函数,故ACD 正确.12.关于函数f (x )=|ln |2-x ||,下列描述正确的有( ABD ) A .函数f (x )在区间(1,2)上单调递增 B .函数y =f (x )的图像关于直线x =2对称 C .若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4 D .函数f (x )有且仅有两个零点[解析] 函数f (x )=|ln |2-x ||的图像如图所示:由图可得:函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图像关于直线x =2对称,B 正确;若x 1≠x 2,但f (x 1)=f (x 2),则当x 1,x 2>2时,x 1+x 2>4,C 错误;函数f (x )有且仅有两个零点,D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.设函数f (x )=x -a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图像经过点(0,1),则方程f -1(x )=2的解为__1__.[解析] 由y =f (x )=x -a ,得x -a =y 2(y ≥0)把点(0,1)代入得a =1. 所以f -1(x )=x 2+1(x ≥0).由f -1(x )=2,得x 2+1=2,即x =1.14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2log 32x-1,x ≥2,则f [f (2)] =__2__.[解析] 因为f (2)=log 3(22-1)=1, 所以f [f (2)]=f (1)=2e1-1=2.15.已知函数f (x )=b -2x2x +1为定义在区间[-2a,3a -1]上的奇函数,则a =__1__,f ⎝ ⎛⎭⎪⎫12=__22-3__.[解析] 因为f (x )是定义在[-2a,3a -1]上的奇函数. 所以定义域关于原点对称, 即-2a +3a -1=0,所以a =1, 因为函数f (x )=b -2x2x +1为奇函数, 所以f (-x )=b -2-x 2-x +1=b ·2x -11+2x =-b -2x1+2x ,即b ·2x-1=-b +2x,所以b =1, 所以f (x )=1-2x1+2x ,所以f ⎝ ⎛⎭⎪⎫12=1-212 1+212 =1-21+2=22-3.16.下列说法中,正确的是__①④__. ①任取a >0,均有3a >2a, ②当a >0,且a ≠1,有a 3>a 2, ③y =(3)-x是增函数,④在同一坐标系中,y =2x与y =2-x的图像关于y 轴对称. [解析] ∵幂函数y =x a ,当a >0时, 在(0,+∞)上是增函数, ∵3>2,∴3a>2a,故①正确;当a =0.1时,0.13<0.12,故②错; 函数y =(3)-x=⎝⎛⎭⎪⎫33x是减函数,故③错; 在同一坐标系中,y =2x 与y =2-x=(12)x 的图像关于y 轴对轴,故④正确.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值. (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 ; (2)2lg 2+lg 31+12lg 0.36+13lg 8.[解析] (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 =94+1+94=112.(2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg 12=1.18.(本小题满分12分)已知函数f (x )=2x -1+a (a 为常数,且a ∈R )恒过点(1,2).(1)求a 的值;(2)若f (x )≥2x,求x 的取值X 围.[解析] (1)f (1)=20+a =1+a =2,解得a =1. (2)由f (x )=2x -1+1=2x 2+1≥2x ,得2x2≤1,即2x -1≤1=20,即x -1≤0,解得x ≤1,因此,实数x 的取值X 围是(-∞,1].19.(本小题满分12分)求函数y =(2x )2-2×2x+5,x ∈[-1,2]的最大值和最小值. [解析] 设2x=t ,因为x ∈[-1,2],所以2x=t ∈⎣⎢⎡⎦⎥⎤12,4则y =t 2-2t +5为二次函数,图像开口向上,对称轴为t =1, 当t =1时,y 取最小值4,当t =4时,y 取最大值13.20.(本小题满分12分)已知幂函数y =f (x )的图像过点(8,m )和(9,3). (1)求m 的值;(2)若函数g (x )=log a f (x )(a >0,a ≠1)在区间[16,36]上的最大值比最小值大1,某某数a 的值.[解析] (1)由题意,y =f (x )是幂函数,设f (x )=x α,图像过点(8,m )和(9,3)可得9α=3,所以α=12,故f (x )=x 12 ,所以m =f (8)=22,故m 的值为22.(2)函数g (x )=log a f (x ),即为g (x )=log a x , 因为x 在区间[16,36]上,所以x ∈[4,6], ①当0<a <1时,g (x )min =log a 6,g (x )max =log a 4, 由log a 4-log a 6=log a 23=1,解得a =23.②当a >1时,g (x )min =log a 4,g (x )max =log a 6,由log a 6-log a 4=log a 32=1,解得a =32,综上可得,实数a 的值为23或32.21.(本小题满分12分)一片森林原来的面积为a ,计算每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已被砍伐了多少年? (3)今后最多还能砍伐多少年?[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a , 即(12)m 10 =(12)12 ,m 10=12,解得m =5, 故到今年为止,该森林已被砍伐5年. (3)设从今年开始,以后最多能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.22.(本小题满分12分)已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值X 围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,某某数a 的取值X 围. [解析] (1)函数f (x )是R 上的奇函数,则f (0)=0,求得a =0. 又此时f (x )=-x 是R 上的奇函数,所以a =0为所求. (2)函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0).故只要a ≥0即可.(3)由已知函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ).最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2⇒⎩⎪⎨⎪⎧a +12>0a +1≥4a +2.故-12<a ≤-13为所求.。
指数函数与对数

指数函数与对数函数知识点:x比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3. 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4. 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。
复合函数的单调性法则是:同增异减 步骤:(1)球定义域并分解复合函数(2)在定义与范围内分别讨论分解后的函数的单调性 (3)很据复合函数的单调性法则得出结论练习:1、(1))35lg(lg x x y -+=的定义域为_______;(2)312-=x y 的值域为_________;(3))lg(2x x y +-=的递增区间为___________,值域为___________2、(1)041log 212≤-x ,则________∈x 3、要使函数a y x x 421++=在(]1,∞-∈x 上0>y 恒成立。
求a 的取值范围。
指数函数与对数函数同步训练一、选择题(本大题共10小题,每小题3分,共30分) 1.已知2lg(x -2y )=lg x +lg y ,则yx的值为( )A.1 B.4 C.1或4 D.41或42.函数y =log 21(x 2-6x +17)的值域是( )A.R B.[8,+)∞C.(-∞,-]3D.[-3,+∞)3.若a >1,b >1,且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值等于( ) A.0 B.lg2 C.1 D.-14.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则( ) A.a ≥1 B.a >1 C.0<a ≤1 D.a <15.设有两个命题①关于x 的不等式x 2+2ax +4>0对于一切x ∈R 恒成立,②函数f (x )=-(5-2a )x是减函数,若此二命题有且只有一个为真命题,则实数a 的范围是( ) A.(-2,2) B.(-∞,2) C.(-∞,-2) D.(-∞,-2] 6.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A.1B.-1C.10D.101 7.已知函数y =f (x )的反函数为f -1(x )=2x +1,则f (1)等于( )A.0 B.1 C.-1 D.4 8.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是( ) A.(0,21)B.(0,⎥⎦⎤21C.(21,+∞)D.(0,+∞)9.已知函数y =f (2x )定义域为[1,2],则y =f (log 2x )的定义域为( )A.[1,2]B.[4,16]C.[0,1]D.(-∞,0] 10.已知f (x )=x 2-bx +c ,且f (0)=3,f (1+x )=f (1-x ),则有( ) A.f (b x )≥f (c x ) B.f (b x )≤f (c x ) C.f (b x )<f (c x ) D.f (b x )、f (c x )大小不确定 二、填空题(本大题共4小题,每小题4分,共16分) 11.方程log 2(2-2x )+x +99=0的两个解的和是______.12.当x ∈(1,2),不等式(x -1)2<log a x ,则a 的取值范围是_____________. 13.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______.14.f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.16.(10分)已知f (x )=lg xx+-11.(1)求函数定义域.(2)求f -1(lg2).17.(12分)已知函数f (x )=22-a a (a x -a -x)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.18.(12分)设函数f (x )=|lg x |,若0<a <b ,且f (a )>f (b ),证明:ab <1.19.(12分)某种细菌每隔两小时分裂一次,(每一个细菌分裂成两个,分裂所须时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y 是研究时间t 的函数,记作y =f (t ).(1)写出函数y =f (t )的定义域和值域.(2)在所给坐标系中画出y =f (t )(0≤t <6)的图象.(3)写出研究进行到n 小时(n ≥0,n ∈Z )时,细菌的总数有多少个(用关于n 的式子表示)?指数函数与对数函数同步训练一、选择题(本大题共10小题,每小题3分,共30分)1.已知2lg(x -2y )=lg x +lg y ,则yx的值为( )A.1 B.4 C.1或4 D.41或4考查对数函数及对数函数定义域.【解析】 原命题等价⇒⎩⎨⎧>>=-02y x )2(2xy y x x =4y ∴y x=4【答案】 B 2.函数y =log 21(x 2-6x +17)的值域是( )A.R B.[8,+)∞ C.(-∞,-]3 D.[-3,+∞)考查对数函数单调性、定义域、值域.【解析】 y =log 21[(x -3)2+8]≤log 218=-3 【答案】 C3.若a >1,b >1,且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值等于( )A.0 B.lg2 C.1 D.-1 考查对数运算.【解析】 由lg(a +b )=lg a +lg b ⇒a +b =ab 即(a -1)(b -1)=1, ∴lg(a -1)+lg(b -1)=0 【答案】 A4.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则( )A.a ≥1 B.a >1 C.0<a ≤1 D.a <1 考查对数函数性质及绝对值不等式.【解析】 令t =|x -3|+|x +7|,∴x ∈R ,∴t min =10 y =lg t ≥lg10=1,故a <1 【答案】 D 5.设有两个命题①关于x 的不等式x 2+2ax +4>0对于一切x ∈R 恒成立,②函数f (x )=-(5-2a )x 是减函数,若此二命题有且只有一个为真命题,则实数a 的范围是( ) A.(-2,2) B.(-∞,2) C.(-∞,-2) D.(-∞,-2]考查二次函数性质及逻辑推理能力.【解析】 ①等价于Δ=(2a )2-16<0⇒-2<a <2 ②等价于5-2a >1⇒a <2 ① ②有且只有一个为真,∴a ∈(-∞,-2] 【答案】 D 6.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A.1B.-1C.10D.101 考查对数性质及函数对应法则理解.【解析】 ∵f (x )=f (x1)lg x +1,∴f (x1)=f (x )lg x1+1 ∴f (10)=f (101)lg10+1,且f (101)=f (10)lg 101+1 解得f (10)=1. 【答案】 A 7.已知函数y =f (x )的反函数为f -1(x )=2x +1,则f (1)等于( )A.0 B.1 C.-1 D.4考查反函数意义.【解析】 令f (1)=x ,则f -1(x )=1,令2x +1=1,∴x =-1 【答案】 C8.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是( ) A.(0,21)B.(0,⎥⎦⎤21C.(21,+∞)D.(0,+∞)考查对数函数的单调性.【解析】 f (x )=log 2a (x +1)>0=log 2a 1 ∵x ∈(-1,0),∴x +1<1, ∴0<2a <1,即0<a <21 【答案】 A9.已知函数y =f (2x )定义域为[1,2],则y =f (log 2x )的定义域为( )A.[1,2]B.[4,16]C.[0,1]D.(-∞,0] 考查函数定义域的理解. 【答案】 B【解析】 由1≤x ≤2⇒2≤2x ≤4, ∴y =f (x )定义域为[2,4] 由2≤log 2x ≤4,得4≤x ≤16 10.已知f (x )=x 2-bx +c ,且f (0)=3,f (1+x )=f (1-x ),则有( ) A.f (b x )≥f (c x ) B.f (b x )≤f (c x ) C.f (b x )<f (c x ) D.f (b x )、f (c x )大小不确定 考查二次函数及函数单调性.【解析】 由f (0)=3⇒c =3, 由f (1+x )=f (1-x )知对称轴为x =1,∴b =2①x =0,2x =3x ,∴f (2x )=f (3x )②x >0,1<2x <3x ,∴f (2x )<f (3x )③x <0,1>2x >3x ,∴f (2x )<f (3x ) 【答案】 B 二、填空题(本大题共4小题,每小题4分,共16分)11.方程log 2(2-2x )+x +99=0的两个解的和是______.【答案】 -99 考查对数运算.【解析】 由原式变形得2-2x =99221⋅x 设2x =y ,变形得:299y 2-2100y +1=0⇒y 1y 2=2-99=221x x + ∴x 1+x 2=-9912.当x ∈(1,2),不等式(x -1)2<log a x ,则a 的取值范围是_____________.【答案】 (1,2]考查对数函数图象及数形结合思想.【解析】 考查两函数y =(x -1)2及y =log a x 图象可知a ∈(1,2] 13.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______.【答案】 -21<a <23考查指数函数单调性及化归能力.【解析】 由题意:x 2-2ax >-x -1恒成立 即x 2-(2a -1)x +1>0恒成立 故Δ=(2a -1)2-4<0⇒-21<a <2314.f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______.【答案】 (-2,-1] 考查分段函数值域.【解析】 x ∈(-∞,1]时,x -1≤0,0<3x -1≤1, ∴-2<f (x )≤-1x ∈(1,+∞)时,1-x <0,0<31-x <1,∴-2<f (x )<-1 ∴f (x )值域为(-2,-1]三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ,∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412,∴t ∈[-1,-21] ∴f (t )=t 2-t +5=(t -21)2+419,t ∈[-1,-21]∴当t =-21时,f (x )取最小值423当t =-1时,f (x )取最大值7. 16.(本小题满分10分)已知f (x )=lg xx+-11.(1)求函数定义域.(2)求f -1(lg2).考查函数性质,互为反函数的函数间关系.【解】 (1)由xx+-11>0,得-1<x <1 ∴函数f (x )的定义域为{x |-1<x <1} (2)由lg x x +-11=lg2⇒xx +-11=2⇒x =-31 ∴f -1(lg2)=-3117.(12分)已知函数f (x )=22-a a(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)=22-a a (a 2x -a 2x --a 1x +a 1x -)=22-a a (a 2x -a 1x )(1+211x x a a ⋅)由于a >0,且a ≠1,∴1+211x x aa >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0 于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x xx x a a a a a a 或, 解得a >2或0<a <1 18.(本小题满分12分)设函数f (x )=|lg x |,若0<a <b ,且f (a )>f (b ),证明:ab <1.考查对数函数性质、分类讨论思想.【解】 由题设,显然a 、b 不能同在(1,+∞) 否则,f (x )=lg x ,且a <b 时,f (a )<f (b )与已知矛盾由0<a <b 可知,必有0<a <1 ①当0<b <1时,∵0<a <1,0<b <1,∴0<ab <1 ②当b >1时,∵0<a <1 ∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b 由f (a )>f (b ),得-lg a >lg b ,即a1>b ,∴ab <1 由①②可知ab <1 19.考查函数应用及分析解决问题能力.【解】 (1)y =f (t )定义域为t ∈[0,+∞),值域为{y |y =2n ,n ∈N *}(2)0≤t <6时,为一分段函数y =⎪⎩⎪⎨⎧<≤<≤<≤)6(4 8)4(2 4)2(0 2x x x 图象如图(3)n 为偶数时,y =212+nn 为奇数时,y =2121+-n ∴y =⎪⎩⎪⎨⎧+-+为奇数为偶数n n n n 2212112。
指数函数与对数函数练习题

指数函数与对数函数练习题1. 已知指数函数 $y = 2^{x-1}$,求下列函数的定义域和值域:a) $f(x) = y + 3$b) $g(x) = -y$c) $h(x) = y^2$解:a) $f(x) = y + 3$函数 $f(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $(-\infty,+\infty)$。
b) $g(x) = -y$函数 $g(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $(-\infty,0]$。
c) $h(x) = y^2$函数 $h(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $[0,+\infty)$。
2. 解下列对数方程:a) $\log_2(x+3) = 2$解: 首先将方程转化为指数形式,得到 $2^2 = x+3$。
然后解方程,得到 $4 = x+3$,进而得到 $x = 1$。
b) $\log_3(x-4) = -1$解: 首先将方程转化为指数形式,得到 $3^{-1} = x-4$。
然后解方程,得到 $\frac{1}{3} = x-4$,进而得到 $x = \frac{13}{3}$。
c) $\ln(x+2) = 3$解: 首先将方程转化为指数形式,得到 $e^3 = x+2$。
然后解方程,得到 $x = e^3 - 2$。
3. 判断下列函数的奇偶性:a) $f(x) = 2^x$解: 将函数 $f(x)$ 替换为 $f(-x)$,得到 $f(-x) = 2^{-x}$。
比较$f(x)$ 和 $f(-x)$,发现它们不相等,因此函数 $f(x)$ 不是奇函数也不是偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数与对数函数(综合训练)
班级___________ 姓名_____________ 学号__________
一、选择题
1.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值
是最小值的3倍,则a 的值为( )
A .42
B .22
C .41
D .2
1 2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )
A .2,2a b ==
B .
2a b == C .2,1a b == D .a b ==3.已知x x f 26log )(=,那么)8(f 等于( )
A .34
B .8
C .18
D .2
1 4.函数lg y x =( )
A . 是偶函数,在区间(,0)-∞ 上单调递增
B . 是偶函数,在区间(,0)-∞上单调递减
C . 是奇函数,在区间(0,)+∞ 上单调递增
D .是奇函数,在区间(0,)+∞上单调递减
5.已知函数=-=+-=)(.)(.11lg )(a f b a f x
x x f 则若( ) A .b B .b - C .b 1 D .1b
- 6.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( )
A .递增且无最大值
B .递减且无最小值
C .递增且有最大值
D .递减且有最小值
二、填空题
1.若a x f x x lg 22)(-+=是奇函数,则实数a =_________。
2.函数()
212()log 25f x x x =-+的值域是__________.
3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。
4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。
5.计算:()()5log 22323-+ 。
6.函数x x e 1e 1
y -=+的值域是__________. 三、解答题
1.比较下列各组数值的大小:
(1)3.37
.1和1.28.0;(2)7.03.3和8.04.3;(3)25log ,27log ,2398
2.解方程:(1)19
2327x x ---⋅= (2)649x x x +=
3.已知,3234+⋅-=x
x y 当其值域为[1,7]时,求x 的取值范围。
4.已知函数()log ()x a f x a a =-(1)a >,求()f x 的定义域和值域;
参考答案
一、选择题
1. A 132311log 3log (2),log (2),2,8,,38a a a a a a a a a a a a ======
2. A log (1)0,a b -=且log 1,2a b a b ===
3. D
令1666228(0),8(8)()log log x x x f f x x =>=====4. B 令()lg ,()lg lg ()f x x f x x x f x =-=-==,即为偶函数 令,0u x x =<时,u 是x 的减函数,即lg y x =在区间(,0)-∞上单调递减 5. B 11()lg lg ().()().11x x f x f x f a f a b x x
+--==-=--=-=--+则 6. A 令1u x =-,(0,1)是u 的递减区间,即1a >,(1,)+∞是u 的 递增区间,即()f x 递增且无最大值。
二、填空题
1. 110
()()22lg 22lg x x x x f x f x a a --+-=+++ 1(lg 1)(22)0,lg 10,10
x x a a a -=++=+== (另法):x R ∈,由()()f x f x -=-得(0)0f =,即1lg 10,10a a +==
2. (],2-∞- 22
25(1)44,x x x -+=-+≥ 而101,2<<()21122
log 25log 42x x -+≤=- 3. 2a a b -+ 141414143514
log 28log 7log 5log 35,log 28log 35a b +==+= 14
1414141414141414
1log log (214)1log 21(1log 7)27log 35log 35log 35log 35a a b +⨯++--=====+ 4. 1,1-- ∵0,0,A y ∈≠∴lg()0,1xy xy ==
又∵1,1,B y ∈≠∴1,1x x =≠而,∴1,1x y =-=-且
5. 15
(
)(
)()32323212log log 5515
--+=== 6. (1,1)- x x e 1e 1y -=+,10,111x y e y y
+=>-<<- 三、解答题
1.解:(1)∵ 3.301.7 1.71,>= 2.100.80.81<=,∴ 3.31.7>1.28.0
(2)∵0.7
0.80.80.83.3 3.3,3.3 3.4<<,∴0.73.3<8.04.3 (3)8293log 27log 3,log 25log 5,==
332222233333log 2log log 3,log 3log log 5,22
====> ∴983log 25log 27.2<
< 2.解:(1)2(3)63270,(33)(39)0,330x x x x x ------⋅-=+-=+≠而
2390,33,x x ---==
2x =-
(2)22422()()1,()()103933
x x x x +=+-=
2
3
221()0,(),332
log x x x >=∴=则 3.解:由已知得143237,x x ≤-⋅+≤
即43237,43231x x x x ⎧-⋅+≤⎪⎨-⋅+≥⎪⎩得(21)(24)0(21)(22)0
x x x x ⎧+-≤⎪⎨--≥⎪⎩ 即021x <≤,或224x
≤≤
∴0x ≤,或12x ≤≤。
4.解:0,,1x x a a a a x -><<,即定义域为(,1)-∞; 0,0,log ()1x x x a a a a a a a ><-<-<,。
即值域为(,1)。