信道分类及工作原理
信道实验报告
一、实验目的1. 了解信道的基本概念和分类;2. 掌握信道特性参数的测量方法;3. 分析信道的频率响应和时延特性;4. 熟悉信道仿真软件的使用。
二、实验原理信道是指信号传输过程中所经过的媒介,如电缆、光纤、无线电波等。
信道特性参数主要包括信噪比(SNR)、频率响应、时延等。
信噪比是衡量信号质量的重要指标,频率响应反映了信道对不同频率信号的传输能力,时延是指信号在信道中传播的时间。
三、实验内容1. 信噪比测量(1)实验原理:信噪比(SNR)是指信号功率与噪声功率之比,通常用分贝(dB)表示。
信噪比越大,信号质量越好。
(2)实验步骤:① 将信号发生器产生的信号接入信道;② 使用频谱分析仪测量信号功率和噪声功率;③ 计算信噪比。
2. 频率响应测量(1)实验原理:频率响应是指信道对不同频率信号的传输能力。
频率响应的测量通常使用扫频信号。
(2)实验步骤:① 将扫频信号发生器产生的信号接入信道;② 使用频谱分析仪测量信道输出信号的频率响应;③ 分析频率响应特性。
3. 时延测量(1)实验原理:时延是指信号在信道中传播的时间。
时延的测量通常使用脉冲信号。
(2)实验步骤:① 将脉冲信号发生器产生的信号接入信道;② 使用示波器测量信号在信道中的传播时间;③ 计算时延。
4. 信道仿真(1)实验原理:信道仿真是指利用计算机软件模拟信道特性,分析信道的传输性能。
(2)实验步骤:① 选择信道仿真软件,如MATLAB、CST等;② 根据实验需求,建立信道模型;③ 设置仿真参数,如信号频率、带宽等;④ 运行仿真,分析信道的传输性能。
四、实验结果与分析1. 信噪比测量结果:实验测得信噪比为20dB,表明信号质量较好。
2. 频率响应测量结果:实验测得信道频率响应在1MHz至100MHz范围内,传输能力较好。
3. 时延测量结果:实验测得信道时延为0.5ms,表明信号传播速度较快。
4. 信道仿真结果:仿真结果表明,在相同条件下,信道的传输性能与实验结果基本一致。
通信原理(樊昌信)第4章信道
有线信道
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
结构:
纤芯 包层
按折射率分类:
阶跃型 梯度型
按模式分类:
多模光纤 单模光纤
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
h D2 D2 (m) 8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
表 有线信道的线路种类、构造、特征和主要用途
线路种类 双绞线
同轴电缆 光纤
构造
特征
主要用途
便宜、构造简单,
传输频带宽,有漏 话现象,容易混入 杂音
电话用户线 低速LAN
价格稍高,传输
频带宽,漏话感应 少,分支、接头容 易
CATV分配电缆 高速LAN
低损耗,频带宽, 国际间主干线
重量轻,直径小,
国内城市间主
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0 km
电磁波的传播方式:
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千米 用于:AM广播
通信原理信道与讲义噪声第3章
通信中常见的几种噪声
所谓白噪声是指它的功率谱密度函数在整个频率域(-∞<ω <+∞)内是常数,即服从均匀分布。我们称它为白噪声,因为它 类似于光学中包括全部可见光频率在内的白光。
理想的白噪声功率谱密度通常被定义为
Pn
()def
n0 2
( )
式中n0的单位是W/Hz 。
通常,若采用单边频谱,即频率在0到无穷大范围内时, 白噪声的功率谱密度函数又常写成
在通信理论分析中,常常通过求其自相关函数或方差来计算噪 声的功率。
高斯分布的密度函数
正态概率分布函数还经常表示成与误差函数相联系的形 式,所谓误差函数,它的定义式为
互补误差函数
er(fx) 2 xez2dz
π0
er(x f)c1er(xf)2 xez2dz
高斯型白噪声
所谓高斯白噪声是指噪声的概率密度函数满足正态分布 统计特性,同时它的功率谱密度函数是常数的一类噪声。
(a) 一对输入端, 一对输出端; (b) m对输入端,n对输出端
对于二对端的信道模型来说,它的输入和输出之间的关系 式可表示成
eo(t)f[ei(t) ]n(t)
式中, ei(t)——输入的已调信号; eo(t)——信道输出波形; n(t)——信道噪声(或称信道干扰); f[ei(t)]——表示信道对信号影响(变换)的某种函数关系
通信原理信道与噪声第3章
精品jin
3.1 信道特性
信道的定义 通俗地说,信道是指以Байду номын сангаас输媒介(质)为基础的信号通路。
具体地说,信道是指由有线或无线电线路提供的信号通路;抽 象地说,信道是指定的一段频带,它让信号通过,同时又给信 号以限制和损害。 信道的作用是传输信号。
通信原理(第四章)
27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理-信道-PPT课件
•编码信道模型: 二进制信号、无记忆信道,
0 P(0/1) 1 P(1/1)
P(0/0)
P(1/0)
0 1
其中,P(0/0), P(1/1) - 正确转移概率 P(0/1), P(1/0) - 错误转移概率 转移概率 - 决定于编码信道的特性 P(0/0) = 1 - P(1/0) P(1/1) = 1 - P(0/1)
13
通信卫 星
电离层
地—电离层 波导传 播
电离层
天波传 播
地球
地球 外大气 层及行星 际空间 电波传播
视距传 播 对流层 散射传播 电离层 散射传播 (b)
(a)
14
无线电中继
图1.4.4 无线电中继
15
静止卫星中继通信
16
平流层中继通信
HAPS(High
Altitude Platform Station)
11
(5)散射传播。 这是利用对流层或电离层介质中的不均匀体或流 星余迹对无线电波的散射作用而进行的传播。利用散 射传播实现通信的方式目前主要是对流层散射通信, 其常用频段为 0.2 ~ 5MHz ,单跳距离可达 100 ~ 500km 。 电离层散射通信只能工作在较低频段 30~60MHz, 单跳距离可达1000~2000km,但因传输频带窄,其应 用受到限制。 流星余迹持续时间短,但出现频繁,可用于建立 瞬间通信,常用通信频段为 30~70MHz,单跳通信可 达2000km。实际的流星余迹通信除了利用散射传播外, 还可利用反射进行传播。
3
通常, f [ei(t) ] 可以表示为:k(t) ei(t), 此时, eo(t) = k(t) ei(t) + n(t) 其中k(t)表示时变线性网络的特性 ,称为乘性干扰。
第4章_信道
32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。
通信原理-第2章 信道与噪声
一、狭义信道和广义信道
1、狭义信道 、 (1) 狭义信道被定义为发送设备和接收设备之间用 以传输信号的传输媒质。 以传输信号的传输媒质。 (2) 狭义信道分为有线信道和无线信道两类。 两类。 狭义信道分为有线信道和无线信道两类 有线信道 2、广义信道 、 (1) 将信道的范围扩大为:除了传输媒质,还包 将信道的范围扩大为:除了传输媒质, 括有关的部件和电路。 括有关的部件和电路。这种范围扩大了的信道为广 义信道。 义信道。
Y
x1
y1
x2
y2
y3
y4
xL
多进制无记忆编码信道模型
yM
(4)当信道转移概率矩阵中的行和各列分别具有相 )当信道转移概率矩阵中的行和各列分别具有相 对称信道。 同集合的元素时 这类信道称为对称信道 同集合的元素时,这类信道称为对称信道。
p 1 − p P ( yi / xi ) = p 1 − p
11/66
(5)依据乘性噪声对信号的影响是否随时间变化而 依据乘性噪声对信号的影响是否随时间变化而 乘性噪声对信号的影响是否随时间变化 将信道分为恒参信道和随参信道。 将信道分为恒参信道和随参信道。
v i (t)
H(ω , t )
⊕
n(t)
v 0 (t)
v i (t)
H(ω )
⊕
n(t)
v 0 (t)
2.2
信道模型
信道可用一个时变线性网络来等效
V0(t) = f [V(t)]+n(t) i V(t)输 的 调 号 V0(t)信 总 出 形 i 入 已 信 , 道 输 波 n(t)加 噪 ; 性 声 f [V(t)]表 已 信 经 信 所 生 时 线 变 i 示 调 号 过 道 发 的 变 性 换
简明通信原理第3章信道
2021/7/23
3
3.Hale Waihona Puke 信道容量与香农公式信道容量
信道容量是指信道的极限传输能力,可用信道的最大信息传输速
率来衡量。
根据香农(Shannon)信息论可以证明,高斯白噪声背景下的连
续信道的容量为:
著名的香农 信道容量公式
CBlo2g 1N S
(b/s)
式中,B为信道带宽(Hz);S为信号功率(W); n0为噪声单边功率谱密度(W/Hz), N = n0B 为噪声功率(W)。
2021/7/23
2
3.5 信道模型
调制信道模型
调制信道对信号的影响程度取决于C(f)与n(t)的特性。 ❖ C(f)反映信道本身特性。对于信号来说,C(f)可看成是乘性干
扰; ❖ n(t)是独立于信号而始终存在的,因此可视之为加性干扰。
信道一般模型
一种简单而又常用的情况是 C(f)=1,加性噪声信道模型
2021/7/23
4
香农公式告诉我们以下结论:
(1)在给定信道带宽B和接收信噪比S/N的情况下,只要传输信息的速 率Rb≤C,即使信道有噪声,在理论上总能找到一种方法,实现无差错 传输。
(2)提供了B和S/N之间的互换关系。例如,对于给定的C,用增大带 宽B的方法,可以降低对S/N的要求。
香农公式指出了通信系统所能达到的理论极限,却没有指出这种通 信系统的实现方法。实践证明,系统要接近香农的理论极限,必须要借 助编码和调制等技术。
3.1 信 道 分 类
狭义信道——各种物理传输介质 有线信道—指明线、各种电缆和光纤。 无线信道—指可以传输电磁波的自由空间或大气。
广义信道——为方便研究通信系统的一些基本问题而定义。 调制信道—研究调制与解调问题;
LTE无线信道原理(一二三 三部分全)
eNode-B
物理信道
用户平面
控制平面 NAS
RRC
PDCP
RLC
MAC层 物理层
信道结构
• 根据其承载的信息类型对逻辑信道进行定义。逻辑信道分为控制和 业务信道。
• 回答的问题:其传输的内容是什么?
• 根据如何发送信息以及所发送信息的特性对传输信道进行定义。
• 回答的问题:其如何传输?
• 根据用于传输数据的物理资源对物理信道进行定义。在物理水平, 可以区分:
LTE无线原理一
课程目标
通过学习, 学员可了解以下知识 ➢LTE 无线信道类型 ➢LTE 无线信道知识 ➢LTE 无线流程和控制知识
LTE无线信道类型
无线协议栈概述
用户平面
控制平面
NAS
核心网和UE之间的非接入层信号
RRC 无线信号
PDCP RLC MAC层 物理层
无线承载 逻辑信道 传输信道
100比特 传输块
添加CRC
物理层
TB
CRC
编码、交织
TB
CRC 校验位
H-ARQ
如果激活
数据调制
物理信道[续]
• DL物理信道包括:
• 物理DL共享信道(PDSCH)
• 其为一个共享信道,该信道用于承载用户数据、无线&核心网络、系统信息(BCH) 和寻呼消息。
• 物理DL控制信道(PDCCH)
• 其为一个共享信令信道,该信道用于承载资源的分配(PDSCH)。
• CCCH,公共控制信道是一个在UE和网络间发送控制信息的信道。该信道 用于与网络间不存在RRC连接的UE。
• DCCH,专用控制信道是一个在UE和网络间发送专用控制信息的点对点 双向信道。该信道用于具有RRC连接的UE。
第四章《通信原理》信道
理想无失真信道, 理想无失真信道,它的
H ( jω ) = ke
jω t d
H ( jω ) = k 幅频特性 (ω ) = ωt d 相频特性
实际的信道往往不能满足这些要求。例如电话信号 实际的信道往往不能满足这些要求。 的频带在300Hz 3400Hz范围内 300Hz范围内; 的频带在300Hz-3400Hz范围内;而电话信道的幅频特性 和相频特性示于下图。
调制信道 编码信道
1、调制信道 指从调制器输出到解调器输入端的所有变换装置 及传输媒介。因为从调制解调角度而言, 及传输媒介。因为从调制解调角度而言,调制信道仅 对已调信号进行传输,因此可视为一个整体。 对已调信号进行传输,因此可视为一个整体。
2、编码信道 、 指从编码器输出到译码器输入端的所有变换装置 及传输媒介。因为从编译码的角度而言, 及传输媒介。因为从编译码的角度而言,它们之间的 一切环节只起了传输数字信号的作用, 一切环节只起了传输数字信号的作用,因此可视为一 个整体。 个整体。
第四章 信道
在讲通信系统模型中我们知道, 在讲通信系统模型中我们知道,信道是信息传 输的媒介。它可分为两大类:有线信道和无线信道。 输的媒介。它可分为两大类:有线信道和无线信道。 传统的固定电话网用有线信道作为传输媒介。 传统的固定电话网用有线信道作为传输媒介。而无 线电广播则是用无线信道传播电台节目。 线电广播则是用无线信道传播电台节目。 信号在信道中传输,一方面受信道特性的影响; 信号在信道中传输,一方面受信道特性的影响; 另一方面还要受到信道中噪声的影响。 另一方面还要受到信道中噪声的影响。本章简单介 绍信道特性和信道中的噪声, 绍信道特性和信道中的噪声,以及信道特性对信号 传输的影响。 传输的影响。
一、加性噪声的分类
通信原理信道
当信道的相位-频率特性偏离线性关系时,将会使通过信 道的信号产生相位-频率失真,相位-频率失真也是属于线性失
真,会使信号产生严重的相频失真或群迟延失真。如果传输
数字信号, 相频失真同样会引起码间干扰。
2020/9/28
10
3.4.3 光纤(续)
光纤具有许多优越的性能,其优越性包括: (1) 容量很大; (2) 很低的传输损耗,0.1dB/km; (3) 不受电磁干扰影响; (4) 体积小,重量轻; (5) 坚固耐用,柔韧性好; (6) 由于光纤的材料是石英,原材料丰富、便宜。
2020/9/28
Pe = P1 P(0|1) + (1- P1) P(1|0)
2020/9/28
6
3.2 信道定义(续)
0
1 发 送 端
2
3 图3-4 四进制编码信道模型
2020/9/28
0
1
接
收
端
2
3
7
3.4 恒参信道举例
3.4.1 双绞线
双绞线由两根彼此绝缘的铜线组成,这两根线按照规
则的螺线状绞合在一起。通常,将许多这样的线对捆扎在一
3.1 引言
一般把信号所通过的物理介质称为信道。信道是通信 系统必不可少的组成部分。信号在信道中传输时受到衰减、 时延和各种失真的影响,同时受到噪声的干扰。
从信道的物理形态来分为有线信道和无线信道,双绞 线、同轴电缆、波导以及光缆等属于有线信道,而无线信 道有大气、自由空间和水等。
从信道的统计特征分又可以分为恒参信道和随参信道。恒 参信道的参数在通信过程中基本不随时间变化,随参信道的信 道参数是随时间随机变化的。
2020/9/28
1
3.2 信道定义
各种类型信道
第四章 信道
第一节
一、基本问题
《通信原理(一)》CAI
无线信道
– 无线信道电磁波的频率 • 受天线尺寸限制,一般为电磁波波长的1/10~1/4, 故无线信道电磁波的频率较高。 – 地球大气层的结构 电离层 • 对流层:地面上 0 ~ 10 km 平流层 • 平流层:约10 ~ 60 km 60 • 电离层:约60 ~ 400 km km 对流层
信道是以传输媒质为基础的信号传输通道。 有线信道 狭义信道
明线 电缆 光缆
地波传播 短波电离层反射 超短波、微波视距中继 人造卫星中继等
无线信道
广义信道:包括传输媒质和变换装置(发送接收调制解调) 一般来说,实际信道都不是理想的。首先,这些信道具有 非理想的频率响应特性(无源干扰),另外还有噪声和信号 通过信道传输时掺杂进去的其他干扰(有源干扰) 。
10 km 0 km
地 面
第四章 信道
第一节 无线信道
衰 减
《通信原理(一)》CAI
一、基本问题 电离层对于传播的影响
吸收(衰减) 反射 散射
水蒸气 氧 气
(dB/km)
频率(GHz) (a) 氧气和水蒸气(浓度7.5 g/m3)的衰减
大气层对于传播的影响
吸收 散射
衰 减
降雨率
图 4-3 视线传播
式中,D – 收发天线间距离(km)。 [例] 若要求D = 50 km,则由式(4.1-3)
D 2 D 2 502 h 50 8r 50 50
m
图4-4 无线电中继
增大视线传播距离的其他途径 中继通信: 卫星通信:静止卫星、移动卫星 平流层通信:
第四章 信道
通信原理_第四章 信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
短波电离层反射信道 (1) 传播路径
地面高度为60km — 400km
反射层 入射角φo 4000km D F2 F1 E 吸收层
地球
■ □ □ □
电离层: 各个层次的高度、厚度、电子密度等都会随时间变化。 一次或多次反射的距离也会发生变化,且与入射角有关。 不同层次(F1、F2)的不同高度上都会产生反射。
通信原理
4.1 无线信道
第四章
信
道
东北大学网
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
一 地球大气层的结构:
对流层:地面上 0 ~ 10 km 平流层:约10 ~ 60 km 电离层:约60 ~ 400 km
60 km 对流层 10 km 0 km 地 面 电离层
典型的模拟信道是调制信道。 典型的数字信道是编码信道。
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
引言(调制信道与编码信道) 调制信道与编码信道分别是模拟信道与数字信道的 典型例子。
自编码器
调 制 器
发 送 转 换 器
传输媒体 调制信道 编码信道
第四章
信
道
东北大学网
通信卫星
卫星中继信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
通信原理第3章信道
图3.1-5 无线电中继
➢ 平流层通信:利用位于平流层的高空平台电台代替卫星作为 基站的通信。
11
第3章 信 道
三、电离层和大气层对于传播的影响
电离层对于传播的影响
反射 散射
大气层对于传播的影响
散射 吸收
衰 减
根据应用情况不同,在光纤线路中可能设有中继器 (也可不设)。中继器有两种类型:直接中继器和间接中继器。 所谓直接中继器就是光放大器,它直接将光信号放大以补偿光 纤的传输损耗,以便延长传输距离;所谓间接中继器就是将光 信号先解调为电信号,经放大或再生处理后,再调制到光载波 上,利用光纤继续进行传输。在数字光纤信道中,为了减少失 真及防止噪声的积累,每隔一定距离需要加入再生中继器。
电离层
电离层:约60 ~ 400 km
平流层
60 km
对流层
10 km
地面
0 km
6
第3章 信 道
3.短波电离层的传播路径
短波电离层反射信道是利用地面发射的无线电波在电 离层, 或电离层与地面之间的一次反射或多次反射所形成 的信道。
离地面60~400 km的大气层称为电离层。
电离层由分子、原子、离子及自由电子组成,形成的 原因是由于太阳辐射的紫外线和X射线。 当频率范围为 3~30 MHz (波长为10-100m)的短波(或称为高频)无线电 波射入电离层时, 由于折射现象会使电波发生反射,返回 地面,从而形成短波电离层反射信道。
制 器
光
光
纤
探
线测
路
器
基
基
带
带
处 理
电 信 号
传输信道通信原理
传输信道是连接发送端和接收端的通信设备之间的传输媒介,是信号传输的通道。
根据传输媒质的不同,信道可以分为两大类:无线信道和有线信道。
无线信道中,信号的传输是利用电磁波在空间的传播来实现的。
电磁波的传输主要分为地波、天波(或称为电离层反射波)和视线传播三种。
地波传播是频率较低(约2MHz以下)的电磁波趋于沿弯曲的地球表面传播,有一定的绕射能力。
这种传播方式称为地波传播,在低频和甚低频段,地波能够传播超过数百千米或数千千米。
由于电离层不均匀性,使其对在这一频段入射的电磁波产生散射。
这种散射信号的强度与30MHz以下的电离层反射信号强度相比要小的多,但仍然可以用于通信。
对流层散射是由于对流层中的大气不均匀性产生。
有线信道中,传输电信号的有线信道主要有三类,明线、对称电缆和同轴电缆。
明线是平行架设在电线杆上的架空线路。
在通信过程中,信道会受到各种因素的影响,如噪声、干扰、衰减等,这些因素会导致信号的质量下降,甚至无法正常通信。
因此,需要对信道进行优化和设计,以最大程度地减小这些因素的影响,保证信号的传输质量和稳定性。
移动通信信道-2
移动通信信道-21. 引言在移动通信系统中,信道是指传输无线电信号的介质。
移动信道分为下行信道和上行信道,分别用于移动通信系统中的BS(基站)向UE(用户设备)发送数据,以及UE向BS发送数据。
2. 下行信道下行信道是指BS向UE发送数据的信道。
在移动通信系统中,下行信道经常用于传输语音、数据和控制信号。
下行信道可以分为广播信道和多址信道。
2.1 广播信道广播信道是指BS向所有UE广播信息的信道。
在这种信道上,BS发送的数据可以被所有UE接收到。
广播信道常用于发送系统信息、公告、广告等信息。
2.2 多址信道多址信道是指BS向多个UE发送数据的信道。
在这种信道上,BS发送的数据会经过调度算法分配给不同的UE。
多址信道常用于传输用户数据和控制信号。
3. 上行信道上行信道是指UE向BS发送数据的信道。
在移动通信系统中,上行信道用于传输用户数据、控制信号和反馈信息。
上行信道可以分为分时信道和分频信道。
3.1 分时信道分时信道是指UE在不同的时间片段上向BS发送数据的信道。
在这种信道上,BS会根据时隙分配算法将不同的UE的数据进行分时传输。
分时信道常用于传输用户数据和控制信号。
3.2 分频信道分频信道是指UE通过不同的频率向BS发送数据的信道。
在这种信道上,不同的UE在不同的频段上进行数据传输,从而避免了频率冲突。
分频信道常用于传输用户数据和反馈信息。
4.移动通信信道是移动通信系统中非常重要的一部分,它承载着数据和控制信号的传输。
下行信道用于BS向UE发送数据,上行信道用于UE向BS发送数据。
下行信道可以分为广播信道和多址信道,上行信道可以分为分时信道和分频信道。
了解移动通信信道的工作原理和分类对于理解移动通信系统的运行原理和性能优化具有重要意义。
通信原理第4章
人为噪声 - 例:开关火花、电台辐射
自然噪声 - 例:闪电、大气噪声、宇宙噪声、热噪声
33
4.5 信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 12 Hz。 频率范围:均匀分布在大约 0 ~ 10 热噪声电压有效值:
V 4kTRB
(V)
式中
k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(º K); R - 阻值(); B - 带宽(Hz)。 性质:高斯白噪声
4.2 无线信道--频带与电波传播
电子科技大学通信学院
12/52 12
4.2 无线信道--频带与电波传播
电子科技大学通信学院
13/52 13
4.2 无线信道
无线电视距中继信道
14
4.2 无线信道
卫星中继信道
15
4.2 无线信道
无线电广播与移动通信信道
16
4.3 信道的数学模型
广义信道:从消息传输观点出发,把信道范围扩大(包含通信系统 中某些环节)以后定义的信道。常用于通信系统性能分析。
衰减随时间变化 时延随时间变化 多径效应:信号经过几条路径到达接收端,而且每条路径
的长度(时延)和衰减都随时间而变,即存在多径传播现象。
24
4.4 信道特性对信号传输的影响
产生多径效应的分析
多径传播示意图
25
4.4 信道特性对信号传输的影响
多径效应分析: 设 发射信号为 A cos0t 接收信号为
R(t):是一个包络和相位随机缓慢变化的窄带信号。
结论:发射信号为单频恒幅正弦波时,接收信号因多径效应变 成包络起伏的窄带信号。
通信原理第4章信道1
外套
绝缘
包层 纤维芯
27
根据光纤传输数据模式的不同,它可分为多 模光纤和单模光纤两种。 多模光纤指光在光纤中可能有多条不同角度 入射的光线在一条光纤中同时传播,如图 (a) 所示。这种光纤所含纤芯的直径较粗。
吸收护套
(a) 多模 纤芯 包层
28
单模光纤指光在光纤中的传播没有反射,而 吸收护套 沿直线传播,如图(b)所示。这种光纤的直径非 常细,就像一根波导那样,可使光线一直向前 (a) 多模 纤芯 包层 传播。
绝缘体
芯 芯 芯 6 芯 5 芯 4 1 芯 2 芯 3 芯 7 芯 6 芯 5 芯 4 芯 8 1 芯 2 芯 3
(b)
24
优点:与外界相互干扰小,(外导体接地
起屏 蔽作用),带宽大。
缺点:成本较高(与对称电缆相比)。 应用:比较广泛。如电视电缆(75Ω), 实验室仪器用的信号电缆(50 Ω)
25
无线电视距中继是指工作频率在超短波和微波 波段时,电磁波基本上是沿视线传播,通信距 离依靠中继方式延伸的无线电电路。相邻中继 站之间的距离一般在40~50公里。
图4-4 无线电中继
13
优点:传输容量大,发射功率小,通信稳定
可靠,节省有色金属。 缺点:每隔50km左右设置一个中继站(微波 为直线传播,而地球为球体)。 应用:主要用于长途干线、移动通信网及某 些数据收集系统。
42
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
( ) td
(a) O (b) td
d ( ) ( ) d
H( )|
O (c)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中安
2014-11-16
下行的逻辑信道
BSS -> MS
COMMON CHANNELS
FCCH
BCH
SCH BCCH PCH
CCCH
AGCH
DEDICATED CHANNELS DCCH
SDCCH SACCH FACCH
Tห้องสมุดไป่ตู้H/F
TCH
TCH/H
6
中安
2014-11-16
上行的逻辑信道
COMMON CHANNELS
快速随路控制信道(FACCH):FACCH信道与一个业务信道TCH相 关。FACCH在话音传输过程中如果突然需要以比慢速随路控制信 道(SACCH)所能处理的高的多的速度传送信令消息,则需借用 20ms的话音突发脉冲序列来传送信令,这种情况被称为偷帧,如 在系统执行越局切换时。由于话音译码器会重复最后20ms的话音, 所以这种中断不会被用户察觉的。
公共控制信道(CCCH)寻呼(PCH),准许接
入(AGCH)小区广播控制信道(CBCH),随机接入信道(RACH)
寻呼信道(PCH),点对点传播,即寻找寻呼对象。 接入许可信道(AGCH):当网络收到处于空闲模式下MS 的信道请求后,就将给之分配一专用信道,AGCH通过根 据该指派的描述(所分信道的描述,和接入的参数), 向所有的移动台进行广播。属下行信道,点对多点传播。 小区广播控制信道(CBCH):它用于广播短消息和该小 区一些公共的消息(如天气和交通情况),它通常占用 SDCCH/8的第二个子信道,下行信道,点对多点传播。 随机接入信道(RACH):当MS想与网络建立连接时, 它会通过RACH信道来发起接入请求,请求消息包括3个 比特的建立的原因(如呼叫请求、响应寻呼、位置更新 请求、及短消息请求等等)和5个比特的用来区别不同 MS请求的参考随机数,属上行信道,点对点传播方式。
中安
2014-11-16
专用控制信道DCCH (1)
(DEDICATED CONTROL CHANNELS)
专用控制信道包括SDCCH、SACCH、FACCH,这些信道被用于 某一个具体的MS上,均为双向信道。 独立专用控制信道( SDCCH ): SDCCH 是一种双向的专用信 道,它主要用于传送建立连接的信令消息、位置更新消息、 短消息 (TCH 空闲时)、用户鉴权消息、加密命令及应答及各 种附加业务。
MS -> BSS
CCCH
RACH
DEDICATED CHANNELS
SDCCH
DCCH
SACCH FACCH
TCH
TCH/F TCH/H
7
广播控制信道(BCH)
定位,同步小区标示信息,及基站识别码,小区频点等信息
频率校正信道(FCCH)携带信道用于校正MS频率的消息,定位并解调 出同一小区的其他信息。 同步信道(SCH)在解调出SCH信道消息。给出需要同步的所有消息及 该小区的标示信息及基站识别码 广播控制信道(BCCH):MS在空闲模式下为了有效的工作需要大量的 网络信息。而这些信息都将在BCCH信道上来广播。信息基本上包括小 区的所有频点、邻小区的BCCH频点、LAI(LAC+MNC+MCC)
3
慢速随路控制信道( SACCH ): SACCH 是一种伴随着 TCH 和SDCCH的专用信令信道。在上行链路上它主要传递无线 测量报告和第一层报头消息(包括TA值和功率控制级别); 在下行链路上它主要传递系统消息type5、5bis 、5ter、6 及第一层报头消息。这些消息主要包括通信质量、 LAI 号、 CELLID、邻小区的标频信号强度等信息、NCC的限制、小 区选项、 TA值、功率控制级别。 TCH 忙时,由SACCH来传 送短信。