小学四年级奥数精讲第15讲 图形问题
四年级数学专题讲义第十五讲 规律与归纳
第十五讲规律与归纳无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题.特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律.只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案. 同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多.〖经典例题〗例1、流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第1993个小球该涂什么颜色?在前1993个小球中,涂黑色的小球有多少个?分析:根据题意,小木球涂色的次序是:“5红、4黄、3绿、2黑、1白”,也就是每涂过“5红、4黄、3绿、2黑、1白”循环一次.这里,给小木球涂色的周期是:5+4+3+2+1=15.1993÷15=132……13,第1993个小球出现在上面所列一个周期中第13个,所以第1993个小球是涂黑色。
每个周期黑球共有2个,则一共有2×132+1=265(个).例2、右图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色? (从左往右计数)分析:从上往下,从左至右,排列周期是:红、蓝、白、黄;第7行第5盆花的颜色:1+2+3+4+5+6+5=26(盆),26÷4=6……2,所以是蓝色;第20行第5盆花的颜色:1+2+……+19+5=195,195÷4=48……3,所以是白色的.例3、在下图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?分析:因为“共产党好”有4个字,“社会主义好”有5个字,4与5的最小的公共倍数是20,所以再连续写完5个“共产党好”与4个“社会主义好”之和,将重头写起,出现周期循环,而且每个周期是20组数.而340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).〖巩固练习〗练习1:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。
小学四年级奥数举一反三第1讲至第40讲全
小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
小学奥数举一反三(四年级)全
小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
四年级奥数举一反三第十五周图形问题【精品好卷】
第十五周图形问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
练习一1,有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
小学四年级奥数第15讲 图形问题(含答案分析)
第15讲图形问题一、知识要点解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练【例题1】人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?练习11、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2、一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?练习21、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
练习31、下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?练习41、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。
小学奥数基础教程4目录
小学奥数基础教程(四年级)目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)小学奥数举一反三(四年级)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26讲巧算年龄第27讲较复杂的和差倍问题第28讲周期问题第29讲行程问题(一)第30讲用假设法解题第31讲还原问题第32讲逻辑推理第33讲速算与巧算(三)第34讲行程问题(二)第35讲容斥原理第36讲二进制第37讲应用题(三)第38讲应用题(四)第39讲盈亏问题第40讲数学开放题。
四年级奥数举一反三第十五周 图形问题-可编辑修改
第十五周图形问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
练习一1,有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
四年级奥数图形问题课件
181+,宽是:
8+5=13分米。
所以,原来正方形的边长是:
221÷13=17分米。
四年级奥数图形问题
练习五 1、一个正方形一条边减少6分米,另一条边减少10 分米后变为一个长方形,这个长方形的面积比正方 形的面积少260平方米,求原来正方形的边长。
2、一个长方形的木板,如果长减少5分米,宽减少2 分米,那么它的面积就减少66平方分米,这时剩下 的部分恰好是一个正方形。求原来长方形的面积。
分析与解答:用操场现在的面积减去操场原来的面积, 就得到增加的面积。操场现在的面积是: (90+10)×(45+5)=5000平方米, 操场原来的面积是: 90×45=4050平方米。 所以,现在的面积比原来增加; 5000-4050=950平方米。
四年级奥数图形问题
练习一 1、有一块长方形的木板,长22分米,宽8分米。如 果长和宽分别减少10分米、3分米,面积比原来减少 多少平方分米?
四年级奥数图形问题
例3、下图是一个养禽专业户用一段16米的篱笆围 成的一个长方形养鸡场,求它的占地面积。
分析 :根据题意,因为一面利用着墙,所以两条长 加一条宽等于16米。而宽是4米,那么长是: (16-4)÷2=6米, 占地面积是: 6×4=24平方米。
四年级奥数图形问题
练习三 1、右图是某个养禽专业户用一段长13米的篱笆围成 的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其 中一边利用围墙,怎样才能使围成的面积最大?
四年级奥数图形问题
练习三
3,用15米长的栅栏沿着围墙围一个种植花草 的长方形苗圃,其中一面利用着墙。如果每边 的长度都是整数,怎样才能使围成的面积最大?
四年级奥数思维第 15 周 图形问题
第15周图形问题一、教学内容及要求:1、细心观察,把握图形的特点,合理的进行切拼,从而使问题得以顺利的解答。
2、从整体上观察图形的特征,掌握图形的本质,结合必要的分析,推理和计算,使得隐藏的数量关系明朗化。
二、教学过程:例1:人民南路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。
现在操场的面积比原来增加了多少平方米?分析:疯狂操练1:1、有一块长方形木板,长22分米,宽8分米,如果长与宽分别减少10分米、3分米,面积比原来减少了多少平方分米?2、一块长方形木板,长18分米,宽13分米,如果长和宽都减少2分米,面积比原来减少了多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要是面积不变,长应该减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形的面积原来是多少平方米?分析:疯狂操练2:1、一个长方形,如果长不变,宽增加4米,那么面积就增加60平方米;如果宽不变,长减少3米,那么面积减少24平方米,这个长方形的面积原来是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么面积就增加30平方米;如果长不变,宽增加3米,那么面积增加48平方米,这个长方形的面积原来是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。
4米墙墙例3:右图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?分析:疯狂操练3:1、 右图是一个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求占地面积有多大?2、 用15长的栅栏沿着一面围墙围一个种植花草的长方形苗圃。
如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中有一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?疯狂操练4:1、 有一个正方形水池,如下图的阴影部分,在它的四周修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
四年级奥数举一反三第十五周图形问题
四年级奥数举一反三第十五周图形问题专题简析;解答有关“图形面积”问题时’应注意以下几点;1’细心观察’把握图形特点’合理地进行切拼’从而使问题得以顺利地解决;2’从整体上观察图形特征’掌握图形本质’结合必要的分析推理和计算’使隐蔽的数量关系明朗化。
例1;人民路小学操场长90米’宽45米。
改造后’长增加10米’宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答;用操场现在的面积减去操场原来的面积’就得到增加的面积。
操场现在的面积是[90+10]×[45+5]=5000平方米’操场原来的面积是90×45=4050平方米。
所以’现在的面积比原来增加5000-4050=950平方米。
练习一1’有一块长方形的木板’长22分米’宽8分米。
如果长和宽分别减少10分米、3分米’面积比原来减少多少平方分米?2’一块长方形铁板’长18分米’宽13分米。
如果长和宽各减少2分米’面积比原来减少多少平方分米?3’一块长方形地’长是80米’宽是45米。
如果把宽增加5米’要使面积不变’长应减少多少米?例2;一个长方形’如果宽不变’长增加6米’那么它的面积增加54平方米;如果长不变’宽减少3米’那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答;由“宽不变’长增加6米’面积增加54平方米”可知’它的宽为54÷6=9米;由“长不变’宽减少3米’面积减少36平方米”可知’它的长为36÷3=12米。
所以’这个长方形原来的面积是12×9=108平方米。
练习二1’一个长方形’如果宽不变’长减少3米’那么它的面积减少24平方米;如果长不变’宽增加4米’那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2’一个长方形’如果宽不变’长增加5米’那么它的面积增加30平方米;如果长不变’宽增加3米’那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3’一个长方形’如果它的长减少3米’或它的宽减少2米’那么它的面积都减少36平方米。
奥数四年级第15讲图形面积一
第15讲 图形面积(一)解题策略:用好割补法。
【金牌例题1】暨阳小学操场长90m ,宽45m 。
改造后,长增加10m ,宽增加5m 。
现在操场面积比原来增加了多少m 2?【葛老师指路】现在面积-原来面积=增加的面积。
现在面积:(90+10)×(45+5)=5000m 2原来面积:90×45=4050m 2增加面积:5000-4050=950m 2方法二:画出右图,阴影部分就是增加的面积。
10×45+90×5+5×10=950 m 2金牌练习1 1.一块长方形木板,长22dm ,宽8dm 。
若长、宽分别减少10、3dm ,面积比原来减少几?22×8=176dm 2;12×5=60dm 2;176-60=116dm 2 2.一块长方形铁板,长18dm ,宽13dm 。
若长和宽各减少2dm ,面积比原来减少几?18×13=234dm 2;16×11=176dm 2;234-176=58dm 2。
3.一块长方形地,长80m ,宽45m 。
若把宽增加5m ,要使面积不变,长应减少几m ?80×45=3600m 2;3600÷(45+5)=72m ;80-72=8m ……减少8m【金牌例题2】一个长方形,若宽不变,长增加6m ,则它的面积增加54m 2;若长不变,宽减少3m ,则它的面积减少36m 2。
这个长方形原来的面积是多少? 【葛老师指路】(长加)6m ×宽=54m 2,宽= 。
54÷6=9m ……宽;36÷3=12m ……长;12×9=108m 2……长方形面积金牌练习21.一个长方形,若宽不变,长减少3m ,则它的面积减少24m 2;若长不变,宽增加4m ,则它的面积增加60m 2。
长方形原来的面积是多少?24÷3=8m ……宽;60÷4=15m ……长;8×15=120m 2。
四年级奥数举一反三第十五周 图形问题-名师推荐
第十五周图形问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
练习一1,有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
苏教版四年级奥数 第15周 图形面积问题
第15周图形面积问题专题简析:解答有关图形面积问题时,应注意以下几点:1、细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利解答。
2、从整体上来观察图形特征,掌握图形本质,结合必要的分析、推理和计算,使隐蔽的数量关系明朗化。
例1:一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习一:1、人民小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?2、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?练习二:1、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
求这个长方形原来的面积?例3:右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习三:1、右图是某个养鸡专业户用一段长13米的篱笆围成一个长方形的养鸡场,则养鸡场的占地面积有多大?2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用围墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习四:1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
四年级奥数举一反三第十五周 图形问题【精品好卷】
第十五周图形问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
练习一1,有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
小学四年级奥数举一反三第1讲至第40讲全
小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲图形问题
一、知识要点
解答有关“图形面积”问题时,应注意以下几点:
1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;
2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练
【例题1】人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?
练习1
1、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10
分米、3分米,面积比原来减少多少平方分米?
2、一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?
【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?
练习2
1、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?
2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?
【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
练习3
1、下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?
练习4
1、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。
问大小正方形的面积各是多少?
【例题5】一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。
原正方形的边长是多少?
练习5:
1、一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方米,求原来正方形的边长。
2、一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形。
求原来长方形的面积。
三、课堂作业
1、一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不
变,长应减少多少米?
2、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积就减
少36平方米。
求这个长方形原来的面积。
3、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着
墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?
4、一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?。