圆周运动实例1水平面的圆周运动
生活中的圆周运动
N
员受到的地球引力近似等于他在地面测得的 体重mg) F
F万
四、离心运动
当F合=mw2r时,物体做匀速圆周运动 当F合< mw2r时,物体逐渐远离圆心运动 当F合=0时,物体沿切线方向飞出 当F合> mw2r时,物体做逐渐靠近圆心的运动
生活中的圆周运动
一、火车转弯问题(水平面的圆周运动)
1、内外轨道一样高
N
F
2、实际应用中的处理
N
G
向心力由外侧轨道对车 轮轮缘的挤压力F提供
G
向心力由重力G和支持 力N的合力提供
当轨道平面与水平面之间的夹角为θ,转弯 半径为R时,质量为m的火车行驶速度v0多 大轨道才不受挤压?
FN
θБайду номын сангаас
F合
G
θ
L
h
二、拱形桥
1.质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径
为R,试画出汽车受力分析图,并求出汽车通过桥的最高点时对
桥的压力.汽车的重力与汽车对桥的压力谁大?V越大,压力如 何变化?
FN
mg
二、拱形桥
2.当汽车通过凹形桥最低点时,汽车对桥的压力比汽车 的重力大还是小呢? FN
mg
三、航天器中的失重现象
做圆周运动的物体,在所受合外力突然消失 或不足以提供圆周运动所需向心力时,就做逐渐 远离圆心的运动,这种运动就叫离心运动。
四、离心现象的应用与危害
应用
危害
向心力(第二课时) 水平面内典型圆周运动模型 人教版高中物理必修二
由 变a形=2ω:2具r知有ω相A<同ω摆B,高由、a不=同v摆2/r长知和vA摆>v角B。的圆锥摆,如图所示。
由T=2π
h g
知摆高h相同,则TA=TB,ωA=ωB,
由v=ωr知vA>vB,由a=ω2r知aA>aB。
二、水平面内圆周运动模型——圆锥摆
▲典型实例: 圆锥摆 火车转弯 飞机水平转弯
飞车走壁
点评:①临界值是圆周运动中经常考查的一个重点内容,它是物体在做圆周运动 过程中,发生质变的数值或使物体受力情况发生变化的关键数值,今后要注意对 临界值的判断和应用;②当θ很小时,sinθ≈tanθ≈θ。
课后练习:如图所示,物块P置于水平转盘上随转盘一起运动,且与圆盘
相对静止,图中c沿半径指向圆心,a与c垂直,下列说法正确的是( D )
特别提醒:汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车 受到的重力和支持力的合力提供向心力,以减小车轮与路面之间的横向摩擦力。
铁路转弯处的圆弧半径是300 m,轨距是1.435 m,规定火车通 过这里的速度是72 km/h,内外轨的高度差应该是多大,才能使铁轨不受 轮缘的挤压?保持内外轨的这个高度差,如果车的速度 大于或小于72 km/h,会分别发生什么现象?说明理由。
代入上式得: = ;所以内外轨的高度差为 h= =
m=0.195 m。
L rg
rg 300×9.8
讨论:(1)如果车速v>72 km/h(20 m/s),F将小于需要的向心力,所差的力仍 需由外轨对轮缘的弹力来弥补。这样就出现外侧车轮的轮缘向外挤压外轨的现象。 (2)如果车速v<72 km/h,F将大于需要的向心力。超出的力则由内轨对内侧车 轮缘的压力来平衡,这样就出现了内侧车轮的轮缘向外挤压内轨的现象。
水平面、竖直面内的圆周运动(含解析)
水平面、竖直面内的圆周运动类型一水平面内圆周运动的临界问题知识回望1.运动特点(1)运动轨迹是水平面内的圆.(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零,物体在水平面内做匀速圆周运动.2.几种常见的临界条件(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.例1(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg【答案】AC【解析】小木块a、b做圆周运动时,由静摩擦力提供向心力,即F f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对木块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时,b 刚开始滑动,选项C 正确;ω=2kg3l<ωa =kg l ,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 故选AC 。
变式训练1 (汽车在水平地面上转弯)(多选)如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内、外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max ,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 【答案】ACD【解析】由题图及几何关系知:路线①的路程为s 1=2r +πr ,路线②的路程为s 2=2r +2πr ,路线③的路程为s 3=2πr ,A 正确;赛车以不打滑的最大速率通过弯道,有F max =ma n =m v 2R ,速度v =F max Rm,即半径越大,速率越大,选择路线①赛车的速率最小,B 错误,D 正确;根据t =sv ,代入数据解得,选择路线③,赛车所用时间最短,C 正确. 故选ACD 。
水平面内的圆周运动
水平面内圆周运动的两种模型一、两种模型模型Ⅰ圆台转动类小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.图1临界条件圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.模型Ⅱ火车拐弯类如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.图2临界条件若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.二、两种模型的应用例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)图3 图4【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡f max=G,μN=mg列出圆周运动方程N=mω2min R联立解得ωmin=例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?图5【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.列出圆周运动方程Fcosθ=mω2Rcosθ竖直方向上由平衡条件有Fsinθ-mg=0其中 sinθ=联立解得ω=例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?图6【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示图7隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).列出圆周运动方程 F+Fcosθ=mω2r由平衡条件有 Fsinθ-mg=0其中 cosθ=,sinθ=联立解得ω=小试身手1、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)图82、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?图9。
【原创】第3节 圆周运动实例分析(分类精析)
旋转秋千(1)
问题:“旋转秋千”中的缆绳跟中心轴的夹 角与哪些因素有关?
旋转秋千(2)
分析见后页
分析:小球做圆锥摆时细绳长l,与竖直方向成α角,求 小球做匀速圆周运动的角速度ω。 解:小球受力: 竖直向下的重力G 沿绳方向的拉力T
αl
T O
小球的向心力:由 T 和 G 的合力提供
F合 mg tan
思维拓展
v
思考与讨论 地球可以看做一个巨大的拱形桥。汽车 沿南北行驶,不断加速。请思考: (1)会不会出现这样的情况:速度大到一 定程度时,地面对车的支持力是0? (2)此时汽车处于什么状态? (3)驾驶员与座椅间的压力是多少? (4)驾驶员躯体各部分间的压力是多少? (5)驾驶员此时可能有什么感觉?
汽车通过不同曲面的问题分析
一辆质量m=2.0 t的小轿车,驶过半径R=90 m 的一段圆弧形桥面,g取10m/s2 ,求: (1)若桥面为凹形,汽车以20m/s的速度 通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度 通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时, 对桥面刚好没有压力?
火车拐弯问题分析(1)
火车拐弯问题分析(2)
(1)内外轨道一样高
N
(2)外轨高于内轨
N
F
G G
两种情况下向心力分别由谁提供?
火车拐弯问题分析 (3) 当外轨略高于内轨时
F合=F向
v mg tan m r
2
h
G
பைடு நூலகம்
N
F
v gr tan
火车拐弯的理想速度值是多少?
火车拐弯问题分析(4)
圆周运动实例分析
质量为m的汽车以速度 通过半径为 的凹型桥。 质量为 的汽车以速度V通过半径为 的凹型桥。它经桥 的汽车以速度 通过半径为R的凹型桥 的最低点时对桥的压力为多大?比汽车的重量大还是小? 的最低点时对桥的压力为多大?比汽车的重量大还是小? 速度越大压力越大还是越小? 速度越大压力越大还是越小?
解: 根据牛顿第二定律
N
v F合 = N − m = m g R
2
v N= m +m g R
2
mg
的增大, 如何变化? 随V的增大,N如何变化? N逐渐增大
拓展:汽车以恒定的速率 通过半径为 的凹型桥面, 拓展 汽车以恒定的速率v通过半径为 的凹型桥面,如图 汽车以恒定的速率 通过半径为r的凹型桥面 所示,求汽车在最底部时对桥面的压力是多少? 所示,求汽车在最底部时对桥面的压力是多少?
V2 F向=N1 G =m R V2 N1 =m +G R 由上式和牛顿第三定律可知 由上式和牛顿第三定律可知 牛顿第三定律 汽车对桥的压力N ( 1 )汽车对桥的压力 1´= N1 (2)汽车的速度越大 R
O
N1
V
G
汽车对桥的压力越大
比较三种桥面受力的情况
N
G N
v N = G- m r
2
v N = G+ m r
N
Fn
mg
竖直平面内的变速圆周运动
1、竖直平面内圆周运动的类型: (1)、拱形桥问题:
(2)、轻杆支撑型的圆周运动:
(3)、轻绳牵拉型的圆周运动:
黄 石 长 江 大 桥
N
桥面的圆心在无穷远处
mg
v F 心 = m −N= m = 0 g 向 R
N=mg
2
专题:水平面内的圆周运动
水平面内的圆周运动一、水平圆盘问题例1、水平圆盘以角速度ω匀速转动,距转动轴L的位置有一小物块与圆盘相对静止,小物块的向心加速度多大所受摩擦力多大对接触面有什么要求离轴近的还是远的物体容易滑动练习:质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段和AB段对小球的拉力之比;O A例2、中心穿孔的光滑水平圆盘匀速转动,距转动轴L的位置有一质量为m的小物块A通过一根细线穿过圆盘中心的光滑小孔吊着一质量为M的物体B,小物块A与圆盘相对静止,求盘的角速度;°变式:若圆盘上表面不光滑,与A的动摩擦因数为μ,则圆盘角速度的取值范围是多少例3、在半径为r的匀速转动的竖直圆筒内壁上附着一物块,物块与圆筒的动摩擦因数为μ,要使物块不滑下来,圆筒转动的角速度应满足什么条件例4、长为L的细线悬挂质量为M的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求1小球的角速度;2小球对细线的拉力大小;变式:一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m的小球沿着筒的内壁在水平面内做匀速圆周运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h,1小球的向心加速度为多少2对圆锥面的压力为多大3小球的角速度和线速度各为多少·θ思考:小球的向心加速度与小球质量有关吗与小球的高度有关吗若有两个小球在同一光滑的圆锥形筒内转动,A球较高而B球较低,试比较它们的向心加速度、对圆锥面的压力、线速度、角速度大小;二、临界问题例5:如图所示,洗衣机内半径为r 的圆筒,绕竖直中心轴OO ′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下落,则圆筒转动的角速度ω至少为A .r g /μB .g μC .r g /D .r g μ/例6:如图所示,细绳一端系着质量M =的物体,静止在水平桌面上,另一端通过光滑的小孔吊着质量m =的物体 m,已知M 与圆孔距离为,M 与水平面间的最大静摩擦力为2N;现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态g =10m /s 2例7、如图所示,两根相同的细线长度分别系在小球和竖直杆M 、N 两点上,其长度分别为L 、R 且构成如图一个直角三角形,小球在水平面内做匀速圆周运动,细线能承受的最大拉力为2mg,当两根细线都伸直时,若保持小球做圆周运动的半径不变,求:小球的角速度范围变式、如图所示,两根相同的细线长度分别系在质量为m 的小球和竖直杆M 、N 两点上;小球在水平面内做匀速圆周运动,当两根细线都伸直时,小球到杆的距离为R,且细线与杆的夹角分别为θ和α,承受的最大拉力为2mg,若保持小球做圆周运动的半径不变,求:小球的角速度范围三、两个或多个物体的圆周运动例4:如图所示,A 、B 、C 三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘静止,则A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用B .C 的向心加速度最大 C .B 的摩擦力最小D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动例5:在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如右图所示,此时两小球到转轴的距离r 1与r 2之比为A .1∶1B .1∶2C .2∶1D .1∶2四、课后作业1.在水平面上转弯的汽车,提供向心力的是A .重力与支持力的合力B .静摩擦力Mr o mgR v ≤μC .滑动摩擦力 D .重力、支持力、牵引力的合力 2.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么A .两个小球以相同的线速度运动时,长绳易断B .两个小球以相同的角速度运动时,长绳易断C .两个球以相同的周期运动时,短绳易断D .不论如何,短绳易断3.在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是A .v gR ≤μ B . C .v gR ≤2μ D .v gR ≤μ 4.如图所示,A 、B 、C 三个小物体放在水平转台上,m A =2m B =2m C ,离转轴距离分别为2R A =2R B =R C ,当转台转动时,下列说法正确的是A .如果它们都不滑动,则C 的向心加速度最大B .如果它们都不滑动,则B 所受的静摩擦力最小C .当转台转速增大时,B 比A 先滑动D .当转台转速增大时,C 比B 先滑动5.如图所示,甲、乙两名滑冰运动员,M 甲=80kg,M 乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,两人相距,弹簧秤的示数为600N,下列判断中正确的是A .两人的线速度相同,约为sB .两人的角速度相同,约为5rad/sC .两人的运动半径相同,都是D .两人的运动半径不同,甲为,乙为6.汽车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r ,则汽车完全不靠摩擦力转弯的速率是设转弯半径水平A .θsin grB .θcos grC .θtan grD .θcot gr7.一辆质量为1t 的赛车正以14m/s 的速度进入一个圆形跑道,已知跑道半径为50m,最大静摩擦力约等于滑动摩擦力,则:1此赛车转弯所需的向心力是多大2当天气晴朗时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道3在雨天时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道8.水平圆盘绕竖直轴以角速度ω匀速转动;一个质量为50kg 的人坐在离轴r=m/3处随盘一起转动;设人与盘的最大静摩擦力均为体重的倍,g取10 m/s2,求:1ω为多大时,人开始相对盘滑动;2此时离中心r′= m处的质量为100kg的另一个人是否已相对滑动请简述理由;。
《水平面内的圆周运动》 知识清单
《水平面内的圆周运动》知识清单一、什么是水平面内的圆周运动在水平面上,一个物体沿着圆周轨迹运动,这种运动就被称为水平面内的圆周运动。
比如,在光滑水平桌面上用绳子拴着一个小球做圆周运动,或者汽车在水平弯道上行驶等,都是常见的水平面内圆周运动的例子。
二、水平面内圆周运动的受力特点要使物体在水平面内做圆周运动,必须有一个指向圆心的合力来提供向心力。
这个向心力可以由一个力单独提供,也可以由几个力的合力来提供。
当只有一个力提供向心力时,比如用绳子拴着小球在水平面上做圆周运动,绳子的拉力就提供了向心力。
如果是几个力的合力提供向心力,比如汽车在水平弯道上行驶,汽车受到的重力和支持力相互平衡,而地面给汽车的摩擦力就提供了向心力,使得汽车能够沿着弯道做圆周运动。
三、向心力的表达式向心力的大小可以用以下公式来计算:\(F_{向} = m\frac{v^{2}}{r}\),其中\(m\)是物体的质量,\(v\)是物体做圆周运动的线速度,\(r\)是圆周运动的半径。
或者\(F_{向} =mω^{2}r\),其中\(ω\)是物体做圆周运动的角速度。
四、线速度与角速度的关系在水平面内的圆周运动中,线速度\(v\)和角速度\(ω\)之间存在着密切的关系,即\(v =ωr\)。
线速度是物体在圆周运动中经过的弧长与所用时间的比值,它描述了物体在圆周上运动的快慢。
角速度是物体在单位时间内转过的角度,它反映了物体转动的快慢。
五、常见的水平面内圆周运动实例1、圆锥摆运动一个小球用一根长为\(L\)的细线悬挂起来,在水平面内做圆周运动。
此时,小球受到重力和绳子的拉力,拉力在水平方向的分力提供了向心力。
向心力大小为\(F_{向} =mgtanθ\),根据向心力的表达式\(F_{向} =mω^{2}r\),可以得出角速度\(ω =\sqrt{\frac{gtanθ}{Lcosθ}}\)。
2、汽车在水平弯道上行驶汽车在弯道上行驶时,为了避免侧滑,弯道通常会有一定的倾斜角度。
水平面内的圆周运动实例分析总结
水平面内的圆周运动实例分析总结水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
在生活中这样的例子很多,其运动的分析在高中物理中也是比较重要的,对学生来说也存在着一定的难度。
其实做这方面的习题时,关键是找出是什么力来提供的向心力,将受力分析所得的实际力与理论公式中的向心力联立,就可以得到所需要求的物理量。
现将常见的水平面内的圆周运动归结如下:一、水平面内汽车转弯、物体随转盘转动:某个力提供向心力在上述两个问题中,物体都处于水平接触面上,竖直方向的支持力和重力两者互相抵消,而物体作圆周运动时都有着被向外甩出的趋势,所以向心力都是由静摩擦力提供,即f静=Fn=。
从公式还可以看出,r一定时,v越大,所需的Fn 就会越大,当所需的Fn>Fmax时,物体将不能再作圆周运动。
临界Fmax=≈F动=μmg,所以v临=μgr。
当v>v临,物体将被甩出。
二、火车转弯、漏斗内物体的圆周运动、圆锥摆类,向心力由几个力的合力提供虽然这几种情况描述的物体运动形式不同,但从受力分析上看非常相似,都是除受到竖直向下的重力之外,再受到一个倾斜的支持力或拉力。
因为物体在水平面上作圆周运动需要水平方向的向心力,所以支持力或拉力与重力的合成后的合力提供向心力,向心力大小可以通过三角形三边关系解得。
练习:1.一辆质量为2t的汽车正在水平路面上行驶,要经过一个水平转弯,已知弯道的转弯半径为20米,汽车轮子与路面的动摩擦因数为0.2,若汽车最大静摩擦力与动摩擦力相等,则汽车行驶的最大速度为()。
A.210m/sB.2m/sC.4m/sD.22m/s2.如图所示,有A、B两个完全相同的小球,在同一光滑漏斗中作匀速圆周运动,则下列说法中正确的是()。
A、两物体的线速度的大小相同B、两物体的角速度相同C、两物体的向心力的大小相同D、两物体的向心加速度大小相同3.一列火车正在行驶,发现前方有一转弯,已知在转弯处的内外轨的高度差为h,内外轨道间距为L,弯道半径为r,则火车要想通过此弯道时不受内外轨道的挤压,应以速度_____转弯。
最新高中物理§4-3-1向心力的实例分析(一)--水平面内匀速圆周运动
§4-3-1向心力的实例分析(一)—水平面内匀速圆周运动【学习目标】1、进一步认识匀速圆周运动,知道其合外力提供向心力。
2、能够运动牛顿运动定律,处理圆周运动模型。
3、能够根据匀速圆周运动的规律,分析生活中一些现象并能够加以解释和运用。
【重难点】1、运动圆周运动的动力学分析。
2、匀速圆周运动的实例分析。
读一读【备用知识】一、匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
2.特点:加速度大小不变,方向始终指向圆心,是变加速运动。
3.条件:合外力大小不变、方向始终与速度方向垂直且指向圆心,匀速圆周运动的合外力为变力。
二、匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
5.实质:做匀速圆周运动的物体,速度大小不变,速度方向时刻改变,因此合外力方向始终应与速度方向垂直、沿半径指向圆心。
可见做匀速圆周运动的物体合外力就是向心力或合外力提供向心力。
1.汽车转弯问题讨论:(1)在水平面:(2)在斜面:思考:为什么在设计高速路和赛车跑道的弯道时,要让内侧低于外侧?例1、随着我国综合国力的提高,近年我国的高速公路网发展迅猛,在高速公路转弯处,采用外高内低的斜坡式弯道,可使车辆通过弯道时不必大幅减速,从而提高通过能力且节约燃料,若某处这样的弯道为半径r =100 m 的水平圆弧,其横截面如图所示。
tanθ=0.4,g 取10 m/s2,11.25=3.36。
(1)求最佳通过速度,即不出现侧向摩擦力的速度;(2)若侧向动摩擦因数μ=0.5,且最大静摩擦力等于滑动摩擦力,求最大通过速度。
2.3圆周运动的实例分析+教学设计-2024-2025学年高一下学期物理教科版(2019)必修第二册
《圆周运动的实例分析》教学设计一、教材依据本节课是教科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。
二、设计思路(一)、指导思想①突出科学的探究性和物理学科的趣味性;②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。
(二)、设计理念本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。
引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。
所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境,引导学生分析现象,归纳总结出实验结论。
(三)教材分析本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。
本节通过对汽车、火车等交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。
三、教学目标1.通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
2.将生活实例转换为物理模型进行分析研究。
3.通过探究性物理学习活动,使学生获得成功的愉悦,培养学生对参与物理学习活动的兴趣,提高学习的自信心。
4.通过对日常生活、生产中圆周运动现象的解释,敢于坚持真理、勇于应用科学知识探究生活中的物理学问题。
四、教学重点理解向心力不是一种特殊的力,同时学会分析实际的向心力来源。
五、教学难点能用向心力公式解决有关圆周运动的实际问题,其中包括分析汽车过拱桥、火车拐弯等问题。
圆周运动专题一水平面内圆周运动和竖直平面内的圆周运动(教案)
圆周运动专题一:水平面内圆周运动和竖直平面内的圆周运动【知识点一】水平面内的圆周运动1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心2.典型运动模型3.分析思路(1)选择研究对象,找出匀速圆周运动的圆心和半径。
(2)分析物体受力情况,其合外力提供向心力。
(3)由F=m v2r或F=mrω2或F=mr4π2T2列方程求解。
【知识点二】竖直面内的圆周运动两类模型比较[例1] (多选)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为,木块随圆盘转动时,其受到的静摩擦力的方向指向转轴,两木块转动过程中角速度相等,则根据牛顿第二定律可得f=mω2R,由于小木块b的轨道半径大于小木块a的轨道半径,故小木块b做圆周运动需要的向心力较大,B项错误;因为两小木块的最大静摩擦力相等,故b一定比a先开始滑动,A项正确;当b开始滑动时,由牛顿第二定律可得kmg =mω2b ·2l ,可得ωb = kg 2l ,C 项正确;当a 开始滑动时,由牛顿第二定律可得kmg =mω2a l ,可得ωa =kg l ,而转盘的角速度ω=2kg 3l<kg l ,小木块a 未发生滑动,其所需的向心力由静摩擦力来提供,由牛顿第二定律可得f =m ω2l =23kmg ,D 项错误。
答案 AC[例2] (多选)在修筑铁路时,弯道处的外轨会略高于内轨。
圆周运动实例分析水平+坚直方向
时,F=F向,内
ghR 时,F〈F向,外 〈 L ghR 〉 L 时,F〉F向,内
二、 汽车过拱桥
黄石长江大桥
二、汽车过桥
1:汽车静止在桥顶与通过桥顶时情况有何不同? :汽车静止在桥顶与通过桥顶时情况有何不同? 2:汽车过拱桥桥顶的向心力如何产生?方向如何? :汽车过拱桥桥顶的向心力如何产生?方向如何?
汽车刚好对桥顶的压力为零 汽车对桥顶有压力 汽车飞离桥顶
v0 > gr
思考: 如图汽车对桥底的压力? 如图汽车对桥底的压力?
N
V
r G 结论: 结论:车速越大对桥的压力就越大
应用: 应用:所以桥修成拱形的比凹形的好
三、竖直圆周运动的临界问题
如图要水流星刚巧能经过最高点, 如图要水流星刚巧能经过最高点 在最高点时至少需要多大速度 需要多大速度? 在最高点时 需要多大速度
v0
最 高 点
临界条件: 临界条件 v0 = gr
v 当过最高点的速度: 当过最高点的速度:0 > gr 水流星节目一定成功
其他类似的临界问题: 其他类似的临界问题:
线或绳 刚好过最高 点的速度特 征和条件? 征和条件? 刚好过最高 点的速度特 征和条件? 征和条件?
杆
圆心0 圆心
为了使铁轨不容易损坏, 为了使铁轨不容易损坏,在转弯处使外轨略 高于内轨,受力图如下, 高于内轨,受力图如下,重力和支持力的 合力提供了向心力;这样, 合力提供了向心力;这样,外轨就不受轮缘 的挤压了。 的挤压了。
同理:汽车转弯做圆周运动时, 同理:汽车转弯做圆周运动时,也需要 向心力, 向心力,是由地面给的摩擦力提供向心 力的,所以汽车在转弯的地方, 力的,所以汽车在转弯的地方,路面也 是外高内低,靠合力提供向心力。 是外高内低,靠合力提供向心力。
圆周运动的实例
圆周运动的实例1.水平圆盘上的物体与圆盘相对静止绕过圆盘圆心的竖直轴转动.【例】 汽车在水平路面转弯可以看成是圆周运动.转弯半径是R,轮胎与地面的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.为了防止汽车侧滑,则汽车转弯的速度不能超过多少?(νgR v =)2.圆锥摆.【例】(2008广东)有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.(Lsin θr gtan θω+=)3.小球沿光滑漏斗壁在某一水平面内做匀速圆周运动.【例】如图,内壁光滑的圆锥的轴线垂直于水平面,圆锥固定不动,两个质量相同的球A 、B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( AB ) A.球A 的线速度必大于球B 的线速度 B.球A 的角速度必小于球B 的角速度 C.球A 的运动周期必小于球B 的运动周期 D.球A 对筒壁的压力必大于球B 对筒壁的压力 【例】(2009广东)(1)为了清理堵塞河道的冰凌,空军实施投弹爆破。
飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷下炸弹并击中目标。
求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小。
(不计空气阻力) (2)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO 1转动,筒内壁粗糙,筒口半径和筒高分别为R 和H,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块.求: ①当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;②当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度. (① 22f HR mgh F +=, 22N HR mgR F +=,②R2gH ω=)4.汽车、火车在弯道行驶.【例】公路拐弯处路面造的内低外高,设路面与水平面的夹角为θ,设拐弯路段时半径为R 的圆弧,当车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力为零,则θ应等于多少? (Rgv tan θ2=)Lr θ【例】公路急转弯处通常是交通事故多发地带。
水平转盘上的圆周运动例析
-
i z m g一舢 ( — )
由上 式 可 以看 出 , 随 圆盘 角 速 度 O J的增
廖解 析开
图 6
大, 绳 子 的 张 力 变 大. 距 离转轴 较近 的 A 始时 , 圆盘 角速 度很 小 , A、 B各 自的静摩 擦 力 所受 的静 摩 擦 力 的方 向 指 向圆 心 , 大 小 随 圆 足 以提 供它 们 做 圆周 运 动 的 向心力 , 细 线 没
图1
圆盘加 速 时 , 哪 个物体 先发 生相 对滑动 ?
瓶
受 的静摩 擦力 方 向均 指 向 圆心 , 大小 分 别 是 =m 4 o . r A 和 =m x . o , 显 然 > , 此 二 力 =砌 2 r f i = m g时 , 圆盘 的角 速 度 达 到 ∞,
/ , 曰与圆盘问 的静摩擦 力最先达 到最
B
再 增 大角速 度 , 物 体将 相对 圆盘 滑动 , 故 圆盘 大 值 , 细绳 即将 出现张力 . 的角速度 不 能太 大. 取 临界 情 况 下物 体 刚要
发 生相对 滑 动来计 算 , 此时 : l  ̄ m g=g f L r  ̄ . o
^ √
图5
对 B =m ∞
B所 受 的静 摩 擦 力 和 细 绳 的拉 力 如 图 5所
。。。。。-。。。。。。。。。。。。。。。一
得 == I _ B , < I z m g , 即小 于 B 的最 大静
示. 当圆盘的角速度 0 9 > / 皿 后, A所受 ^ √, B 一1 " A
C物体 的临 界 角 速 度 最 小 , 说 明圆 盘 转 速增 力 , A、 B所 受 的静 摩 擦 力 和 细 绳 的 拉力 如 图
圆周运动生活实例(文)
小结
(1)水平面内的圆周运动:火车转弯汽车转弯等 (2)竖直平面内的圆周运动:汽车过拱桥过山车
(3)分析圆周运动的一般步骤 a.明确圆周运动的平面 b.确定圆周运动的圆心.半径 c.分写物体的受力情况,找到向心力 的来源.
d.利应向心力公式进行分析,求解
5、离心运动
绳栓着小球在水平面做匀速圆周运动时,小球所需的 向心力由形变的绳产生的弹力提供。若m、r、ω一定, 向心力F向=mω2r。 F1=0
2、请你根据上面分析汽车 通过凸形桥的思路,分析 一下汽车通过凹形桥最低 点时对桥的压力(如图)。 这时的压力比汽车的重力 大还是小?
在快速路上车辆的速度较快,拐弯所需 的向心力也较大,如果它们与地面的摩 擦力小于所需的向心力,那么就会出现 危险。请你想办法解决这个问题?
转弯时,人随车一起 做圆周运动,他的向 心力由重力和支持力 的合力提供。
离心现象有时也会带来危害。
离心干燥器
1、下列说法中错误的有:(
)
A、提高洗衣机脱水筒的转速,可以使衣服甩 得更干
B、转动带有雨水的雨伞,水滴将沿圆周半径 方向离开圆心 C、为了防止发生事故,高速转动的砂轮、飞 轮等不能超过允许的最大转速 D、离心水泵利用了离心运动的原理
背景问题4:飞车走壁
马戏团演员在表演飞车走壁时,人车在一个水平面上 沿竖直粗糙墙壁上做匀速圆周运动,人车为什么不下 滑?是什么力提供人车的向心力?
人车所受外力G与静摩擦力f平衡。车轮对墙壁的作用力为N, 2 墙壁的反作用力N就是人车所需向心力。应有 N mr 当m、r一定时,ω越大,N就越大。
F2 m 2 r
F 若绳的拉力F小于它做圆周运动的所需的 向心力,小球将怎样运动?
离心现象事例:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
为什么路面是倾斜的?
•
倾斜的路面对汽车转弯会有什么影响?
•当速度满足 什么条件时, 转弯所需的向 心力完全由重 力和支持力的 合力提供?
•
•Q:当车辆转弯的速度多
大时,恰好有重力和支
持力的合力提供转弯所
需的向心力?
•N
•F合=F 向
•q
•G
•
•供<需,车辆有向外侧运动的趋势,产生向内的摩擦 力
•解答: • 由地 面对车的静 摩擦力提供
• 有关系 ,倾斜度越 大,向心力 越大
•
•精品课件
!
•
•精品课件
!
•供>需,车辆有向内侧运动的趋势,产生向外的摩擦 力
•
•火车转弯:
•
•
•火车转弯的视火频 车转弯
•
•火车轮子的特 点
• •1、内外轨道一样高时
•FN
•
•内外轨一样高
•N
•Fn
•G
• 向心力由外侧轨道对车轮 轮缘的挤压力提供.
•
•2、外轨略高于内轨
•N
•向心力由重力G和支持力N的合力提供
• •2、外轨略高于内轨时
•F
•如果超速行驶会怎么样? •如果减速行驶呢?
•
•供<需,火车有向外侧运动的趋势,产生向内的弹力,挤压外轨道 •供>需,火车有向内侧运动的趋势,产生向外的弹力,挤压内轨 道
•
• 自行车ቤተ መጻሕፍቲ ባይዱ弯时,稍一倾斜就过去了,摩托车转弯倾斜度要 大一些。摩托赛车时转弯,倾斜度更大,几乎倒在地上。
•问:什么力提供向心力?向心力与倾斜度有关吗?有何关系?
•向心力
•转弯处--外轨略高于内轨
。
• 说明:转弯处要选择
内外轨适当的高度差,使转
弯时所需的向心力F完全由
重力G和支持力N的合力来提
供,这样外轨就不受轮缘的
挤压了。
• •例1. 已知铁路拐弯处的圆弧半径为R,轨 距为L,内外轨的高度差为h,为了使铁轨不 受轮缘的挤压,火车运行的速度应该为多大 ?
•思考: