概率论与数理统计第二章课后习题参考答案同济大学出版社林伟初
概率论与数理统计第二章课后习题参考答案同济大学出版社林伟初

第二章1.解:X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
X =2对应于一种情形:(1,1),则{}1126636P X;X =3对应于两种情形:(1,2)、(2,1),则{}2136618P X ; X =4对应于三种情形:(1,3)、(2,2)、(3,1),则{}3146612P X; X =5对应于四种情形:(1,4)、(2,3)、(3,2)、(4,1),则{}415669P X ; X =6对应于5种情形:(1,5)、(2,4)、(3,3)、(4,2)、(5,1),则{}5566636P X ; X =7对应于6种情形:(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),则{}617666P X; 类似地,可以算得{}5586636P X ,{}419669P X ,{}31106612P X, {}21116618P X,{}11126636P X 。
因此,X 的分布律为[()](),,,{}[()](),,,||,,,,,166167 , 23736363666167 , 8912363667234111236i i i i P X i i i i i i2.解:设随机变量X 表示产品质量的等级,X 的可能取值为1,2,3。
由题可知,一级品数量:二级品数量:三级品数量=2 :1 :0.5= 4 :2 :1, 因此可求得X 的分布律为123421777kX P 3.解:X 的可能取值为0,1,2,3,4,其取值概率为{}.007P X ,{}...10307021P X ,{}....20303070063P X, {}.....30303030700189P X,{} (403030303)00081P X 。
即X 的分布律为.....012340702100630018900081k X P 。
6.解:X 的可能取值为1,2,3,其取值概率为24353{1}5C P X C ,23353{2}10C P X C ,22351{3}10C P X C ; 即X 的分布律为12333151010kX P 。
概率论与数理统计答案 第二章1-2节

关键词: 随机变量 离散型随机变量、分布律 连续型随机变量、概率密度 概率分布函数 重伯努利实验、二项分布、泊松分布 均匀分布、正态分布、指数分布 随机变量的函数的分布
1
§1 随机变量
定义
2 3
例1: 将一枚硬币抛掷3次. 关心3次抛掷中, 出现 H的总次数 以X记三次抛掷中出现H的总数, 则对样本空间 S={e}中的每一个样本点e, X都有一个值与之对 应, 即有
1) P { X = k} = C3k p k (1 − p )3− k , k = 0,1, 2,3 (
( 2)
P { X = 2} = C32 p 2 (1 − p)
21
泊松分布(Poisson分布)
若随机变量X的概率分布律为 e− λ λ k
P { X = k} = k! , = 0,1, 2, ⋅⋅⋅, λ > 0 k
互不影响
例如: 1.独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n次,设A={得到1点},则每次试验 只有两个结果:A , A , P ( A ) = 1 6
12
定义随机变量X表示n重伯努利试验中事件A发生的次 数, 我们来求它的分布律. X所有可能取的值为0,1,2,...,n. 由于各次试验是相互独立的, 因此事件A在指定的 k(0≤k≤n)次试验中发生, 在其它n−k次试验中A不发生 的概率为
13
设A在n重伯努利试验中发生X次,则
k P பைடு நூலகம் X = k} = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
⎛n⎞ k Cn = ⎜ ⎟ 表示n中 ⎜k ⎟ ⎝ ⎠ 任选k的组合数目
《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
数理统计第二章课后习题参考答案

第二章 参数估计2.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()1f x ββ=;,0x β<<的总体,试用矩法估计总体均值、总体方差及参数β. 解: 1.30.6 1.7 2.20.3 1.1 1.26X μ+++++===.()()()()()()()22222222111 1.3 1.20.6 1.2 1.7 1.2 2.2 1.20.3 1.2 1.1 1.26ni i X X n σ=⎡⎤=-=-+-+-+-+-+-⎣⎦∑ ()222222210.10.60.510.90.10.4076σ=+++++==. ()()0112E X x f x dx xdx ββββ+∞-∞===⎰⎰;.令()E X X =,则12X β=,即2X β=.参数β的矩估计量为ˆ22 1.2 2.4X β==⨯=.2.6 设总体X 的密度函数为()f x θ;,1X ,2X ,…,n X 为其样本,求下列情况下θ的MLE.(iii )()()100x x e x f x ααθθαα--⎧>⎪=⎨⎪⎩,;,其它α已知解:当0i X >()12i n = ,,,时,似然函数为: ()()()()111111ni i i n n n x n x i i i i i i L f x x e x eαααθθαθθθαθα=----===∑⎛⎫=== ⎪⎝⎭∏∏∏;.()()11ln ln ln 1ln n ni i i i L n n x x αθθααθ===++--∑∑.由()1ln 0ni i L nx αθθθ=∂=-=∂∑,得θ的MLEˆθ,即1ˆnii nxαθ==∑.2.7 设总体X 的密度函数为()()1f x x ββ=+,01x <<,1X ,2X ,…,n X 为其子样,求参数β的MLE 及矩法估计。
今得子样观察值为0.3,0.8,0.27,0.35,0.62及0.55,求参数β的估计值。
《概率论与数理统计》第02章习题解答.docx

P{ X = 1} = P[人(瓦U瓦)U孔A ] = 0.8(0.2 + 0.2-0.04) + 0.2 x (0.8)2
= 0.416
P{X=2} =P( £%為)=(0.8)3=0.512
3、据信有20%的美国人没有任何健康保险,现任意抽查12个美国人,以X表示15人无 任何健康保险的人数(设各人是否有健康保险是相互独立的),问X服从什么分布,写出X的分布律,并求下列情况下无任何健康保险的概率
解:(1)P{X>1}=f(x)dx=j"-(4-x2)dr = (-X- — X3)
"9927
(2)―叫刃’叩沟心]刃
22
27
10-R
£二0丄2,…,10
27■■
592
(3)P{y=2}=C^(—)2x(—)8=0.2998
s99s9?
p{r>2}= 1- p{r=0} - p{y=1}= 1-(—)° x(―)10- ^0(—)J(—)9= 0.5778
J;(0.2 + 1.2y)dy
—oo
y v _1
-1 < y < 0
0<y<\
0
0.2y + 0.2
0.6/+0.2j + 0.2
1
y <-1
0<y<l
沖1
P{0<Y<0.5} = F(0.5)-F(0) = 0.2+0.2x0.5 + 0.6x(0.5)2-0.2 = 0.25
P{y > 0.1} = 1-F(0」)=1一0.2-0.2x0」一0.6x0= 0.774
《概率论与数理统计》课后习题答案

21《概率论与数理统计》课后习题答案chapter2习题2.1解答1.现有10件产品,其中6件正品,4件次品。
从中随机抽取2次,每次抽取1件,定义两个随机变量X 、Y 如下:⎩⎨⎧=。
次抽到次品第次抽到正品第11,0;,1X ⎩⎨⎧=。
次抽到次品第次抽到正品第22,0;,1Y试就下面两种情况求),(Y X 的联合概率分布和边缘概率分布。
(1) 第1次抽取后放回; (2) 第1次抽取后不放回。
解 (1)依题知),(Y X 所有可能的取值为)1,1(),0,1(),1,0(),0,0(. 因为; 254104104)0|0()0()0,0(1101411014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 256106104)0|1()0()1,0(1101611014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 256104106)1|0()1()0,1(1101411016=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 259106106)1|1()1()1,1(1101611016=⨯=⋅===⋅====C C C C X Y P X P Y X P 所以),(Y X 的联合概率分布及关于X 、Y 边缘概率分布如下表为:(2)类似于(1),可求得; 15293104)0|0()0()0,0(191311014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15496104)0|1()0()1,0(191611014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15494106)1|0()1()0,1(191411016=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15595106)1|1()1()1,1(191511016=⨯=⋅===⋅====C C C C X Y P X P Y X P 所以),(Y X 的联合概率分布及关于X 、Y 边缘概率分布如下表为:2. 已知10件产品中有5件一级品,2件废品。
概率论与数理统计第二章课后习题及参考答案

于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2
概率论与数理统计

概率论与数理统计 习题参考答案(仅供参考) 第一章
第 2 页 (共 62 页)
4.设 P(A)=0.7,P(A-B)=0.3,试求P(AB)
解 由于 AB = A – AB, P(A)=0.7 所以 P(AB) = P(AAB) = P(A)P(AB) = 0.3,
所以 P(AB)=0.4, 故 P(AB) = 10.4 = 0.6.
(4) 取到三颗棋子颜色相同的概率.
解
(1) 设 A={取到的都是白子} 则
P( A) C83 14 0.255. C132 55
(2) 设 B={取到两颗白子, 一颗黑子}
P(B)
C82C41 C132
0.509 .
(3) 设 C={取三颗子中至少的一颗黑子}
P( C) 1 P (A ) 0 . 7. 4 5
P( A2
|B
) P( Ai )P B( P(B )
A| i
) 0 . 1 5 0 .39 0
0.1268
0.8624
P( A3
|B
) P( Ai )P B( P(B )
A| i
) 0 . 0 5 0 .31 0 0 . 0 0 0 1 0.8624
由于 P( A1|B) 远大于 P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为 0.2.
2. 设 A、B、C 为三个事件,用 A、B、C 的运算关系表示下列事件: (1)A 发生,B 和 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A、B、C 都发生; (4)A、B、C 都不发生; (5)A、B、C 不都发生; (6)A、B、C 至少有一个发生; (7)A、B、C 不多于一个发生; (8)A、B、C 至少有两个发生. 解 所求的事件表示如下
概率论第二章课后习题答案

概率论与数理统计第二章习题[])()()()()式,有利用(显然)()(则若))(()()(从而)()()()(的可加性,有:互不相容,因此由概率与而)(则解:AB P A P AB A P B A P A AB AB A P B A P A B B P A P B A P B A P B P B A B P A P B A B C A B A A B -=-=-⊂-=-⊄-=--+=-=--=⊂**.132)(1)()()(1)()()()|()4(2.05.01.0)()()|()3(25.04.01.0|)2(8.0)1(.2=--=--=========-+=B P AB P A P B P B A P B P B A P B A P A P AB P A B P B P AB P B A P AB P B P A P B A P )()()()()()()(解:7.0)(1)|(1)|()4(4.0)(1)|(1)|()3(72.0)()()()()()()()()2(3.0)()()()()()()|(1.3=-=-==-=-==⋅-+=-+===⋅==A PB A P B A P B P A B P A B P B P A P B P A P AB P B P A P B A P B P B P B P A P B P AB P B A P )解:()()()()()(”成立时“或当)()(”成立时“)(当)()()()()()()(解:B P A P B A P A P AB P A AB B A B AB P A P B A A AB P B A P B P A P AB P B P A P B A P +≤≤≤∴⊆=∅==≤∴⊆==≥+∴-+= 0.4)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()解:(C P B A P C P B A P C P B P A P C B A P C B A P C P AB P C P B P A P ABC P C AB P B A P C P AB P B P A P C P B P A P B P A P C P C P B P A P C P B P C P A P ABC P BC P AC P BC AC P C B A P ⋅-=⋅=⋅⋅==-⋅=⋅⋅===-+=-+=-+=-+==][][3][2][][][1.7832.04.03.06.03.04.03.06.04.06.03.04.06.0)()()()()()()()()(3.04.0200150)(4.06.0150100)(6.020*******.8=⨯⨯+⨯-⨯-⨯-++=+---++===⨯==⨯======ABC P CA P BC P AB P C P B P A P C B A P D P C P B P A P D C B A )(“击中目标”米处射击”“相距米处射击”“相距米处射击”“相距解:设2112632112|31812|6)2(3.0185|8)1(.9222222222222111111111=++++============ )()()()()()()(”“点数和大于“点数和为奇数”)()()()()(”“点数和为“点数和为偶数”解:B P B A P B A P A P B A P A B P B A A P B P A P B A P A B P B A5360160126047514131413141513151413151413151.10=+-=⨯⨯+⨯-⨯-⨯-++=+---++=======)()()()()()()()()(,)(,)(“丙破译密码”“乙破译密码”“甲破译密码”解:ABC P BC P AC P AB P C P B P A P C B A P C P B P A P C B A61|1011|.11110=====)()()()()()(解:B P AB P B A P C A P AB P A B P1025515510530520|12C C C C C A B P A P AB P B A ⋅⋅=⋅===)()()(球各半”“第二次取出的黄、白球”“第一次取出的全是黄。
概率论与数理统计同济大学第2章

2.2 试确定常数c ,使得下列函数成为概率函数:(1)(),1,...,P X k ck k n ===;(2)()P X k ==/!,k c k λ1,k =2,...,∞,其中0λ>.2.3 把一个表面涂有红色的立方体等分成1000个小立方体.从这些小立方体中随机地取一个,它有X 个面涂有红色,试求X 的概率函数.2.4 已知随机变量X 的概率函数如下.试求一元二次方程232(1)0t Xt X +++=有实数根的概率.2.6 设随机变量(,)X B n p ,已知(1)(1)P X P X n ===-.试求p 与(2)P X =的值.2.9 已知某商店每周销售的电视机台数X 服从参数为6的泊松分布.试问,周初至少应进货多少才能保证该周不脱销的概率不小于0.99.假定上周没有库存,且本周不再进货.2.10 某地有3000个人参加了人寿保险,每人交纳保险金10元,一年内死亡时家属可以从保险公司领取2000元,假定该地一年内人口死亡率为0.1%,且死亡是相互独立的.试求保险公司一年内赢利不少于1万元的概率.2.13 某台仪器由三只不太可靠的元件组成,第i 个元件出故障的概率1,1,(2)i p i i ==+2,3.假定各元件是否出故障是相互独立的.设X 表示该仪器中出故障的元件数.试求X 的概率函数.2.14 把一颗骰子独立地上抛两次,设X 表示第一次出现的点数,Y 表示两次出现点数的最大值.试求:(1)X 与Y 的联合概率函数;(2)()P X Y =与22(10)P X Y +<;(3)X ,Y 的边缘概率函数;(4)已知事件{4}Y =发生时X 的条件概率函数;(5)已知事件{4}X =发生时Y 的条件概率函数.假定没有和棋,且每盘结果是相互独立的.试求(1)X 与Y 的联合概率函数;(2)X ,Y 的边缘概率函数.2.16 一个箱子中装有100件同类产品,其中一、二、三等品分别有70,20,10件.现从中随机地抽取一件.试求1X 与2X 的联合概率函数.其中1,0,i X ⎧=⎨⎩如果抽到如果抽到非i i等品等品,i =1,2,3.2.18 已知随机变量X ,Y 的联合概率函数如下.当α,β取何值时X 与Y 相互独立?2.19 已知随机变量X ,Y 的概率函数如下.已知(0)1P XY ==.(1)试求X 与Y 的联合概率函数;(2)X 与Y 是否相互独立?为什么?2.24 已知随机变量X 服从集合{2,1,0,1,2}--上的均匀分布.试求2Y X =与Z X =的概率函数.2.26 已知X 与Y 的联合概率函数如下.(1)分别求max{,}U X Y =,min{,}V X Y =的概率函数;(2)试求U 与V 的联合概率函数.2.27 设随机变量X 与Y 独立向分布,它们都服从0-1分布(1,)B p .记随机变量Z 如下(1)试求Z 的概率函数;(2)试求X 与Z 的联合概率函数;(3)当p 取何值时,X 与Z 相互独立?1,0,Z ⎧=⎨⎩如果如果X Y X Y ++为零或偶数;为奇数.。
概率论与数理统计习题及答案第二章.doc

习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
概率论与数理统计第二章习题答案(PDF)

第二章 随机变量及其分布习题2.11. 口袋中有5个球,编号为1, 2, 3, 4, 5.从中任取3只,以X 表示取出的3个球中的最大号码.(1)试求X 的分布列;(2)写出X 的分布函数,并作图. 解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为3, 4, 5,且事件“X = 3”所含样本点个数为k 1 = 1,有1.0101}3{===X P , 事件“X = 4”所含样本点个数为31223232=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103}4{===X P , 事件“X = 5”所含样本点个数为61234243=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106}5{===X P , 故X 的分布列为6.03.01.0543P X;(2)因分布函数F (x ) = P {X ≤ x },分段点为x = 3, 4, 5,当x < 3时,F (x ) = P {X ≤ x } = P (∅) = 0,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 3} = 0.1,当4 ≤ x < 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} = 0.1 + 0.3 = 0.4,当x ≥ 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} + P {X = 5} = 0.1 + 0.3 + 0.6 = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.5,1;54,4.0;43,1.0;3,0)(x x x x x F2. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1)试求X 的分布列; (2)写出X 的分布函数. 解:样本点总数n = 62 = 36,(1)X 的全部可能取值为1, 2, 3, 4, 5, 6,且事件“X = 1”所含样本点个数为k 1 = 62 − 52 = 11,有3611}1{==X P , 事件“X = 2”所含样本点个数为k 2 = 52 − 42 = 9,有369}2{==X P ,事件“X = 3”所含样本点个数为k 3 = 42 − 32 = 7,有367}3{==X P ,事件“X = 4”所含样本点个数为k 4 = 32 − 22 = 5,有365}4{==X P ,事件“X = 5”所含样本点个数为k 5 = 22 − 1 = 3,有363}5{==X P , 事件“X = 6”所含样本点个数为k 6 = 1,有361}6{==X P , 故X 的分布列为3613633653673693611654321PX ; (2)因分布函数F (x ) = P {X ≤ x },分段点为x = 1, 2, 3, 4, 5, 6,当x < 1时,F (x ) = P {X ≤ x } = P (∅) = 0,当1 ≤ x < 2时,3611}1{}{)(===≤=X P x X P x F , 当2 ≤ x < 3时,36203693611}2{}1{}{)(=+==+==≤=X P X P x X P x F , 当3 ≤ x < 4时,36273673693611}3{}2{}1{}{)(=++==+=+==≤=X P X P X P x X P x F ,当4 ≤ x < 5时,36323653673693611}{}{)(41=+++===≤=∑=k k X P x X P x F , 当5 ≤ x < 6时,36353633653673693611}{}{)(51=++++===≤=∑=k k X P x X P x F , 当x ≥ 6时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.6,1;65,3635;54,3632;43,3627;32,3620;21,3611;1,0)(x x x x x x x x F 3. 口袋中有7个白球、3个黑球.(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X 的概率分布列如何. 解:(1)X 的全部可能取值为1, 2, 3, 4,且107}1{==X P ,30797103}2{=×==X P ,12078792103}3{=××==X P , 1201778192103}4{=×××==X P , 故X 的概率分布列为120112073071074321PX ;(2)X 的全部可能取值仍为1, 2, 3, 4,且7.0107}1{===X P ,24.0108103}2{=×==X P ,054.0109102103}3{=××==X P , 006.01010101102103}4{=×××==X P ,故X 的概率分布列为006.0054.024.07.04321P X .4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)试求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少?解:设A 1 , A 2 , A 3分别表示“取到第一个、第二个、第三个盒子”,(1)X 的全部可能取值为0, 1, 2, 3,且P {X = 0} = P (A 1) P {X = 0 | A 1} + P (A 2) P {X = 0 | A 2} + P (A 3) P {X = 0 | A 3}610301304031353331353431=++=×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×=, P {X = 1} = P (A 1) P {X = 1 | A 1} + P (A 2) P {X = 1 | A 2} + P (A 3) P {X = 1 | A 3}2130330630635221331352312313524131=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛××=, P {X = 2} = P (A 1) P {X = 2 | A 1} + P (A 2) P {X = 2 | A 2} + P (A 3) P {X = 2 | A 3}10330630303512233135132231031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×=, P {X = 3} = P (A 1) P {X = 3 | A 1} + P (A 2) P {X = 3 | A 2} + P (A 3) P {X = 3 | A 3}30130100353331031031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×+×=, 故X 的概率分布列为30110321613210PX ; (2)所求概率为3130********}3{}2{}2{==+==+==≥X P X P X P . 5. 一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验. (1)试求5件产品中不合格品数X 的分布列; (2)需要对这批产品进行逐个检验的概率是多少?解:样本点总数7528752012345969798991005100=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数为439492681234586878889905900=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 1”所含样本点个数为25551900123487888990104901101=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 2”所含样本点个数为5286600123888990129103902102=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 3”所含样本点个数为48060012899012389102903103=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 4”所含样本点个数为18900901234789101904104=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 5”所含样本点个数为252123456789105105=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,则583752.07528752043949268}0{===X P ,339391.07528752025551900}1{===X P ,070219.0752875205286600}2{===X P ,006384.075287520480600}3{===X P ,000251.07528752018900}4{===X P ,000003.075287520252}5{===X P ,故X 的分布列为000003.0000251.0006384.0070219.0339391.0583752.0543210P X ;(2)所求概率为P {X > 0} = 1 − P {X = 0} = 1 − 0.583752 = 0.416248. 6. 设随机变量X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,21;31,31;10,41;0,0)(x x x x x x F试求X 的概率分布列及P {X < 3},P {X ≤ 3},P {X > 1},P {X ≥ 1}. 解:X 的全部可能取值为其分布函数F (x ) 的分段点0, 1, 3, 6,且41041)00()0(}0{=−=−−==F F X P ,1214131)01()1(}1{=−=−−==F F X P , 613121)03()3(}3{=−=−−==F F X P ,21211)06()6(}6{=−=−−==F F X P ,故X 的概率分布列为2161121413210PX ; 且31)03(}3{=−=<F X P ;21)3(}3{==≤F X P ;32311)1(1}1{1}1{=−=−=≤−=>F X P X P ; 43411)01(1}1{1}1{=−=−−=<−=≥F X P X P .7. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.e ,1e;1,ln ;1,0)(x x x x x F试求P {X < 2},P {0 < X ≤ 3},P {2 < X < 2.5}.解:P {X < 2} = F (2 − 0) = ln 2;P {0 < X ≤ 3} = F (3) − F (0) = 1 − 0 = 1;P {2 < X < 2.5} = F (2.5 − 0) − F (2) = ln 2.5 − ln 2 = ln 1.25.8. 若P {X ≥ x 1} = 1 − α ,P {X ≤ x 2} = 1 − β ,其中x 1 < x 2 ,试求P {x 1 ≤ X ≤ x 2}.解:P {x 1 ≤ X ≤ x 2} = P {X ≤ x 2} − P {X < x 1} = P {X ≤ x 2} + P {X ≥ x 1} − 1 = 1 − β + 1 − α − 1 = 1 − α − β . 9. 从1, 2, 3, 4, 5五个数字中任取三个,按大小排列记为x 1 < x 2 < x 3 ,令X = x 2 ,试求(1)X 的分布函数;(2)P {X < 2}及P {X > 4}.解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为2, 3, 4,且事件“X = 2”所含样本点个数为k 1 = 3,有3.0103}2{===X P , 事件“X = 3”所含样本点个数为k 2 = 2 × 2 = 4,有4.0104}3{===X P ,事件“X = 4”所含样本点个数为k 3 = 3,有3.0103}4{===X P ,因分布函数F (x ) = P {X ≤ x },分段点为x = 2, 3, 4, 当x < 2时,F (x ) = P {X ≤ x } = P (∅) = 0,当2 ≤ x < 3时,F (x ) = P {X ≤ x } = P {X = 2} = 0.3,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 2} + P {X = 3} = 0.3 +0.4 = 0.7, 当x ≥ 4时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=;4,1;43,7.0;32,3.0;2,0)(x x x x x F(2)P {X < 2} = P (∅) = 0,P {X > 4} = P (∅) = 0.10.设随机变量X 的密度函数为⎩⎨⎧≤≤−−=.,0;11|,|1)(其他x x x p试求X 的分布函数.解:分布函数F (x ) = P {X ≤ x },分段点为x = −1, 0, 1,当x < −1时,F (x ) = P {X ≤ x } = P (∅) = 0,当−1 ≤ x < 0时,21221122)](1[)()(22121++=⎟⎠⎞⎜⎝⎛+−−+=⎟⎟⎠⎞⎜⎜⎝⎛+=−−==−−∞−∫∫x x x x u u du u du u p x F xxx, 当0 ≤ x < 1时,xxxu u u u du u du u du u p x F 021200122)1()](1[)()(⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−+−−==−−∞−∫∫∫21202211022++−=−⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+−−=x x x x , 当x ≥ 1时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++−<≤−++−<=.1,1;10,212;01,212;1,0)(22x x x x x x x x x F11.如果X 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0;21,2;10,)(其他x x x x x p试求P {X ≤ 1.5}. 解:16132325.13021222)2()(}5.1{25.112125.11105.1=−⎟⎟⎠⎞⎜⎜⎝⎛−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+=−+==≤∫∫∫∞−x x x dx x xdx dx x p X P . 12.设随机变量X 的密度函数为⎪⎩⎪⎨⎧>≤=.2π||,0;2π||,cos )(x x x A x p 试求(1)系数A ;(2)X 落在区间 (0, π /4) 内的概率. 解:(1)由密度函数正则性知122πsin 2πsinsin cos )(2π2π2π2π==⎟⎠⎞⎜⎝⎛−−===−−∞+∞−∫∫A A A xA xdx A dx x p , 故21=A ;(2)所求概率为4204πsin 21sin 21cos 21}4π0{4π04π=−===<<∫x xdx X P .13.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1)系数A ;(2)X 落在区间 (0.3, 0.7) 内的概率; (3)X 的密度函数.解:(1)由连续随机变量分布函数的连续性知A A x F F F x =⋅==−==−→211)(lim )01()1(1,故A = 1; (2)所求概率为P {0.3 < X < 0.7} = F (0.7) − F (0.3) = 0.7 2 − 0.3 2 = 0.4;(3)密度函数p (x ) = F ′(x ),当x < 0时,F (x ) = 0,有p (x ) = F ′(x ) = 0,当0 ≤ x < 1时,F (x ) = x 2,有p (x ) = F ′(x ) = 2x , 当x ≥ 1时,F (x ) = 1,有p (x ) = F ′(x ) = 0,故X 的密度函数为⎩⎨⎧<≤=.,0;10,2)(其他x x x p 14.学生完成一道作业的时间X 是一个随机变量,单位为小时.它的密度函数为⎩⎨⎧≤≤+=.,0;5.00,)(2其他x x cx x p (1)确定常数c ;(2)写出X 的分布函数;(3)试求在20min 内完成一道作业的概率; (4)试求10min 以上完成一道作业的概率. 解:(1)由密度函数正则性知1812423)()(5.00235.002=+=⎟⎟⎠⎞⎜⎜⎝⎛+=+=∫∫∞+∞−c x x c dx x cx dx x p ,故c = 21; (2)分布函数F (x ) = P {X ≤ x },分段点为x = 0, 0.5,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0,当0 ≤ x < 0.5时,2727)21()()(2302302x x u u du u u du u p x F xxx+=⎟⎟⎠⎞⎜⎜⎝⎛+=+==∫∫∞−,当x ≥ 0.5时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤+<=;5.0,1;5.00,27;0,0)(23x x x x x x F(3)所求概率为5417181277312131731}316020{23=+=⎟⎠⎞⎜⎝⎛×+⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==≤F X P ;(4)所求概率为1081037212167161216171611}616010{23=−−=⎟⎠⎞⎜⎝⎛×−⎟⎠⎞⎜⎝⎛×−=⎟⎠⎞⎜⎝⎛−==≥F X P . 15.设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A = {X > a }和B = {Y > a }独立,且P (A ∪B ) = 3/4,求常数a . 解:由于事件A 和B 独立,且显然有P (A ) = P (B ),则43)]([)(2)()()()()()()()(2=−=−+=−+=A P A P B P A P B P A P AB P B P A P B A P ∪, 可得21)(=A P 或23)(=A P (舍去), 显然0 < a < 2,有218181d 83}{)(32322=−===>=∫a x x x a X P A P a a , 故34=a .16.设连续随机变量X 的密度函数p (x ) 是一个偶函数,F (x ) 为X 的分布函数,求证对任意实数a > 0,有(1)∫−=−=−adx x p a F a F 0)(5.0)(1)(;(2)P {| X | < a } = 2F (a ) − 1;(3)P {| X | > a } = 2[1 − F (a )]. 证:(1)因p (x ) 为偶函数,有∫∫+∞−∞−=a a dx x p dx x p )()(且5.0)(0=∫∞−dx x p ,则∫∫∫∫+=+==∞−∞−a aa dx x p dx x p dx x p dx x p a F 0)(5.0)()()()(,故∫∫∫∫−=−=−===−∞−+∞−∞−a aadx x p a F dx x p dx x p dx x p a F 0)(5.0)(1)(1)()()(;(2)P {| X | < a } = P {−a < X < a } = F (a ) − F (−a ) = F (a ) − [1 − F (a )] = 2 F (a ) − 1; (3)P {| X | > a } = 1 − P {| X | ≤ a } = 1 − P {| X | < a } = 1 − [2 F (a ) − 1] = 2 − 2 F (a ).习题2.21. 设离散型随机变量X 的分布列为3.03.04.0202P X −试求E (X ) 和E (3X + 5).解:E (X ) = (−2) × 0.4 + 0 × 0.3 + 2 × 0.3 = −0.2;E (3X + 5) = (−1) × 0.4 + 5 × 0.3 + 11 × 0.3 = 4.4. 2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X 的分布列为04.009.013.031.033.010.0543210P X试求顾客在商店平均购买服装件数.解:平均购买服装件数为E (X ) = 0 × 0.10 + 1 × 0.33 + 2 × 0.31 + 3 × 0.13 + 4 × 0.09 + 5 × 0.04 = 1.9. 3. 某地区一个月内发生重大交通事故数X 服从如下分布002.0006.0026.0087.0216.0362.0301.06543210P X试求该地区发生重大交通事故的月平均数. 解:月平均数E (X ) = 0 × 0.301 + 1 × 0.362 + 2 × 0.216 + 3 × 0.087 + 4 × 0.026 + 5 × 0.006 + 6 × 0.002 = 1.201. 4. 一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X 为8桶中被污染的桶数,试求X 的分布列,并求E (X ).解:样本点总数125970820=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数64358150=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0511.01259706435}0{===X P , 事件“X = 1”所含样本点个数32175715151=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2554.012597032175}1{===X P , 事件“X = 2”所含样本点个数50050615252=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3973.012597050050}2{===X P , 事件“X = 3”所含样本点个数30030515353=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2384.012597030030}3{===X P , 事件“X = 4”所含样本点个数6825415454=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0542.01259706825}4{===X P , 事件“X = 5”所含样本点个数455315555=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0036.0125970455}5{===X P , 故X 的分布列为0036.00542.02384.03973.02554.00511.0543210PX且E (X ) = 0 × 0.0511 + 1 × 0.2554 + 2 × 0.3973 + 3 × 0.2384 + 4 × 0.0542 + 5 × 0.0036 = 2. 5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1, 2, 2, 5, 10(g );(乙)1, 2, 3, 4, 10(g );(丙)1, 1, 2, 5, 10(g ),称重时只能使用一组砝码.问:当物品的质量为1g 、2g 、…、 10g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少? 解:设X 1 , X 2 , X 3分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,当物品的质量为1g 、2g 、…、10g 时,有X 1 = 1、1、2、2、1、2、2、3、3、1,即P {X 1 = 1} = 0.4,P {X 1 = 2} = 0.4,P {X 1 = 3} = 0.2, X 2 = 1、1、1、1、2、2、2、3、3、1,即P {X 2 = 1} = 0.5,P {X 2 = 2} = 0.3,P {X 2 = 3} = 0.2, X 3 = 1、1、2、3、1、2、2、3、4、1,即P {X 3 = 1} = 0.4,P {X 3 = 2} = 0.3,P {X 3 = 3} = 0.2,P {X 3 = 4} = 0.1,则平均砝码数E (X 1 ) = 1 × 0.4 + 2 × 0.4 + 3 × 0.2 = 1.8,E (X 2 ) = 1 × 0.5 + 2 × 0.3 + 3 × 0.2 = 1.7, E (X 3 ) = 1 × 0.4 + 2 × 0.3 + 3 × 0.2 + 4 × 0.1 = 2, 故用乙组砝码称重所用的平均砝码数最少.6. 假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 故9245124581540)(=×+×+×=X E .7. 对一批产品进行检查,如查到第a 件全为合格品,就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p .问每批产品平均要查多少件?解:设X 表示检查一批产品要查的件数,X 的全部可能取值为1, 2, …, a – 1, a ,则P {X = 1} = p ,P {X = 2} = (1 – p )p ,…,P {X = a – 1} = (1 – p ) a − 2 p ,P {X = a } = (1 – p ) a − 1, 即E (X ) = 1 ⋅ p + 2 (1 – p ) p + … + (a – 1) (1 – p ) a − 2 p + a (1 – p ) a − 1,有(1 – p )E (X ) = 1 ⋅ (1 – p ) p + 2 (1 – p )2 p + … + (a – 2) (1 – p ) a − 2 p + (a – 1) (1 – p ) a − 1 p + a (1 – p ) a , 得E (X ) – (1 – p )E (X ) = p + (1 – p ) p + … + (1 – p ) a − 2 p + a (1 – p ) a − 1 – (a – 1) (1 – p ) a − 1 p – a (1 – p ) a ,即)]1()1([)1()1(1])1(1[)(11p a p a a p p p p X pE a a −−−−−+−−−−=−−= 1 – (1 – p ) a − 1 + (1 – p ) a − 1 ⋅ p = 1 – (1 – p ) a − 1 ⋅ (1 – p ) = 1 – (1 – p ) a ,故pp X E a)1(1)(−−=.8. 某厂推土机发生故障后的维修时间T 是一个随机变量(单位:h ),其密度函数为⎩⎨⎧≤>=−.0,0;0,e 02.0)(02.0t t t p t 试求平均维修时间. 解:平均维修时间5002.0e e e )e (e 02.0)(002.0002.0002.0002.0002.0=−=+−=−=⋅=+∞−∞+−∞+−∞+−∞+−∫∫∫tttt t dt t d t dt t T E .9. 某新产品在未来市场上的占有率X 是仅在区间 (0, 1) 上取值的随机变量,它的密度函数为⎩⎨⎧<<−=.,0;10,)1(4)(3其他x x x p 试求平均市场占有率.解:平均市场占有率∫∫−+−=−⋅=143213)412124()1(4)(dx x x x x dx x x X E5154342105432=⎟⎠⎞⎜⎝⎛−+−=x x x x .10.设随机变量X 的密度函数如下,试求E (2 X + 5).⎩⎨⎧≤>=−.0,0;0,e )(x x x p x 解:7e 25e 2e )52()e )(52(e )52()52(0=−=++−=−+=+=++∞−+∞−+∞−+∞−+∞−∫∫∫xx xx x dx x d x dx x X E .11.设随机变量X 的分布函数如下,试求E ( X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0,当x > 1时,)1(21e 41)()(−−=′=x x F x p ,∫∫∞+−−∞−⎟⎠⎞⎜⎝⎛−⋅+⋅=1)1210][e 21)(e 21x x d x d x 则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(210e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,故1641)1(21)(=×+−×=X E .12.某工程队完成某项工程的时间X (单位:月)是一个随机变量,它的分布列为1.02.03.04.013121110P X(1)试求该工程队完成此项工程的平均月数;(2)设该工程队所获利润为Y = 50(13 – X ),单位为万元.试求该工程队的平均利润; (3)若该工程队调整安排,完成该项工程的时间X (单位:月)的分布为1.04.05.0121110P X则其平均利润可增加多少?解:(1)平均月数E (X ) = 10 × 0.4 + 11 × 0.3 + 12 × 0.2 + 13 × 0.1 = 11.(2)平均利润为E (Y ) = E [50 (13 – X )] = 150 × 0.4 + 100 × 0.3 + 50 × 0.2 + 0 × 0.1 = 100(万元); (3)因E (Y 1) = E [50 (13 – X 1)] = 150 × 0.5 + 100 × 0.4 + 50 × 0.1 = 120,有E (Y 1) – E (Y ) = 20,故平均利润增加20万元.13.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0π;0,2cos 21)(其他x x x p 对X 独立重复观察4次,Y 表示观察值大于π /3的次数,求Y 2的数学期望.解:Y 的全部可能取值为0, 1, 2, 3, 4,因216πsin 2πsin2sin2cos 21}3π{π3ππ3π=−===>=∫x dx x X P p , 则161)1(}0{4=−==p Y P ,164)1(14}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,166)1(24}2{22=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P , 164)1(34}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,161}4{4===p Y P , 故5168016141643166216411610)(222222==×+×+×+×+×=Y E .14.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 试求21X 的数学期望. 解:438383112020222==⋅=⎟⎠⎞⎜⎝⎛∫∫dx dx x x X E .15.设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明∑+∞=≥=1}{)(k k X P X E .证:)(}{}{}{}{11111X E n X nP n X P n X P k X P n n nk k kn k =======≥∑∑∑∑∑∑+∞=+∞==+∞=+∞=+∞=.16.设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明∫∫∞−+∞−−=0)()](1[)(dx x F dx x F X E .证:设X 的密度函数为p (x ),有p (x ) = F ′(x ),故∫∫∫∫∞−∞−+∞+∞∞−+∞+−−−−=−−000)]([)()](1[)](1[)()](1[x F xd x xF x F xd x F x dx x F dx x F)()()()()(0)]([00000X E dx x xp dx x xp dx x xp dx x xp dx x p x ==+=+−−−=∫∫∫∫∫+∞∞−∞−+∞∞−+∞.习题2.31. 设随机变量X 满足E (X ) = Var (X ) = λ ,已知E [(X − 1) (X − 2)] = 1,试求λ . 解:因E (X ) = Var (X ) = λ ,有E (X 2) = Var (X ) + [E (X )]2 = λ + λ 2 ,则E [(X − 1) (X − 2)] = E (X 2 – 3X + 2) = E (X 2) – 3E (X ) + 2 = λ + λ 2 – 3λ + 2 = λ 2 – 2λ + 2 = 1, 得λ 2 – 2λ + 1 = 0,即 (λ – 1)2 = 0, 故λ = 1.2. 假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 得9245124581540)(=×+×+×=X E ,且154451245124581540)(2222==×+×+×=X E , 故4058892154)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 3. 已知E (X ) = –2,E (X 2) = 5,求Var (1 – 3X ).解:因Var (X ) = E (X 2) – [E (X )]2 = 5 – (–2) 2 = 1,故Var (1 – 3X ) = (–3)2 Var (X ) = 9 × 1 = 9. 4. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x试求Var (X ).解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0, 当x > 1时,)1(21e 41)()(−−=′=x x F x p ,则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(21e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,可得1641)1(21)(=×+−×=X E ,且∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)1(212021)1(2120222e 41e 21e 412e )()(dx x dx x dx x dx x dx x p x X E x x x x因2e 202e e )(e e 00020202=−=⋅−⋅=⋅=∫∫∫∫∞−∞−∞−∞−∞−dx x xdx x d x dx x x x xx x ,∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=⋅−=1)1(211)1(2121)1(2121)1(2122e2e2][e2exdx x d x dx x x x x x26642e421)1(21=×+=+=∫∞+−−dx x x ,可得2152641221)(2=×+×=X E ,故2131215)]([)()Var(222=−=−=X E X E X .5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<−≤<−+=.,0;10,1;01,1)(其他x x x x x p试求Var (3X + 2).解:因061613232)1()1()()(13201321001=+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x xp X E , 且611211214343)1()1()()(1043014310201222=+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x p x X E , 则61)]([)()Var(22=−=X E X E X , 故23619)Var(9)23Var(=×==+X X .6. 试证:对任意的常数c ≠ E (X ),有Var (X ) = E (X – E (X ))2 < E (X – c )2.证:因E (X – c )2 = E (X 2 – 2cX + c 2) = E (X 2) – 2c E (X ) + c 2 = E (X 2) – [E (X )]2 + [E (X )]2 – 2c E (X ) + c 2= E (X – E (X ))2 + [E (X ) – c ]2 > E (X – E (X ))2 = Var (X ).7. 设随机变量X 仅在区间[a , b ]上取值,试证a ≤ E(X) ≤ b ,22)Var(⎟⎠⎞⎜⎝⎛−≤a b X .证:因X ≥ a ,有X – a ≥ 0,得E (X – a ) = E (X ) – a ≥ 0,即E (X ) ≥ a ,又因X ≤ b ,同理可得E (X ) ≤ b ,故a ≤ E (X ) ≤ b ;因a ≤ X ≤ b ,有222a b b a X a b −≤+−≤−−,得2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X , 则022222222≤⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−a b b a X E a b b a X E ,即2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X E , 故22222))(()Var(⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=a b b a X E X E X E X .8. 设随机变量X 取值x 1 ≤ … ≤ x n 的概率分别是p 1 , …, p n ,11=∑=nk k p .证明212)Var(⎟⎠⎞⎜⎝⎛−≤x x X n .证:因x 1 ≤ X ≤ x n ,有222111x x x x X x x n n n −≤+−≤−−,得212122⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−x x x x X n n ,故2121212222))(()Var(⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=x x x x E x x X E X E X E X n n n .9. 设g (x ) 为随机变量X 取值的集合上的非负不减函数,且E (g (X )) 存在,证明:对任意的ε > 0,有)())((}{εεg X g E X P ≤>.注:此题应要求g (ε ) ≠ 0.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),因g (x ) 为非负不减函数,当x > ε 时,有g (x ) ≥ g (ε ) > 0,即1)()(≥εg x g , 故)())(()()()()()()()()()(}{εεεεεεεg X g E g X g E dx x p g x g dx x p g x g dx x p X P =⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=>∫∫∫∞+∞−∞+∞+. 10.设X 为非负随机变量,a > 0.若E (e aX)存在,证明:对任意的x > 0,有axaX E x X P e )(e }{≤≥.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),故ax aX ax aX ax au xax auxE E du u p du u p du u p x X P e )(e e e )(e e )(e e )(}{=⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=≥∫∫∫∞+∞−∞+∞+. 11.已知正常成人男性每升血液中的白细胞数平均是7.3 × 10 9,标准差是0.7 × 10 9.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2 × 10 9至9.4 × 10 9之间的概率的下界. 解:设X 表示“每升血液中的白细胞数”,有E (X ) = 7.3 × 10 9,Var (X ) = (0.7 × 10 9) 2 = 0.49 × 10 18,则P {5.2 × 10 9 ≤ X ≤ 9.4 × 10 9} = P {–2.1 × 10 9 ≤ X – 7.3 × 10 9 ≤ 2.1 × 10 9} = P { | X – E (X ) | ≤ 2.1 × 10 9}989111041.41049.01)101.2()Var(1181829=−=××−=×−≥X ,故所求概率的下界为98.习题2.41. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率. 解:设X 表示“取到的不合格品个数”,有X 服从二项分布b (3, 0.1),故所求概率为972.09.01.0139.0}1{}0{}1{23=××⎟⎟⎠⎞⎜⎜⎝⎛+==+==≤X P X P X P . 2. 一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率. 解:设X 表示“检查到的一级品个数”,有X 服从二项分布b (5, 0.8),故所求概率为99328.02.08.0152.01}1{}0{1}2{45=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P . 3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解:设X 表示“三次射击所中的10环次数”,有X 服从二项分布b (3, 0.7),故所求概率为784.07.03.07.023}3{}2{}2{32=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .4. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位 顾客,问到时顾客来到餐厅而没有座位的概率是多少? 解:设X 表示“到时来到餐厅的顾客人数”,有X 服从二项分布b (52, 0.8),故所求概率为0001279.08.02.08.05152}52{}51{}51{5251=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .5. 设随机变量X ~ b (n , p ),已知E (X ) = 2.4,Var (X ) = 1.44,求两个参数n 与p 各为多少? 解:因X ~ b (n , p ),有E (X ) = np = 2.4,Var (X ) = np (1 – p ) = 1.44,有6.04.244.11==−p , 故p = 0.4,64.04.2==n . 6. 设随机变量X 服从二项分布b (2, p ),随机变量Y 服从二项分布b (4, p ).若P {X ≥ 1} = 8/9,试求P {Y ≥ 1}.解:因X 服从二项分布b (2, p ),有98)1(1}0{1}1{2=−−==−=≥p X P X P ,即32=p ,故8180311)1(1}0{1}1{44=⎟⎠⎞⎜⎝⎛−=−−==−=≥p Y P Y P .7. 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算. 解:设X 表示“发现的不合格品个数”,有X 服从二项分布b (40, 0.02),(1)所求概率为1905.098.002.014098.01}1{}0{1}2{3940=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P ;(2)因n = 40较大,p = 0.02很小,取λ = np = 0.8,有)8.0(~P X ,故查表可得所求概率为191.0809.01}1{1}2{=−=≤−=≥X P X P . 8. 设X 服从泊松分布,且已知P {X = 1} = P {X = 2},求P {X = 4}. 解:设X 服从泊松分布P (λ ),有λ > 0,则λλλλλ−−=====e 2}2{e 1}1{21P X P ,得22λλ=,即λ = 2,故查表可得P {X = 4} = P {X ≤ 4} – P {X ≤ 3} = 0.947 – 0.857 = 0.090.9. 已知某商场一天来的顾客数X 服从参数为λ 的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为λ p 的泊松分布. 证:设Y 表示“该商场一天内购买商品的顾客人数”,Y 的全部可能取值为0, 1, 2, …,有∑∑∞=−−∞=−⎟⎟⎠⎞⎜⎜⎝⎛⋅======rk rk r k rk p p r k k k X r Y P k X P r Y P )1(!e }|{}{}{λλ ∑∑∑∞=+−∞=−−∞=−−−=−−=−−⋅⋅=0!)1(!e )!()1(!e )1()!(!!!e n nr n r rk rk k r rk rk r k n p r p r k p r p p p r k r k k λλλλλλpr p r n n r r r p r p n p r p λλλλλλλλ−−−−∞=−=⋅=−=∑e !)(e !e )(!)]1([!e )1(0, r = 0, 1, 2, …, 故Y 服从参数为λ p 的泊松分布.10.从一个装有m 个白球、n 个黑球的袋子中返回地摸球,直到摸到白球时停止.试求取到黑球数的期望. 解:设X 表示“取到的黑球数”,有X + 1服从参数为n m mp +=的几何分布,有mn m p X E +==+1)1(, 故mnm n m X E =−+=1)(. 11.某种产品上的缺陷数X 服从下列分布列:121}{+==k k X P ,k = 0, 1, …,求此种产品上的平均缺陷数.解:因X + 1服从参数为21=p 的几何分布⎟⎠⎞⎜⎝⎛21Ge ,有21)1(==+p X E ,故E (X ) = 2 – 1 = 1. 12.设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤ 1/2}出现的次数,试求P {Y = 2}.解:因412}21{212210===≤∫x xdx X P ,有Y 服从二项分布⎟⎠⎞⎜⎝⎛41,3b , 故649434123}2{2=⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛==Y P .13.某产品的不合格品率为0.1,每次随机抽取10件进行检查,若发现其中不合格品数多于1,就去调整设备.若检验员每天检查4次,试问每天平均要调整几次设备. 解:设X 表示“所取10件中的不合格品数”,有X 服从二项分布b (10, 0.1),则需要调整设备的概率为2639.09.01.01109.01}1{}0{1}2{910=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P , 设Y 表示“每天调整设备的次数”,有X 服从二项分布b (4, 0.2639), 故E (X ) = 4 × 0.2639 = 1.0556,即每天平均要调整1.0556次设备.习题2.51. 设随机变量X 服从区间 (2, 5)上的均匀分布,求对X 进行3次独立观察中,至少有2次的观察值大于3的概率. 解:设Y 表示“X 大于3的次数”,有Y 服从二项分布b (3, p ),且322535}3{=−−=>=X P p , 故所求概率为272032313223}2{32=⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=≥Y P . 2. 在 (0, 1)上任取一点记为X ,试求⎭⎬⎫⎩⎨⎧≥+−081432X X P .解:因X 服从区间 (0, 1)上的均匀分布,且021*******≥⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=+−X X X X ,即41≤X 或21≥X ,故432110412141081432=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧≥≤=⎭⎬⎫⎩⎨⎧≥+−X X P X X P 或.3. 设K 服从 (1, 6)上的均匀分布,求方程x 2 + Kx + 1 = 0有实根的概率.解:因方程x 2 + Kx + 1 = 0有实根,有判别式 ∆ = K 2 – 4 ≥ 0,即K ≤ – 2或K ≥ 2,故所求概率为5416260}22{=−−+=≥−≤K K P 或. 4. 设流经一个2 Ω 电阻上的电流I 是一个随机变量,它均匀分布在9A 至11A 之间.试求此电阻上消耗的平均功率,其中功率W = 2I 2.解:因电流I 的密度函数为⎪⎩⎪⎨⎧<<=.,0,119,21)(其他x x p故平均功率36023212)(2)2()(1193119222==⋅===∫∫∞+∞−x dx x dx x p x I E W E . 5. 某种圆盘的直径在区间 (a , b )上服从均匀分布,试求此种圆盘的平均面积. 解:设d 表示“圆盘的直径”,S 表示“圆盘的面积”,有2π41d S =, 因直径d 密度函数为⎪⎩⎪⎨⎧<<−=.,0,,1)(其他b x a ab x p 故平均面积)(4π)(4π1π41)(π41π41)(223222b ab a a b x dx a b x dx x p x d E S E ba b a ++=−=−⋅==⎟⎠⎞⎜⎝⎛=∫∫∞+∞−. 6. 设某种商品每周的需求量X 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.解:因X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,3010,201)(其它x x p 并设每周进货量为a 单位商品,商店所获利润为Y 元,当X ≤ a 时,Y = 500X − 100 (a − X ) = 600X − 100a ;当X > a 时,Y = 500a + 300 (X − a ) = 300X + 200a ,即⎩⎨⎧>+≤−==,,200300,,100600)(a X a X a X a X X g Y则∫∫∫++−==+∞∞−3010201)200300(201)100600()()()(a adx a x dx a x dx x p x g Y E5250350215)10215()515(2302102++−=++−=a a ax x ax x a a ,要使得92805250350215)(2≥++−=a a Y E ,有040303502152≤+−a a ,可得26362≤≤a ,故a 可取21, 22, 23, 24, 25, 26,即最少进货量为21单位商品. 7. 已知X ~ Exp (λ ),试在λ = 0.1下求P {5 ≤ X ≤ 20}.解:因X 的密度函数为⎩⎨⎧<≥=−,0,0,0,e )(x x x p x λλ 故4712.0e e )e (e 1.0e }205{25.02051.02051.0205=−=−===≤≤−−−−−∫∫x x x dx dx X P λλ.8. 统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T (以日计)服从均值为241的指数分布.试求P {50 ≤ T ≤ 100}.解:因T 服从指数分布,且2411)(==λT E ,有T 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 2411)(241t t t p t故1523.0ee)e(e 2411}10050{241100241501005024110050241=−=−==≤≤−−−−∫x t dt T P .9. 若一次电话通话时间X (单位:min )服从参数为0.25的指数分布,试求一次通话的平均时间. 解:因X 服从参数为λ = 0.25的指数分布,故一次通话的平均时间41)(==λX E .10.某种设备的使用寿命X (以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利100元,而调换一台设备需花费300元.试求每台设备的平均利润.解:因X 服从指数分布,且41)(==λX E ,有X 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 41)(4x x x p x设Y 表示“每台设备的利润”,当X ≤ 1时,Y = 100 − 300 = −200;当X > 1时,Y = 100.故平均利润∫∫∞+−−+−=>+≤−=14104e 41100e 41200}1{100}1{200)(dx dx X P X P Y E xx 6402.33200e 300e100)e 1(200)e (100)e (2004141411414=−=+−−=−+−−=−−−+∞−−x x.11.设顾客在某银行的窗口等待服务的时间X (以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=−.,0,0,e 51)(5其他x x p x某顾客在窗口等待服务,若超过10min ,他就离开.他一个月要到银行5次,以Y 表示一个月内他未。
概率论和数理统计第二章课后习题答案解析

概率论与数理统计课后习题答案第二章1. 一袋中有5只乒乓球,编号为 1 , 2, 3, 4, 5,在其中同时取 3只,以X 表示取出的3 只球中的最 大号码,写出随机变量 X 的分布律. 【解】X 3,4,5P(X 3)c ;0.1P(X4) 3 c 3 c 20.3P(X5)30.6C 5以X 表示取出 的次品个数,求: (1) X 的分 布律;(2) X 的分 布函数并作图;⑶1P{X}, P{1 X 23 3 / P{1 X -}, P{1 X 2}【解】X 0,1,2.c 3 13 22P(X0)—3C153512 P(X1) 亠3—C1535c 131P(X2)3C 1535(2)当 x <0 时,F (x ) =P (X w x ) =0当 0 W x <1 时,F (x ) =P( X x ) =P (X =0)=x 00 x 1 1 x 2x 23.射手向目标独立 地进行了 3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函 数,并求3次射击中至少击中 2次的概率. 【解】设X 表示击中目标的次数•则X =0,1,2,3.P(X 0) (0.2)3 0.008 P(X 1) C ;0.8(0.2)2 0.096 P(X 2) C 3(0.8)20.2 0.384P(X 3) (0.8)3 0.5120,x 00.008, 0 x 1F(x) 0.104,1 x 20.488, 2x3 1, x 34. ( 1)设随机变量X 的分布律为kRX=k }=a —,k!其中k =0, 1, 2,…,入〉0为常数,试确定常数 a. (2)设随机变量X 的分布律为P {X =k }=a/N , k =1, 2,…,N,22 35当1W x <2时 ,F ( x ) =P( X W x ) =F (X =0)+F (X =1)= 34 35当x > 2时, 故X 的分布函 F (x ) =P (X W x ) =1 数F(x)0, 22 35 34 35 1,P(X 2) P(X 2) P(X 3) 0.896试确定常数a .【解】(1)由分布律的性质知k1P(X k) aa®k 0k 0k!a e(2)由分布律的性质知即a 1.5. 甲、乙两人投篮,投中的概率分别为 ”今各投3次,求:(1) 两人投中次数相等的概率; (2)甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则 X 〜b(3,) ,Y 〜b (3,(1)P(X 3,Y 3)(0.4)3(0.3)3C 30.6(0.4) 2C 10.7(0.3)2 +2 2 2 23 3C 3(0.6) 0.4C 3(0.7) 0.3 (0.6) (0.7)0.32076⑵6.设某机场每天有 200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的•试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降 落而没有空闲跑道的概率小于(每条跑道只能允许一架飞机降落 )?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,,设机场需配备N 条跑道,则有P(X N) 0.01200即C :00(0.02)k (0.98)20° k0.01k N 1利用泊松近似N1 P(Xk 1k )k 1Nnp 200 0.02 4.9P(X 1)P(X 0) (1 p)2e 44kP(X N)B0.01k N ik!查表得N A 9.故机场至少应配备 9条跑道.7.有 一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为1,在某天的该时段内有 1000辆汽车通过,问出 事故的次数不小于 2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则 X^b ( 1000,001)8.已知在五重贝努里试验中成功的次数 X 满足RX= 1}=P {X =2},求概率P {X=4}.【解】设在每次试验中成功的概率为p ,则5 k k 5 kP(X 3) C 5(0.3) (0.7)0.16308k 3⑵ 令Y 表示7次独立试验中 A 发生的次数,则 Y 〜b( 7,)7P(Y 3)C k (0.3)k (0.7)7 k 0.35293k 3C :p m (1 p)4 mm=0,1,2,3,454 【解】因为P(X 1)5,故P(X 1)4 99 P(X 4) C 5(1)4| 3 3 A 发生不少于3次时, 进行了 5次独立试验,试求指示灯发出信号的概率;所以9.设事件A 在每一次试验中发生的概率为,当(1)(2) 【解】 进行了 7次独立试验,试求指示灯发出信号的概率. (1)设X 表示5次独立试验中 A 发生的次数,则 X ~6 ( 5,)10243 .指示灯发出信号, 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2 ) t 的泊松分布,而与时间间隔起点无关(时间以小时计)(1)求某一天中午12时至下午3时没收到呼救的概率;2 )求某一天中午12时至下午5时至少收到1次呼救的概率.3e 2【解】(1 )P(X 0) 5P(X 1) 1 P(X 0) 1 e"11.设 P { k kX =k }=C ;p k (1P)2k =0,1,2P { Y =n}=分别为随机变量X,Y 的概率分布,如果已知 5P {X A 1}=,试求 P [Y > 1}.14 5 ke 5P(X 15)1(2) R 保险公司获利不少于10000)12.某教科书出版了 2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有5册错误的概率【解】令X 为2000册书中错误的册数,则 X~b (2000,.利用泊松近似计算np 2000 0.0012【解】X 1,2, L ,k,L14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险的概率为,每个参加保险的人在 1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2)保险公司获利分别不少于 10000元、20000元的概率.【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为 2500 X 12=30000元. 设1年中死亡人数为 X ,则X~b (2500,,则所求概率为由于n 很大,p 很小,入=np =5,故用泊松近似,有即 从而P(Y 1) 1 P(Y 0) 1 (1 p)465 810.80247P(X5) e 2255! 0.001813.进行某种试验,成功的概率为313,失败的概率为 1.以X 表示试验首次成功所需试验的44次数,试写出X 的分布律,并计算 X 取偶数的概率P(X 2) P(X 4) L P(X 2k) L 3 4g 4(4)34 2k 13 )44.在一年中每个人死亡P(2000X30000) P(X 15) 1 P(X 14)p14 5 ke 5P(X 15)1(2) R 保险公司获利不少于10000)k!0.000069P(30000 2000 X 10000) P(X 10)10 e 55k0.986305即保险公司获利不少于10000元的概率在98%A上P (保险公司获利不少于20000) P(30000 2000 X 20000) P(X 5)5 e 55k0.61596120000元的概率约为即保险公司获利不少于15.已知随机变量X的密度函数为f (x)= A e 62%|X|oo v x V+8 , 求:(1) A值;(2) P{0<X<1}; (3) F(x).【解】(1) f(x)dx 1 得Ae |x dx 2Ae x dx 2Ap(0 x dx 当x<0时, F(x)F(x) 21(11e2x 1-e x dx 2x 1 |x| .e dx24 1 x1 e2 dxx 1 1x e dx0 2F(x)1 xe , 21 e 216.设某种仪器内装有三只同样的电子管,1002xx 电子管使用寿命X的密度函数为f(x)=0, 求:(1)(2)(3) 【解】x 100,100.150小时内没有电子管损坏的概率;在开始在这段时间内有一只电子管损坏的概率;F (x).(1) P(X 150) 150 100亍dx 100 x22 3 P(X 3)故所求概率为f(x)2.2 13' 0,其他51dx 33p CK ;)2* 3 3 323Fl)20 27,c\112 2 4⑵ p 2C3;(;)— 3 3 9⑶当 x <100 时 F (x ) =0xf (t)dt X 表示这质点的坐标,设这质点落在] 0, a ]中任意小区间内的概率与这小区间长度成正比例,试求【解】 由题意知X ~u [0, a ],密度函数为故当x <0时F (x )=00*dt : 当 x >a 时,F (x ) =1即分布函数0,3P 1 [P(X 150)](|)38 27当 x > 100 时 F(x)100f(t)dtx 100f(t )dtx100100 t 2dt 100F(x) 1100 x 100x 0,17.在区间[0, a ]上任意投掷一个质点,以 X 的分布函数.f(x)a 0,其他xf(t)dtF(x)a1,18. 设随机变量X 在[2 , 5]上服从均匀分布 值大于3的概率.【解】X ~U [2,5],即.现对X 进行三次独立观测, 求至少有两次的观测19.设顾客在某银行的窗口等待服务的时间 X (以分钟计)服从指数分布 E(-).某顾客在窗5口等待服务,若超过10分钟他就离开•他一个月要到银行 5次,以Y 表示一个月内他未 等到服务而离开窗口的次数,试写出Y 的分布律,并求 P {Y > 1}.1【解】依题意知X ~ E(—),即其密度函数为f(x)1-e 5, x 5 00, x 0该顾客未等到服务而离开的概率为P(X 10)1 d 1e 5dx 1052eY ~ b(5,e 2),即其分布律为P(Y k) C ;(e 2)k (1 e 2)5k ,k 0,1,2,3,4,5 2 5P(Y 1) 1 P(Y 0) 1 (1 e )0.516720.某人乘汽车去火车站乘火车,有两条路可走 .第一条路程较短但交通拥挤,所需时间 X服从N(40, 102);第二条路程较长,但阻塞少,所需时间X 服从N(50 , 42).(1)若动身时离火车开车只有 1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有 45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X 〜N( 40, 102),则故走第二条路乘上火车的把握大些 (2) 若 X 〜N(40, 102),则若 X 〜N(50, 42),则P(X 60) P X 401060 40 10(2) 0.97727若走第二条路,X 〜N( 50, 42),则P(X 60) PX 50 460 50(2.5) 0.9938++P(X 45) PX 40 1045 40 10(0.5) 0.6915P(X 45)X 50 445 50 41.25)23P(X 3)1(1.25) 0.1056故走第一条路乘上火车的把握大些221. 设 X ~N (3 , 2 ),2 1 0.840 1.29(1) 求 R2<X W 5}, P { 4<X W 10} , P { I X |> 2} , P {X > 3};(2)确定 c 使 P {X > c }=P {X < c }.【解】(1) P (2(1) 1P0 2223. 一工厂生产的电子管寿命 X (小时)服从正态分布 N ( 160, (T ),若要求F {120 vXc 200}》,允许c 最大不超过多少? 【解】P(120 X 200) P 120 160 X 16031.25(1) 0.84130.6915 0.5328P( 4 X 10)10 320.9996P(|X| 2)P(X2) P(X2)0.69155 20.9938 20.6977X 3P(X 3) P(〒(0) 0.5⑵c=322. 由某机器生产的螺栓长度(cm )品的概率.X ~N (,),规定长度在土内为合格品,求一螺栓为不合格【解】P(|X 10.05| 0.12) PX 10.05 0.06 0.12 0.06 (2)(0.04562) 2[1 (2)]200 1604040 40x当x > 2时 F(x)f (t)dt 10,x 0.(1) 求常数代B ;(2) 求 RX W 2} , P {X >3};(3)求分布密度f (x )lim F(x)1A 1 U ( ⑴由x得叫 F(x)x 0lim x 0F(x)B 1(2) P(X 2) F(2) 1 e 2P(X 3) 1 F(3)1 (1 e 3) e24.设随机变量X 分布函数为 F (x )=3x xeA Be xt , x 0,( 0),⑶f (x) F (x)0,25.设随机变量X 的概率密度为 (x )=x,2 求X 的分布函数F 【解】当x <0时F (x ) =0 (x ),并画出当 0w x <1 时 F(x) xf (t)dt x tdt 0当 1 w x<2 时 F (X )f (t)dtf(t)dtitdtx 1(2 2x 2丄2x22—2x 12x, 0,f ( x )f (t)dt1f(t )dtt)dtx 1, x 2, 其他.F ( x ).x 0f(t)dtx1 f(t)dt0, 其他0,x 02x,0 x 1F(x)22x 2x 1, 1x 221,x 226.设随机变量X 的密度函数为(1)f (x )= a e |x|,入 >0;bx,0x1,1(2)f (x )= —,1 x 2, x0, 其他.试确定常数a , b,并求其分布函数 F (x )故其分布函数F(x)x, 0 x 1 1 f (x) 2, 1 x 2x 【解】(1)由 f(x)dx 1知1ae凶dx 2a0 e xdx2a即密度函数为f(x)当 x < 0 时 F(x) xf (x)dxe xdx 2当 x >0 时 F(x)f (x)dxdx1 xe 2 xe 0 2 x dxf (x)dx1bxdx14dx1x得即X 的密度函数为b =1由 P(X z /2)0.0015得 1 (Z /2)0.0015当 x W 0 时 F (x ) =0xx当 0<X <1 时 F (x) f (x)dx f (x)dx o f (x)dx2xx xdx — o(2)=,求 z , z /2.【解】(1) P(X z ) 0.01即 1 (z ) 0.01即 (z )0.09故z 2.33(2)由 P(X z )0.003得1 (z )0.003即(z ) 0.997x当 1 W x <2 时 F (X )f (x)dx0dx1xd 0X1X1飞 Ix3 12 x当 x > 2 时 F (x ) =1故其分布函数为0,x 02x,0 x 1F(x)23 11 x 22 x1,x 227.求标准正态分布的上分位点,(1)=,求 z ; dx查表得z 2.75由P(X z /2) 0.0015得1 (Z/2)0.0015【解】(1)当 y < 0 时,F Y (Y ) P(Y y) 0(z /2)0.9985求Y =X 2的分布律.【解】Y 可取的值为0, 1 , 4, 91 P(Y 0) P(X 0)- 5 117P(Y 1) P(X1) P(X 1)6 15 301 P(Y 4) P(X 2) 5 11P(Y 9) P(X 3)30故Y的分布律为29.设 { =}=( ), =1,2,…,令21,当X 取偶数时 1,当X 取奇数时.求随机变量X 的函数Y 的分布律. 【解】P(Y 1) P(X 2) P(X 4) LP(Y 1) 1 P(Y 1)-330. 设 X ~N( 0,1).(1) 求Y =e X 的概率密度; (2)求Y =2X 2+1的概率密度;(3) 求Y = | X |的概率密度.查表得28.设随机变量X 的分布律为z /22.96P(X 2k) L(2)4L 4 1(扩L1 .(;)/(1;)当y>0 时,F Y(y) P(Y y) P(e x y) P(X In y)【解】(1)当y< 0 时,F Y(Y) P(Y y) 0【解】(1)P(0 X 1) 1P(Y 2X 21 1) 1yy f x(x)dx2 e y 2/2,y 031. 设随机变量X ~U( 0,1 ),试求:X_ _______________(1) Y =e 的分布函数及密度函数; (2)Z = f Y (y)In yf x (x)dxdF Y (y) dy1-f x (ln y) yy ;2nln 2y /2,y(3) P(Y 当 y w 1 时 F Y (y) 当 y >i 时 F Y (y)0) 1 P(Y P(Y P X 2y) y)P(2X 2y) xy 1」P2y 1f Y (y)y 1当 y w 0 时 F Y (y) P(Y y) 当 y >0 时 F Y (y)P(l X | y)P( y)-J故fY(y)ddy FY(y) fX(y)f x ( y)2ln X 的分布函数及密度函数P(1 Y e X e) 1当y 1 时F Y(y) P(Y y) 0【解】(1) P(0 X 1) 1当1<y<e 时F Y( y) XP(e y) p(x In y)当y>e 时F Y(y) 即分布函数故Y的密度函数为(2)由P (0<X<1)ln ydx In P(e X y)=1当z w 0 时,F Z(Z)当Z>0时,F Z(Z)即分布函数故Z的密度函数为32.设随机变量X的密度函数为试求Y=sin X的密度函数.F Y(y)f Y(y)P(ZP(Z0,In y,1,P(ZZ)Z)P(ln X1z/2dxF Z(Z)f z(z)f (x)=y,0,P(2)其他0) 12ln xP(XZ/2e0,-z/21-e1e20,2x~2,n0,Z/2Z)z/2\e )【解】P(0 Y 1) 1当 y w 0 时,F Y (y) P(Y y) 0 当0<y <1时, F Y (y)P(Y y)P(sin Xy)F Y (y) 故Y 的密度函数为 P(0arcsin y) arcsin y 2dx0 Jn12 ((arcs in y )n 2 arcs in yn P( n arcsin y X ni刍dxn arcsinyn1- 1( n- arcsin y)27tf Y(y)1 0,其他33.设随机变量X 的分布函数如下: F(x)试填上(1),(2),(3) 项. 【解】由lim F(x) 1知②填x⑶.由右连续性lim + F(x)x x 0 F(x °)1知X 。
概率论与数理统计习题解答

概率论与数理统计习题解答第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B C A B C A B CA B CA B C A B CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?(2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB 解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3,所以 P (AB )=0.4, 故()P AB= 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)= 18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a ba ba bA A A AP A P B A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则 333333101016()()120720或者====C A P A P A C A .(2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2)()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+1()()()P A P B P AB =--+433532541100100100100=--+=(1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则 3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.7=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则 500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 2222770.000794A Ap A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法.设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式40()()(|)0.196===∑i i i P B P A P B A由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B故2()(|)0.588==∑i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05. 因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数},0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?由题意,有p=0.1, q=1-p=0.9, 故 (1) 223155(2)(0.1)(0.9)0.0729===P P C(2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:2. 进行某种试验,设试验成功的概率为34,失败的概率为14,以X 表示试验首次成功所需试验的次数,试写出X的分布律,并计算X 取偶数的概率. 解 X 的分布律为:113(),1,2,3,44k P X k k -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭X 取偶数的概率:2113{}(2)4411116331165116k k P X P X k -∞∞∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫==⨯=⎪-⎝⎭∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,X 34 5(1)X 的分布律为:P(X ≤4)=P(3)+P(4)=0.4 (2)Y 的分布律为P(X>3) =04. C 应取何值,函数f(k) =!kC k λ,k =1,2,…,λ>0成为分布律?解 由题意, 1()1k f x ∞==∑, 即0110(1)1!!!0!kkk k k k C C C C e k k k λλλλλ∞∞∞===⎛⎫==-=-= ⎪⎝⎭∑∑∑ 解得:1(1)C e λ=-5. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑0,11/6,11()1/2,121,2x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩;(2) 11(1)26P X P X ⎛⎫<==-= ⎪⎝⎭(3)31()02P X P ⎛⎫<≤=∅= ⎪⎝⎭6. 设某运动员投篮投中的概率为P =0.6,求一次投篮时投中次数X解 X 的分布函数00()0.60111x F x x x ≤⎧⎪=<≤⎨⎪>⎩7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:(1)三次射击中恰好命中两次的概率;(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟的呼唤次数不超过10次的概率. 解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) =!kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =0.1042.(2) P(X ≤10)104401144110.00284!!kkk k e e k k ∞--====-=-∑∑ =0.997169. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4) 解 由已知可得,12,1!2!e e λλλλ--=解得λ=2, (λ=0不合题意)422,(4)4!P X e -==因此= 0.0910. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为0.003,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=0.003的二项分布,即X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此(1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑11. 设连续型随机变量X 的分布函数为20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:(1)系数k ;(2)P(0.25<X<0.75);(3)X 的密度函数;(4)四次独立试验中有三次恰好在区间(0.25,0.75)内取值的概率.解 (1) 由于当0≤x ≤1时,有F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2 又F(1) =1, 所以k ×12=1因此k=1.(2) P(0.25<X<0.75) = F(0.75)-F(0.25) = 0.752-0.252=0.5(3) X 的密度函数为2,01()'()0,x x f x F x Other ≤≤⎧==⎨⎩(4) 由(2)知,P(0.25<X<0.75) = 0.5, 故P{四次独立试验中有三次在(0.25, 0.75)内} =334340.5(10.5)0.25C --=.12. 设连续型随机变量X 的密度函数为1()0,1x F x x ⎧<⎪=⎨⎪≥⎩求:(1)系数k ;(2)12P X⎛⎫<⎪⎝⎭;(3)X 的分布函数.解 (1)由题意,()1f x dx +∞-∞=⎰, 因此111()a r c s i n 111kf x d x d x k x kk ππ+∞+-∞====-=⎰⎰解得:(2)1/21/1/21111arcsin 1/22663k P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数1()()1/2arcsin /11111/x x F x f x dx x x x k ππ-∞<-⎧⎪==+-≤≤⎨⎪>⎩=⎰解得: 13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为212(1),01()0,x x x F x ⎧-<<=⎨⎩其他若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰ 14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为6001,0()6000,xe x F x x⎧<⎪=⎨⎪≥⎩试求在仪器使用的最初200小时以内,至少有一只电子元件损坏的概率.解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=1200600311600x e dx e --=-⎰设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:10033331(1)1(0)1()(1())1()1P Y P Y C P A P A e e--≥=-==--=-=- 15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2<X<4) = 0.3,求P(X<0) 解 由题意知()222422(24)00.3X P X P σσσσ---⎛⎫⎛⎫<<=<<=Φ-Φ=⎪ ⎪⎝⎭⎝⎭即20.30.50.8σ⎛⎫Φ=+= ⎪⎝⎭故20222(0)10.2X P X P σσσσ---⎛⎫⎛⎫⎛⎫<=<=Φ=-Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|<a ) = 0.9.解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭210.9222a a a -⎛⎫⎛⎫⎛⎫=Φ-Φ=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得, 2a =1.65即 a = 3.3 17. 设某台机器生产的螺栓的长度X 服从正态分布N(10.05,0.062),规定X 在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率. 解 由题意,设P 为合格的概率,则()10.05(|10.05|0.12)0.1210.050.12220.06X P P X P X P -⎛⎫=-<=-<-<=-<< ⎪⎝⎭(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=⨯-=则不合格的概率=1-P = 0.045618. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,111116060603()()0.253333456060()1()0.75,33x x X P X x P x x ---⎛⎫<=<=Φ== ⎪++⎝⎭--Φ-=-Φ=查表可得1600.673x --=解得, x 1 = 57.9922260606034()()0.5833333345x x X P X x P ---+⎛⎫<=<=Φ== ⎪++⎝⎭又查表可得2600.213x -=解得, x 2 =60.63. 19. 已知测量误差X (米)服从正态分布N(7.5, 102),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于0.98?解 设一次测量的误差不超过10米的概率为p , 则由题可知107.57.5107.5(10)101010(0.25)(1.75)(0.25)1(1.75)0.598710.95990.5586X p P X P ----⎛⎫=<=<< ⎪⎝⎭=Φ-Φ-=Φ-+Φ=-+= 设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n, 0.5586)于是 P(Y ≥1)=1-P(X=0)=1-(1-0.5586)n ≥0.98 0.4414n ≤0.02, n ≥ln(0.02)/ln(0.4414) 解得:n ≥4.784取n=5, 即,需要进行5次测量. 20.设随机变量X 的分布列为X -2 023P11 3 2试求:(1)2X 的分布列;(2)x 2的分布列. 解 (1) 2X 的分布列如下(2) x 2的分布列21. 设X 服从N(0,1)分布,求Y =|X |的密度函数.解 y=|x|的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩,从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==当y ≤0时,()Y f y =0 因此有 22,0()0,0yY e y f y y ->=≤⎩22. 若随机变量X 的密度函数为23,01()0,x x f x ⎧<<=⎨⎩其他求Y =1x的分布函数和密度函数.解 y=1x在(0,1)上严格单调,且反函数为 h(y)=1y,y>1, h ’(y)=21y -222411113()[()]|()|3Y X X f y f h y h y f y y y y y⎛⎫⎛⎫⎛⎫'==-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭因此有43,1()0,Y y y f y other ⎧>⎪=⎨⎪⎩Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other---⎧=-=->⎪=⎨⎪⎩⎰23. 设随机变量X 的密度函数为22,0(1)()0,0x x f x x π⎧>⎪+=⎨⎪≤⎩试求Y =lnX 的密度函数.解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,则2()[()]|()|()2(1)2,()y yY X X yy y y f y f h y h y f e e e e y e e ππ-'===+=-∞<<+∞+24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则221(ln )21()[()]|()|(ln ),0Y X X y f y f h y h y f y yey μσ--'===>当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y e y f y y μσ--⎧>=≤⎩25. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<并且1'()2(1)h y y =-,则当01y << 12(ln(1))2()[()]|()|11(ln(1))22(1)1212(1)Y X X y f y f h y h y f y y ey ---'==---==-当y ≤0或y ≥1时,()Y f y =0.因此Y 在区间(0, 1)上服从均匀分布. 26. 把一枚硬币连掷三次,以X 表示在三次中正面出现的次数,Y 表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X ,Y )的联合概率分布.解 根据题意可知, (X ,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y 的取值及概率分别为P(X=3, Y=3)=18P(X=2,Y=1)=223113228C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭P(X=1, Y=1)=3113113228C -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭P(X=0, Y=3)=31128⎛⎫= ⎪⎝⎭ 于是,(X ,27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布;(2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =0,1k =,可以计算出联合分布表如下j(2) X,Y 的边缘分布如上表(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立. 28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率j(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)=1/6+1/6+1/6=1/2.29. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:a r c t a n 022arctan 023022122x A B C y A B C A B C A B C ππππππ⎧⎛⎫⎛⎫+-= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪--= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎛⎫⎛⎫⎪++= ⎪ ⎪⎪⎝⎭⎝⎭⎩解得:21,,,22A B C πππ===(2)2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++(3) X 与Y 的边缘分布函数为:211()(,)arctan arctan 222222X x x F x F x ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 211()(,)arctan arctan 222322Y y y F y F y ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭X 与Y 的边缘概率密度为:'22()()(4)X X f x F x x π==+'23()()(9)Y Y f y F y y π==+(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.30. 设二维随机变量(X, Y)的联合概率密度为-(x+y)e ,0,(,)0,x f x y ⎧<<+∞=⎨⎩其他(1)求分布函数F(x, y);(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.解 (1) 当x>0, y>0时, ()00(,)(1)(1)yxu v x y F x y e dudv e e -+--==--⎰⎰ 否则,F (x, y ) = 0.(2) 由题意,所求的概率为11()10((,))(,)120.2642Gxx y P x y G f x y dxdydx e dy e --+-∈===-=⎰⎰⎰⎰31. 设随机变量(X ,Y )的联合概率密度为-(3x+4y)Ae ,0,0,(,)0,x y f x y ⎧>>=⎨⎩其他求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得(34)00(,)1/12x y f x y dxdy Ae dxdy A +∞+∞+∞+∞-+-∞-∞===⎰⎰⎰⎰ 解得 A=12.(2) X, Y 的边缘概率密度分别为:(34)30123,0()(,)0,x y x X edy e x f x f x y dy other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰ (34)40124,0()(,)0,x y y Y edx e y f y f x y dx other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰(3) (01,02)P x y <≤<≤21(34)03812(1)(1)x y edxdye e -+--==--⎰⎰32. 设随机变量(X ,Y )的联合概率密度为2,01,02,(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则122012310((,))(,)3456532672G x P x y G f x y dxdyxy dx x dy x x x dx -∈==+=++=⎰⎰⎰⎰⎰33. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.解 由于(X, Y)服从均匀分布,则G的面积A 为:2112001(,)()6x x GA f x y dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰,(X, Y)的联合概率密度为:6,01(,)0,x f x y other≤<⎧=⎨⎩.X,Y 的边缘概率密度为:2266(),01()(,)0,x x X dy x x x f x f x y dy other +∞-∞⎧=-≤<⎪==⎨⎪⎩⎰⎰ ),01()(,)0,y Y dy y y f y f x y dx other +∞-∞⎧=≤<⎪==⎨⎪⎩⎰34. 设X 和Y 是两个相互独立的随机变量,X 在(0, 0.2)上服从均匀分布,Y 的概率密度是55,0()0,0y y e y f y y -⎧ >=⎨≤⎩求:(1)X 和Y 和联合概率密度; (2)P(Y ≤X).解 由于X 在(0, 0.2)上服从均匀分布,所以()1/0.25X f x == (1) 由于X ,Y 相互独立,因此X, Y 525,0,00.2(,)()()0,y X Y e y x f x y f x f y other -⎧><<==⎨⎩(2) 由题意,所求的概率是由直线所围的区域,如右图所示, 因此0.2500.2511()(,)255111xy Gx P Y X f x y dxdy dx e dye dx e e ----≤===-=+-=⎰⎰⎰⎰⎰35. 设(X ,Y )的联合概率密度为1,01,02(,)20,x y f x y ⎧ ≤≤≤≤⎪=⎨⎪⎩其他求X 与Y中至少有一个小于12的概率.解 所求的概率为0.50.5120.50.511()()22111,221(,)15128P X Y P XY f x y dxdydxdy +∞+∞⎛⎫<< ⎪⎝⎭⎛⎫=-≥≥ ⎪⎝⎭=-=-=⎰⎰⎰⎰ 36. 设随机变量X 与Y 相互独立,且X -113 Y -3 1P1215310P 1434求二维随机变量(X ,Y )的联合分布律.解 由独立性,计算如下表37. 设二维随机变量(X ,Y )的联合分布律为X 1 2 3Y116191182 a bc(1)求常数a ,b ,c 应满足的条件;(2)设随机变量X 与Y 相互独立,求常数a ,b ,c. 解 由联合分布律的性质,有:11116918a b c +++++=, 即 a + b + c =12133-= 又,X, Y 相互独立,可得 111::::6918a b c =从而可以得到: 121,,399a b c ===38. 设二维随机变量(X ,Y )的联合分布函数为22232,0,1,1(,),0,01,10,x x y x x y F x y x y x⎧ >>⎪+⎪⎪= ><≤⎨+⎪⎪ ⎪⎩其他, 求边缘分布函数()x F x 与()y F y ,并判断随机变量X 与Y 是否相互独立.解 由题意, 边缘分布函数2222lim,0()(,)110,0y X x x x F x F x x x x →+∞⎧=>⎪=+∞=++⎨⎪≤⎩下面计算F Y (y )2332220,0()(,)lim ,011lim1,11Y x x y x y F y F y y y xx y x →+∞→+∞⎧⎪≤⎪⎪=+∞==<≤⎨+⎪⎪=>⎪+⎩可以看出,F(x,y)= F x (x ) F Y (y ), 因此,X ,Y 相互独立.39.设二维随机变量(X ,Y )的联合分布函数为132,1,1(,)0,ye x yf x y x -⎧ ≥≥⎪=⎨⎪ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时, 11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立40.设二维随机变量(X ,Y )的联合分布函数为,(,)0,x y x y f x y + 0≤,≤1,⎧=⎨ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <0或者x >1时, ()0X f x = 当1≥x ≥0时,1212011()02X f x x y dy xy y x =+=+=+⎰ 再计算()Y f y , 当y <0或者y >1时, ()0Y f y =当1≥y ≥0时, 120111()022Y f y x ydx xy x y =+=+=+⎰ 由于11(,)()()22X Y f x y x y f x f y x y ⎛⎫⎛⎫=+≠=++ ⎪⎪⎝⎭⎝⎭, 所以随机变量X,Y 不独立41.设二维随机变量(X ,Y )的联合分布函数为22,00(,)0,x y e x y f x y --⎧ >,>=⎨⎩其他求随机变量Z =X -2Y 的分布密度. 解 先求Z 的分布函数F(z ) :2()()(2)(,)D X Y zF z P Z z P X Y z f x y dxdy -≤=≤=-≤=⎰⎰当z<0时,积分区域为:求得2220()2z z yx y F z dy e dx +∞+---=⎰⎰224122z y y z z e e dy e +∞----=-=⎰ 当z ≥0时,积分区域为:z},2200()2z yx y F z dy e dx +∞+--=⎰⎰ 2401212yy zz eedy e +∞----=-=-⎰由此, 随机变量Z 的分布函数为11,02()1,02zz e z F z e z -⎧-≥⎪⎪=⎨⎪<⎪⎩ 因此, 得Z 的密度函数为:1,02()1,02zz e z f z e z -⎧≥⎪⎪=⎨⎪<⎪⎩42. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,22()21()()()2z y a bX Y F z f z y f y dy dy bσ---+∞-∞-=-=⋅⎰⎰令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则()()()2211()22z b az b a t z b a z b aF z e dt b bσσσσ+----+---==Φ-Φ⎰ 解法二22()()(),()1()221122111212X Yz bz bF z f x f z x dx-b<z-x<b,z-b<x<z+bx aF z dxbz bx a z b a z b az bb ba zb a z bba z bbσσσσσσσ+∞-∞+-=-∴--=⋅+-⎛+---⎫⎛⎫⎛⎫⎛⎫=Φ=Φ-Φ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎛-+⎫⎛⎫⎛⎫=-Φ--Φ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-+⎛⎫=Φ ⎪⎝⎭⎰⎰a z bσ⎛--⎫⎛⎫-Φ ⎪⎪⎝⎭⎝⎭43.设X服从参数为12的指数分布,Y服从参数为13的指数分布,且X与Y独立,求Z=X+Y 的密度函数.解由题设,X~12120,0(),0X xxf xe x-≤⎧⎪=⎨>⎪⎩,Y~13130,0(),0Y xxf ye x-≤⎧⎪=⎨>⎪⎩并且,X,Y相互独立,则()()()Z X YF z f x f z x dx+∞-∞=-⎰由于()Xf x仅在x>0时有非零值,()Yf z x-仅当z-x>0,即z>x时有非零值,所以当z<0时,()Xf x=0, 因此()Zf z=0.当z>0时,有0>z>x, 因此1132()11()23z z xxZF z e e dx---=⎰1633216zz zz xe dx e e----==-⎰44.设(X,Y)的联合分布律为X0 1 2 3Y0 0 0.05 0.08 0.121 0.01 0.09 0.12 0.152 0.02 0.11 0.13 0.12求:(1)Z=X+Y的分布律;(2)U=max(X,Y)的分布律;(3)V=min(X,Y)的分布律.解(1) X+Y的可能取值为:0,1,2,3,4,5,且有P(Z=0)=P(X=0,Y=0) = 0P(Z=1)=P(X=1,Y=0) + P(X=0,Y=1) = 0.06P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) =0.19P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) =0.35P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28P(Z=5)=P(X=3,Y=2) = 0.12同理,U=max(X,Y)的分布如下U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}概率论与数理统计 习题参考答案(仅供参考) 第三章 第30页 (共80页)第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解 111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=111111236261243(1)((1)1)(01)(1)(11)(21)E X -+=--+⨯+-+⨯+-+⨯+-+⨯+-+⨯=或者1233(1)()(1)()11E X E X E E X -+=-+=-+=-+= 22222235111111362612424()(1)(0)()(1)(2)E X -=-⨯+⨯+⨯+⨯+⨯=2. 一批零件中有9件合格品与三件废品,安装机器时从这批零件中任取一件,如果取出的废品不再放回,求在取得合格品以前已取出的废品数的数学期望. 解 设取得合格品之前已经取出的废品数为X, X 的取值为0, 1, 2, 3, A k 表示取出废品数为k 的事件, 则有:1391121230(),0,1,2,3,66()()0.3220k k k kk k C C P A k C C E X k P A -==∙==⋅==∑3. 已知离散型随机变量X 的可能取值为-1、0、1,E(X)=0.1,E(X 2)=0.9,求P(X=-1),P(X =0),P(X =1). 解 根据题意得:2222()1(1)0(0)1(1)0.1()(1)(1)0(0)1(1)0.9E X P X P X P X E X P X P X P X =-=-+=+===-=-+=+==可以解得 P(X =-1)=0.4, P(X=1)=0.5,P(X=0) = 1- P(X =-1) - P(X=1) = 1-0.4-0.5=0.14. 设随机变量X 的密度函数为2(1),()x x f x - 0<<1,⎧=⎨0, ⎩其他. 求E(X). 解 由题意,11()()2(1)3E X xf x dx x xdx ∞-∞==-=⎰⎰,5. 设随机变量X 的密度函数为,0()x e x f x x -⎧ ≥,=⎨0, <0.⎩ 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰()()0002|20|2x x x xe e dx e∞-∞--∞=+=-=⎰ 22230()()11|33Xx x xx E ee f x dxee dx e ∞---∞∞---∞===-=⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 4220|()()24()24x a b a b b a ππ∞==++-7. 设随机变量X ,Y 的密度函数分别为22,0()x X e x f x x -⎧ >,=⎨0, ≤0.⎩ 44,0()y Y e y f y y -⎧ >,=⎨0, <0.⎩ 求E(X +Y),E(2X -3Y 2). 解()()(E X Y E X E Y+=+240()()24113244X Y x y x f x dx y f y dyxe dx ye dy+∞+∞-∞-∞+∞+∞--=+=+=+=⎰⎰⎰⎰22222400(23)2()3()2()3()223435188X Y xy E X Y E X E Y x f x dx y f y dyxedx y e dy+∞+∞-∞-∞+∞+∞---=-=-=-=-=⎰⎰⎰⎰8. 设随机函数X 和Y 相互独立,其密度函数为2,1()X x x f x 0≤≤,⎧=⎨ 0, .⎩其他5,5() 5y Y e y f y y -⎧ >,=⎨ 0, ≤.⎩(-)求E(XY).解 由于XY 相互独立, 因此有()()()12(5)05(5)(5)5(5)()()()()()225320553225(01)(6)433X Y y y y y E XY E X E Y x f x dx y f y dyx dx ye dyye e dy e +∞+∞-∞-∞+∞--+∞------===⎛⎫⎛+∞⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛+∞⎫=---- ⎪ ⎪ ⎪⎝⎭⎝⎭=-----=-⨯-=⎰⎰⎰⎰⎰9. 设随机函数X 的密度为()f x <,= 0, ≥⎩x 1x 1.求E(X), D(X). 解11()()0E X x f x dx +∞-∞-===⎰⎰π221122211001012()()2222211()arcsin |1422E X x f x dx x +∞-∞-====-=-+=-+=-+=⎰⎰⎰⎰⎰⎰ππππππππ()221()()()2D XE X E X =-=10. 设随机函数X 服从瑞利(Rayleigh)分布, 其密度函数为2222,0()x x e x f x x σ-⎧ >,⎪=σ⎨⎪ 0, ≤0.⎩其中σ>0是常数,求E(X),D(X). 解22222222()()x x x E X x f x dx edx xdeσσσ--+∞+∞+∞-∞===-⎰⎰⎰2222222222200/0022x x x u u x xe e dx e dxedu σσσσππσσσ---+∞+∞+∞-=⎛⎫+∞=--= ⎪⎝⎭−−−→===⎰⎰⎰22222222222222222232222200222()()2202220x x x x x x u u ux E X x f x dx edx x dex e xe dx xe dx e du e σσσσσσσσσσ=+∞+∞+∞---∞+∞+∞---+∞--===-⎛+∞⎫=--= ⎪⎝⎭+∞−−−→==-=⎰⎰⎰⎰⎰⎰ ()22222()()()2(2)22D XE X E X ππσσσ⎛⎫=-=-=- ⎪ ⎪⎝⎭11. 抛掷12颗骰子,求出现的点数之和的数学期望与方差.解 掷1颗骰子,点数的期望和方差分别为: E(X) = (1+2+3+4+5+6)/6= 7/2 E(X 2)=(12+22+32+42+52+62)/6=91/6 因此 D(X) = E(X 2)-(E(X)) 2 = 35/12掷12颗骰子, 每一颗骰子都是相互独立的, 因此有: E(X 1+X 2+…+X 12)=12E(X) = 42 D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===()11111(),()11()1k k n nk k k k E X p D X n n n E X E X E X n n ==⎛⎫===- ⎪⎝⎭⎛⎫===⋅= ⎪⎝⎭∑∑ (2)k j X X 服从0-1分布,则有11(1)(1)(1)(1,1),()k j k j k j n n n n P X X P X X E X X --======1()n k k D X D X =⎛⎫= ⎪⎝⎭∑()112222(,)1112(()()())11112(1)1111112111(1)nk k j k k jnk j k j k k jk j n D X Cov X X E X X E X E X n n n n n n n C n n n n n n =<=<<=+⎛⎫=-+- ⎪⎝⎭⎛⎫=-+- ⎪-⎝⎭⎛⎫-⎛⎫=-+-=-+-= ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑故,E(X)=D(X)=1.我们知道,泊松分布具有期望与方差相等的性质,可以认定,X 服从参数为1的泊松分布. 13. 在长为l 的线段上任意选取两点,求两点间距离的数学期望及方差.解 设所取的两点为X,Y, 则X,Y 为独立同分布的随机变量, 其密度函数为11,01,01(),(),0,0,X Y x x f x f y l l other other ⎧⎧≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩ 21,0,1(,)()(),0,Y Y x y f x y f x f y l other ⎧≤≤⎪==⎨⎪⎩依题意有()(,)E X Y x y f x y dxdy +∞+∞-∞-∞-=-⎰⎰()()2200011lxl l x x y dydx y x dydx l l=-+-⎰⎰⎰⎰222220011222l l x l x dx lx dx l l=+-+⎰⎰ 322322110032262l l x l x lx x l l ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 663l l l =+= ()22()(,)E X Y x yf x y dxdy +∞+∞-∞-∞-=-⎰⎰()22001l lx y dxdy l=-⎰⎰ ()222003222012103ll l dx x xy y dyl l yx y xy dxl =-+⎛⎫=-+ ⎪⎝⎭⎰⎰⎰ 3222033222213111032316ll x l xl dx l ll x l x l x l l =-+⎛⎫=-+⎪⎝⎭=⎰ D(X -Y) = E((X -Y)2)-(E(X -Y))2 = 2221116918l l l -= 14.设随机变量X 服从均匀分布,其密度函数为12,()2x f x ⎧0<<,⎪=⎨⎪0, .⎩其他,求E(2X 2),D(2X 2). 解12222201(2)2()2()226E X E X x f x dx x dx +∞-∞====⎰⎰ 124442011()()2,()8012E X x f x dx x dx E X +∞-∞====⎰⎰ ()()22242111(2)4()4()()48014445D X D X E X E X ⎛⎫==-=⨯-=⎪⎝⎭15. 设随机变量X 的方差为2.5,试利用切比雪夫不等式估计概率(()7.5)P X E X -≥。
概率论与数理统计-第二章习题附答案

习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解2. 已知随机, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布,若{P X ≥51}9=, 求{P Y ≥1}.解注意p{x=k}=k k n kn C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率. 解设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大, 写出随机变量X 的分布律.解X1. 设X 的分布律为解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ (2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41.选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A)13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ). (A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-<则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2. 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布,要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3.设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得〔过程简略〕220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它, 对X 独立观察3次, 求至少有2次的结果大于1的概率.解2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8.设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<11d 5x =-15=-.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布与概率密度.解若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求Y =2解 (1)(2)4.已知随机变量()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X (X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =0 4.y =<<即()04,0,.其它f y y =<<⎩。
概率论和数理统计第二章课后习题答案解析

概率论与数理统计课后习题答案第二章1•一袋中有5只乒乓球,编号为1, 2, 3. 4. 5.在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变Sx 的分布律. 【解】X =3,4,5P(X=3)= - =0,1 C ; 3P (X=4) = & = 0.3Cjc-p(X=5) =二= 0.6C :2•设在15只同 类型零件中有2只为次品,在英中取3次,每次任取1只,作不放回抽样, 的次品个数,求:布律;布函数并作图; P{X<-!-},P{1<X<-),P{1<X<-},P{1<X<2).2 2【解】X =0,1,2. 卩住-0)-&-22C :5 35 C ; 35 P(X-2)-C” - * .C ; 35 故X 的分布律为X0 12以X 表示取出 CD (2) (3)X 的分 X 的分当OWxvl时当1W«2时当x>2时,F(X)F(X)22=P (XWx) =P(X=O)=——3534=P (XWx) =P(X=O)+P{X=1)= —F故X的分布函数(X)=P (XWx) =1F(X)n0, x<022 C —,0<%<1 3534—,I<x<2 35x>23•射手向目标独立地进行了 3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数•则XP, i, 2, 3.p(X=O) = (0.2)3 =0・008P(X =1) = C;O.8(O.2)2 = 0.096P(X =2) = C^(0.8)'0.2 = 0.384p(x= 3) = (0.8)3 =0.512P _____________分布函数F(X)= <0,0.00&0.104,0.48&%<00<x<ll<x<22 < X <3 x>3P(X >2) = P(X = 2) + P(X = 3) = 0.896 4. (1)设随机变量X的分布律为P(X=.}=Z.(2)当 xvO 时,F(X)=P (XWx) =0苴中kR, r 2.…,人>0为常数,试确企常数G(2)设随机变量X的分布律为p{X=k)=a/N, k=l.2,…,N,试确企常数G【解】(1)由分布律的性质知00 W 1l= EP(X=k) =吃■{2)由分布律的性质知'电PZ氓舒即rt = L5.甲、乙两人投篮,投中的概率分别为“今^$投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、y表示甲、乙投中次数,则XF (3,),旷b(3, ⑴P(X=3# = 3)=(0・4)3(0・3)3 + C;O・6(O・4)2C;O・7(O・3)2 +C;(O・6)2O・4C;(O・7)2O・3 + (O・6)3(O・7)3= 0320766•设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于(毎条跑逍只能允许一架飞机降落)【解】设X为某一时刻需立即降落的飞机数,则X~b(200,,设机场需配备W条跑逍,则有P(X >N)<0・012<)0工 C 爲(0.02)气0.98)2叫 <0.01A = np = 200 X 0.02 = 4.* pl 4*P(X >N)= Z ——<0.01jt-.v+i k!査表得WM9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为在某天的该时段内有1000辆汽车通过,问岀事故的次数不小于2的概率是多少(利用泊松泄理) 【解】设X 表示出事故的次数,则X~b (1000> 001)8•已知在五重贝努里试验中成功的次数X 满足P{X= 1)=P{X=2).求概率P{X=4}・ 【解】设在每次试验中成功的概率为p ,则P (x=4)=e (i/-=22_.‘3 3 2439.设事件A 在每一次试验中发生的概率为,当人发生不少于3次时,指示灯发出信号, (1) 进行了 5次独立试验,试求指示灯发出涪号的概率: (2) 进行了 7次独立试验,试求指示灯发出信号的概率. 【解】(1)设X 表示5次独立试验中A 发生的次数,则X-6 (535P(X >3)=工C ;(0・3)气0・7)1 =0.163084-5(2)令y 表示7次独立试验中人发生的次数,则Y-b (7r )P(r > 3) = ^C ;(0.3/ (0・7)M = 0.35293k~3W •某公安局在长度为f 的时间间隔内收到的紧急呼救的次数X 服从参数为(坨)f 的泊松分布,而与时间间隔超点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率:利用泊松近似所以(2)求某一天中午12时至下午5时至少收到1次呼救的概率.3【解】(1 ) P(X=0) = e"^_5 {2) P(X >1) = 1-P(X =0) = 1-门©”(1 一 P)j, 砖012,3,4分别为随机变量X, y 的概率分布,如果已知试求P{Y^1}. 5 4【解】因为P(X>1) =彳,故P(X<1) = 2.P(X<l) = P(X=0) = (l-p)2故得P (r>l ) = l-P (r = 0) = l-(I-/7/= —^0.802478112•某教科书出版了 2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有 5册错误的概率.【解】令X 为2000册书中错误的册数,则XF (2000,・利用泊松近似计算,A = np = 2000 X 0,001 = 2efP(X=5). —= 0.00183 I13•进行某种试验,成功的概率为2,失败的概率为丄•以X 表示试验首次成功所需试验的次4 4数.试写出X 的分布律,井计算X 取偶数的概率. 【解】x=12…人…P(X=2) + P(X=4) +…+ P(X=2k) +… =丄・3 + (丄)3色+…+(丄)心3+…4 4 4 4 4 4 34114.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险•在一年中每个人死亡的概率为,毎个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险 P{Y=m}=从而(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500X12=30000元・设1年中死亡人数为X,则X~b(250a,则所求概率为P(2000X >30000) = P(X >15) = 1-P(X<14)由于G很大,p很小• A=np=S,故用泊松近似,有M e"^5*P(X >15)3-工 ---------- 0.000069*■0 k!(2) P(保险公司获利不少于10000)=7(30000-2000X > 10000) = P(X < 10)10 e」屮a a 0.986305厶 &丨*•0 K •即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于 20000) =P (30000- 2000X > 20000) = P{X < 5)即保险公司获利不少于20000元的概率约为62%15•已知随机变量X的密度函数为f(X)=AQ8*+8.求:(1)人值:(2) P{O<X<1}; (3) F(x).【解】⑴由匸/Wdx = l得Ae-cLv = 2j;Ae-cLv = 2Ap(0 < X < 1) = g £「cU = i (1 一 e j) 当 x<0 时,F(x) = J £ e*dv 当心0时,F(x) =『—e\ x<0216•设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为啤,x>100, X 0,求:(1) (2)(3) 【解】M=\-¥<100,在开始150小时内没有电子管损坏的概率; 在这段时间内有一只电子管损坏的概率; F (X)•2100 1 P(XMI50) =鳥丁 E 亍 2 8p,=ip(x>i5o)r=(-)^=—(2) =63—(—)"=— 2 ^3 3 9 ⑶当 xclOO 时 F(X)=0 (1) 当 x>100 时 F(x) = J^/(Z)d/ flUO “ =L/㈣+L/(N ft 100 100=^"dr = l --------- J K X)尸 F(x) = ・100 1---- , x>I00 X 0, %<017•在区间[0, o ]上任意投掷一个质点•以X 表示这质点的坐标,设这质点落在[0. g ] 中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X~U [oa ,密度函数为 /W = ' —,0 < X < «a 0, 其他 故当x<0时f(X)=0当 QWxWa 时 F(x)=匸/(Z)dZ =『『厶/ =- 当 x>a 时,F (X)=1%<0F(x) = < Q<x<ax>a5]上服从均匀分布•现对X 进行三次独立观测,求至少有两次的观测P(X>3) = J ;lch- = |,2,1 , 2 , 20 厂C 咛亍%1方19•设顾客在某银行的窗口等待服务的时间X (以分钟讣)服从指数分布£(-).某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以y 表示一个月内他未等 到服务而离开窗口的次数,试写出y 的分布律,并求 【解】依题意知X即英密度函数为-e5a该顾客未等到服务而离开的概率为y 即英分布律为P (r = Zc )=C^(e"/(I-e-')'-\A: =0,12,3,4,5P (r>l ) = l-P (y = 0) = l-(l-e--)5=0.5l6720.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服 从W (40. 102);第二条路程较长,但阻塞少,所需时间X 服从W (50. 42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些(2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些 【解】(1)若迫第一条路,X-N (40. 10》则即分布函数故所求概率为0,18•设随机变量X 在[2. 值大于3的概率.2<%<5/w=p'0, 其他x>0 x<0P(X>10) = J :亍= e""若走第二条路,X-N (50. 42),则(X-5060-50------ < I 4P(X<60) = P(X-40 60 —40) ----- < I 1010 = 0(2) = 0.97727故走第二条路乘上火车的把握大些. (2)若 X~N (40, lOJ,则P{X < 45) =45:4O )=①⑴习=】5若 X~N (50, 42〉,则P(X < 45) = P (X-50 45-50) K “= <="25) = 1-0(1.25) = 0.1056 故走第一条路乘上火车的把握大些.21•设X~N (3, 22), Cl) 求 P{2<X<5}» P{ 4<X<10}. P{|X| >2}, P{X>3}; (2)确崔 c 便 P{X>c}=P{X^c}. 【解】(1) P(2<X<5) = P2-3 X-3 5-3)< - < ------ ・2 ) =0(1)-0 ——=0(1)-1 + 0 - V 2丿 V 2= 0.8413-1 + 0.6915 = 0.5328P (-4<X <10) = P =e (1\ .一 —(pI2丿P(l X lA 2)= p(x > 2)+ p(x < -2)p(X<60) = P= 0(2.5) = 0.9938++5=0.6915 + 1- 0.9938 = 0.6977X-3 3-3P(X>3) = P( ------- >——)=1一0(0) = 0・52 2⑵c=322•由某机器生产的螺栓长度(cm ) X-N C 儿规定长度在±内为合格品,求一螺栓为不合格品 的概率.【解】P(IX-10・05l>0」2) = P\=1-0(2) + 0(-2) = 2(1- 0(2)]=0.045623•—工厂生产的电子管寿命X (小时〉服从正态分布N (160,若要求P{120VXW200}允许。
概率论与数理统计统计课后习题答案

第二章习题解答1. 设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ).A . 52,53-==b aB . 32,32==b a C . 23,21=-=b a D . 23,21-==b a2. 解:因为随机变量X ={这4个产品中的次品数}X 的所有可能的取值为:0,1,2,3,4.且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈;2215542070{2}0.2167323C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈;041554201{4}0.0010969C C P X C ===≈.3.解:设{1}P x p ==,则{0}1P x p ==-. 由已知,2(1)p p =-,所以23p =X 当0x <时,(){}0F x P X x =≤=;当01x ≤<时,1(){}{0}3F x P X x P X =≤===; 当1x ≥时,(){}{0}{1}1F x P X x P X P X =≤==+==.X 的分布函数为:00()1/30111x F x x x <⎧⎪=≤<⎨⎪≥⎩. 4. 解:设X ={在取出合格品以前,已取出不合格品数}. 则X 的所有可能的取值为0,1,2,3.7{0}10P x ==; 377{1}10930P x ==⋅=;3277{2}1098120P x ==⋅⋅=; 32171{3}10987120P x ==⋅⋅⋅=. 所以X 的概率分布为:5.解:设X ={其中黑桃张数}.则X 的所有可能的取值为0,1,2,3,4,5.0513395522109{0}0.22159520C C P x C ===≈; 14133955227417{1}0.411466640C C P x C ===≈; 23133955227417{2}0.274399960C C P x C ===≈; 32133955216302{3}0.0815199920C C P x C ===≈; 411339552429{4}0.010739984C C P x C ===≈; 50133955233{5}0.000566640C C P x C ===≈. 所以X 的概率分布为:6.解:由已知,()XG p所以()(1),0,1,2iP X i p p i ==-=.7.解:X 的所有可能的取值为0,1,2,3. 且1{0}2P X ==; 111{1}224P X ==⨯=;1111{2}2228P X ==⨯⨯=;1111{3}2228P X ==⨯⨯=;8. 一家大型工厂聘用了100名新员工进行上岗培训,据以前的培训情况,估计大约有4%的培训者不能完成培训任务. 求:(1)恰有6个人不能完成培训的概率; (2)不多于4个的概率. 解:设X ={不能完成培训的人数}.则(100,0.04)XB ,(1)6694100{6}0.040.960.1052P X C ==⋅=;(2)4100100{4}0.040.960.629k k k k P X C-=≤=⋅=∑.9. 一批产品的接收者称为使用方,使用方风险是指以高于使用方能容许的次品率p 接受一批产品的概率. 假设你是使用方,允许次品率不超过05.0=p ,你方的验收标准为从这批产品中任取100个进行检验,若次品不超过3个则接受该批产品. 试求使用方风险是多少?(假设这批产品实际次品率为0. 06).解:设X ={100个产品中的次品数},则(100,0.06)X B ,所求概率为1001003{3}(0.06)(0.94)0.1430k k k k P X C-≤≤==∑.10. 甲、乙两人各有赌本30元和20元,以投掷一枚均匀硬币进行赌博. 约定若出现正面,则甲赢10元,乙输10元;如果出现反面,则甲输10元,乙赢10元. 分别求投掷一次后甲、乙两人赌本的概率分布及相应的概率分布函数.解:设甲X ={投掷一次后甲的赌本},乙X ={投掷一次后乙的赌本}. 则甲X 的取值为20,40,且1{20}{40}2P X P X ====甲甲,1{10}{30}2P X P X ====乙乙,所以甲X 与乙X 的分布律分别为:0,201,204021,40X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩甲(), 0,101,103021,30X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩乙() 11. 设离散型随机变量X 的概率分布为:(1){}2,1,2,,100k P X k a k ===;(2){}2,1,2,k P X k a k -===,分别求(1)、(2)中常数a 的值.解:(1)因为{}1001001121,kk k P X k a =====∑∑即 1002(12)112a -⋅=-,所以)12(21100-=a . (2) 因为{}1121,kk k P X k a ∞∞-=====∑∑即121112a ⋅=-,所以 1=a .12. 已知一电话交换台服从4=λ的泊松分布,求:(1)每分钟恰有8次传唤的概率;(2)每分钟传唤次数大于8次的概率.解:设X ={每分钟接到的传唤次数},则()XP λ,查泊松分布表得(1){8}{8}{9}0.05110.02140.0297P X P X P X ==≥-≥=-=; (2){8}0.02136P X ≥=.13. 一口袋中有5个乒乓球,编号分别为1、2、3、4、5,从中任取3个,以示3个球中最小号码,写出X 的概率分布.解:X 的所有可能的取值为1,2,3.243563{1}105C P x C ====;23353{2}10C P x C ===;22351{3}10C P x C ===.所以X 的概率分布为:14. 已知每天去图书馆的人数服从参数为(0)λλ>的泊松分布. 若去图书馆的读者中每个人借书的概率为(01)p p <<,且读者是否借书是相互独立的. 求每天借书的人数X 的概率分布.解:设Y ={每天去图书馆的人数},则()YP λ,{},0,1,2,!iP Y i e i i λλ-===当{}Y i =时,(,)XB i p ,{}{}(1)k k i k i i kP X k P Y i C p p +∞-====⋅-∑!(1)(1)!!!()!iik k i kk i k ii k i ki e C p p e p p i i k i k λλλλ+∞+∞----===⋅-=-⋅-∑∑!(1)(1)!!()!!()!ik k i k k i ki k i ki k i p ep p e p i k i k k i k λλλλλ-+∞+∞----===-=-⋅--∑∑(1)()(1)e !()!!!k ki kk kk i kp pi kp p p ep e ek i k k k λλλλλλλλ-+∞-----==-=⋅=-∑即X 的概率分布为(){}e ,0,1,2,!k pp P X k k k λλ-===.15. 设随机变量X 的密度函数为 ,010,⎩⎨⎧<<+= x b ax f(x)其它, 且⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<3131X P X P ,试求常数a 和b . 解:1301()3183a b P X ax b dx ⎧⎫<=+=+⎨⎬⎩⎭⎰; 113142()393a b P X ax b dx ⎧⎫>=+=+⎨⎬⎩⎭⎰,由421183932a b a b +=+=得,71.5,.4a b =-= 16. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B x arctan , 求常数A , B ;{1}P X <以及概率密度f (x ).解:由()lim (arctan )02()lim (arctan )12x x F A B x A B F A B x A B ππ→-∞→+∞⎧-∞=+=-=⎪⎪⎨⎪+∞=+=+=⎪⎩得121A B π⎧=⎪⎪⎨⎪=⎪⎩.所以11()arctan 2F x x π=+; {1}{11}(1)(1)0.5P X P x F F <=-<<=--=; 211()'()1f x F x x π==⋅+.17. 设连续型随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩求:(1)常数A 的值;(2)X 的概率密度函数)(x f ;(3){}2≤X P .解:(1)由()F x 的连续性得(10)(10)(1)1F F F -=+==即21lim 1x Ax -→=,所以1A =,20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(2)2,01()'()0,x x f x F x <<⎧==⎨⎩其他;(3){2}(2)1P X F ≤==.18. 设随机变量X 的分布密度函数为 , 01 , 1)(2⎪⎩⎪⎨⎧<-=其它当x xAx f 试求:(1)系数A ;(2)⎭⎬⎫⎩⎨⎧<<221X P ;(3)X 的分布函数)(x F . 解:(1)因为1111()arcsin f x dx A x A π+∞--∞-====⎰⎰所以1A π=,1() 0 ,x f x <=⎩其它; (2)12111221112()arcsin 23P X f x dx x π⎧⎫<<====⎨⎬⎩⎭⎰;(3) 当1x <-时,(){}0f x P X x =≤=, 当01x ≤<时,11(){}arcsin 2xf x P X x x π-=≤==+⎰, 当1x ≥时,1(){}1f x P X x -=≤==⎰,所以 ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,arcsin 1211,0x x x x x F π)( 19. 假设你要参加在11层召开的会议,在会议开始前5 min 你正好到达10层电梯口,已知在任意一层等待电梯的时间服从0到10 min 之间的均匀分布. 电梯运行一层的时间为10 s ,从11层电梯口到达会议室需要20 秒. 如果你不想走楼梯而执意等待电梯,则你能准时到达会场的概率是多少?解:设X ={在任意一层等待电梯的时间},则(0,10)XU ,由题意,若能准时到达会场,则在10等电梯的时间不能超过4.5 min , 所求概率为 4.50{ 4.5}0.45100P X -≤==-.20. 设顾客在某银行窗口等待服务的时间X (min )服从51=λ的指数分布. 某顾客在窗口等待服务,若超过10 min ,他就离开. 若他一个月到银行5次,求: (1) 一个月内他未等到服务而离开窗口的次数Y 的分布; (2) 求{}1≥Y P . 解:(1)由已知,1(),(5,)5XE Y B p其中10{10}1{10}1()p P X P X f x dx -∞=>=-≤=-⎰110250115e dx e --=-=⎰所以Y 的分布为55{}(1)k k k P Y k C p p -==-2255()(1),(0,1,2,3,4,5)k k k C e e k ---=-=;(2){}02025511{0}1()(1)0.5167P Y P Y C e e --≥=-==--=.21. 设随机变量)4,5(~N X ,求α使:(1){}903.0=<αX P ;(2){}01.05=>-αX P .解:由)4,5(~N X 得5~(0,1)2X N - (1){}555()0.903222X P X P ααα---⎧⎫<=<=Φ=⎨⎬⎩⎭ 查标准正态分布表得:51.32α-=,所以6.7=α;(2)由{}01.05=>-αX P 得,{}50.99P X α-<=所以{}{}55PX P X ααα-<=-<-<5()()2()10.99222222X P ααααα-⎧⎫=-<<=Φ-Φ=Φ-=⎨⎬⎩⎭即()0.9952αΦ=,查标准正态分布表得2.582α=,所以16.5=α22. 设)2,10(~2N X ,求{}{}210 , 1310<-<<X P X P . 解:由)2,10(~2N X 得10~(0,1)2X N - {}101013=P 0 1.5(1.5)(0)0.99320.50.49322X P X -⎧⎫<<<<=Φ-Φ=-=⎨⎬⎩⎭;{}102{2102}P X P X -<=-<-< 10{11}(1)(1)2(1)120.841310.68262X P -=-<<=Φ-Φ-=Φ-=⨯-=. 23. 某地8月份的降水量服从185mm,28mm μσ==的正态分布,求该地区8月份降水量超过250 mm 的概率.解:设随机变量X ={该地8月份的降水量}, 则2(185,28)XN ,从而185(0,1)28X N -所求概率为185250185{250}{}1(2.32)10.98980.01022828X P X P --≥=>=-Φ=-= 24. 测量某一目标的距离时,产生的随机误差(cm)X 服从正态分布)400,0(N ,求在3次测量中至少有1次误差的绝对值不超过30 cm 的概率.解:由(0,400)X N 得(0,1)20X N设Y ={在3次测量中误差的绝对值不超过30 cm 的次数},则(3,)Y B p其中{30}{3030}{1.5 1.5}p P X P X P X =<=-<<=-<<(1.5)( 1.5)2(1.5)120.933210.8664=Φ-Φ-=Φ-=⨯-=所以P {3次测量中至少有1次误差的绝对值不超过30 cm }={1}P Y ≥00331{0}10.86640.13320.9976P Y C =-==-⋅=25. 已知测量误差2~(7.5,10)X N ,X 的单位是mm ,问必须进行多少次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.解:设必须进行n 次测量才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.由已知2~(7.5,10)X N ,7.5~(0,1)10X N - 设Y ={n 次测量中,绝对误差不超过10mm 的次数},则(,)Y B n p其中7.5{10}{0.25}(0.25)0.598710X p P X P -=≤=≤=Φ= 所求概率为{1}0.9P Y ≥>,即{0}0.1P Y =≤000.59870.40130.1n n C ⋅≤,解之得,3n ≥必须进行3次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9. 26. 参加某项综合测试的380名学生均有机会获得该测试的满分500分. 设学生的得分)(~2σμ,N X ,某教授根据得分X 将学生分成五个等级:A 级:得分)(σμ+≥X ;B 级:)(σμμ+<≤X ;C 级:μσμ<≤-X )(;D 级:)()2(σμσμ-<≤-X ;F 级:)2(σμ-<X . 已知A 级和C 级的最低得分分别为448分和352分,则: (1)μ和σ是多少?(2)多少个学生得B 级?解:(1)由已知,448352μσμσ+=⎧⎨-=⎩,解之得40048μσ=⎧⎨=⎩(2){}{01}X P X P μμμσσ-≤<+=≤<(1)(0)0.84130.50.3413=Φ-Φ=-=由于0.3413×380=129.66,故应有130名学生得B 级。