交叉口延误分析vissim
vissim交叉口仿真报告
城市交叉口交通系统仿真一、仿真内容本次仿真作业应用VISSIM交通仿真软件针对城市内某十字信号交叉口进行了仿真。
通过获得的交叉口的渠化、车道、交通量、信号配时等信息,对交叉口的、车辆数量、占有率、行程时间、延误时间和排队插队进行仿真评价。
二、交叉口交通条件及仿真设置2.1交叉口交通条件本交叉口为十字相交叉的信号控制交叉口,南北方向为育才街,东西方向为裕华路。
其中南北方向为混行车道,东西进口车流量较大,渠化为左转专用、直行和右转专用车道。
车辆在东西进口道为车道线为虚线时,可以自由换到,所以可用一个车道组仿真,在实线时不可以随意唤道,所以分别用3个车道组仿真。
具体如表2-1和表2-2所示。
表2-1 道路交通基础数据表2-2交叉口信号配合四方案2.2导入底图文件2.2.1加载底图建立一个精确VISSIM模型的交叉口需要一张具有比例尺的、能反映现实路网的背景图,一般情况下,导入交叉口的CAD底图。
该过程操作位:菜单“查看—背景—编辑—读取”中完成,如图2-所示。
图2-1 加载底图2.2.2调整比例为了保证标定的精确性,所以将底图跳大,在选择标定距离时,应尽可能选择较大的距离,尽量选择特征明显的起终点,以便减少标定过程中产生的误差。
2.3各进口道及对应出口交通仿真2.3.1东西进口直行仿真利用左侧工具栏的路段连接器按钮建立东进口直行仿真,按照实际的交通条件对设置东进口的车道数,车道宽度和交通量等,选择默认的车辆构成为98%的小车和2%的大车。
同时完成西出口的设置。
注意,东进口的进口道部分可以略微超过停车线,但不得进入人行横道。
西进口对路段长度没有要求,但是路段起点也不得侵入人行横道。
建立完东进口直行和西出口直行后设置连接器,将东进口直行和西出口连接起来。
最后,运行仿真,查看设置效果。
2.3.2东进口右转和左转仿真先建立东进口右转进口道,要求同上。
然后建立北出口道。
在建立连接器将东进口与北出口道连接起来。
最后,运行仿真,查看设置效果。
【推荐】信号交叉口延误分析几种常用方法的比较
专 业 推 荐↓精 品 文 档(Transportation Science&Engineering)信号交叉口延误分析几种常用方法的比较3姚裔虎 赵跃萍(武汉理工大学交通学院 武汉 430063)摘要:延误是评价交叉口服务水平和车辆通行效率的一个重要指标.文中引入停车延误和控制延误的概念,分别采用现场调查法、HCM2000算法以及仿真方法对停车延误和控制延误进行了分析计算,并以武汉市小东门交叉口信号控制方案设计为例,应用V ISSIM4.10仿真软件对其延误进行了仿真计算分析,通过与点样本法、HCM2000算法的计算结果比较,表明V ISSIM软件在信控交叉口延误计算分析中具有较好的精准性和有效性,可以作为交叉口延误分析评价的有效方法之一.关键词:信号交叉口;延误分析;V ISSIM仿真中图法分类号:U491DOI:10.3963/j.issn.100622823.2009.04.0200 引 言信号交叉口延误是由于交叉口处信号控制引起交通流间断而损失的车辆行驶时间,包括排队延误、停车延误、控制延误、引道延误等[1].用于评价信号交叉口服务水平的延误主要是平均停车延误和平均控制延误.平均停车延误实际应用中易于测定,已被研究人员广泛接受,有许多研究用平均停车延误方法来评价信号交叉口的服务水平.但是进入交叉口的部分车辆还要经历减速延误和加速延误,这是由于交叉口的实际交通流是周期性中断的,每次交通流被迫减速、停止,然后再次启动、加速,这些都引起车辆运行时间的损失.为了全面评价信号交叉口的运行效率,1997年美国的通行能力手册引入了控制延误.控制延误是停车延误和加减速引起的损失时间之和[2].一般而言,控制延误往往易于用数学模型来描述,而停车延误则易于观测和度量[3].本文将分别运用点样本法、HCM2000法(美国道路通行能力手册)和V ISSIM4.1微观仿真软件计算武汉市小东门交叉口的延误,并对计算结果进行分析比较.1 信号交叉口延误分析的主要方法1.1 调查方法交叉口延误的调查方法主要有点样本法和抽样追踪法2种,考虑到点样本法容错性较好,在本文的分析中采用点样本法.在交叉口处,按15s 预定的时间间隔清点停在停车线后的车数,同时清点经过停车后通过停车线的车辆数(停驶数)和不经停车通过停车线的车辆数(不停驶数).连续不间断的重复上述过程,直至取得所需样本量或交叉口引道上交通显著地改变时为止.为保证调查精度,必须有足够的样本数,根据二项分布来确定需要调查的最小样本数为N=(1-p)x2pd2(1)式中:N为最小样本数;p为交叉口引道处停驶车辆百分比;x2为在所求置信度下x2值,一般情况下,置信度为90%时,相应的x2=2.7;d为停驶车辆百分率估计值的允许误差,范围是0.01~0.1,通常取0.1或0.05.交叉口点本样法延误调查,可得出以下数据总延误=总停驶数×抽样时间间隔(2)每一停驶车辆的平均(停车)延误=总延误/停车数(3)每一入口车辆的平均(停车)延误=总延误/入口交通量(4)停驶车辆百分比=停车数/总入口车数×100%(5)停车百分比的容许误差=(1-p )x 2pN(6)1.2 模型估算方法本文应用HCM2000延误计算模型.d =d 1P F +d 2+d 3(7)式中:d 为各车道每车平均信控延误,s/pcu ;d 1为均匀延误,即车辆均匀到达所产生的延误;P F 为均匀延误的调整参数;d 2为随机附加延误,即车辆随机到达并引起超饱和周期所产生的附加延误;d 3为初始排队附加延误,即在延误分析期初停有上一时段留下积余车辆的初始排队使后续车辆经受的附加延误.引道每车延误和整个交叉口的每车延误为d A =∑id iv i/∑ip i(8)d I =∑AdAv A /∑AvA(9)式中:d A 为引道A 的延误;d i 为引道A 中车道组i 的延误;v i 为车道组i 的调整流率;d I 为交叉口I 的每车延误;v A 为引道A 的调整流率.考虑调查初始时交叉口就存在车辆排队对延误的影响,所以模型中增加延误d 2考虑了交叉口过饱和情况下的增加延误,但假定车道组在分析期起点没有初始排队,如果存在初始排队则需要计算d 3,否则d 3等于0.1.3 仿真方法利用德国P TV 公司研发的V ISSIM 软件进行仿真研究计算.V ISSIM 系统核心仿真模型采用德国Karlsruhe 大学Wiedemann 教授建立在驾驶员反映行为之上的“心理2物理学跟车模型”[425].在使用V ISSIM 进行仿真过程中,需要根据车辆的位置、速度和加减速率采取不同的运行状态:(1)当车辆遇到信号控制或车辆排队时减速行驶;(2)车辆必须在车辆排队队尾或交叉口停车线前停止;(3)当排队消散或信号变为绿灯时,车辆加速再次达到正常运行速度;(4)车辆在无信号2 信号交叉口延误分析方法的比较1)点样本法的各个样本是相互独立的,某个样本的错误或遗漏对总的结果几乎没有影响.由于选择观测时间间隔避免了与信号周期的同步,使得各种停车运行状态的样本均可观测到,可以得到每一停驶车辆的平均延误和停驶车辆百分比等统计量.但是点样本法无法获得延误时间的分布特征.从式(4)可以看出:点样本法认为在统计时刻停留在停车线后面的车辆已完全停车了调查间隔值;在调查间隔区段内停车,而在统计时刻前起动加速驶离的车辆的停车延误则忽略不计.由此可见点样本法适用于停车延误较大的信号控制交叉口.一般应是信号周期较长,或者信号相位阶段较多的信控交叉口.该类交叉口由于有效红灯时间较长.绿信比较低,致使车辆因红灯停车延误较大.同时当交叉口停驶车辆百分比很高时,由于排队车辆较多,要在调查间隔时刻瞬间统计出停车排队车辆数,几乎是不可能的,致使点样本法很难适用,精确度不高.2)模型估算法运动方便,受主观因素的影响小,精确度较高.不足在于它是在一定的假设条件之上通过数学模型计算延误,缺乏考虑众多相关因素影响的能力,有时难以充分反映实际情况.HCM2000延误模型是针对美国城市交叉口交通流特征建立的,而我国城市交叉口与美国城市交叉口有很大差异.首先,交通方式要复杂得多.美国城市交叉口交通方式主要是机动化的,且以小汽车为主,而在我国城市交叉口,各种交通方式混杂,包括机动车非机动车和行人,且相互干扰,增加了交叉口的延误.其次,美国公民闯红灯者少,而在我国,城市交叉口闯红灯的现象比较普遍,干扰车辆的正常运行,增加了交叉口的延误.3)V ISSIM 通过模拟,再现路段交通流的运行情况,直观地反映车流的密集程度、拥挤状况、排队状况等,能模拟路段上的非机动车及行人、交叉口处等待过街和正在过街的非机动车及行人交通流.因此V ISSIM 不仅能描述信控交叉口车辆的延误,也能计算行人和非机动车的延误.但V ISSIM 需根据实际交通流情况,调整跟驰模型的参数或车辆动力特性参数等,从而确保其延误3 案例分析3.1 基础数据以武汉市的小东门信号控制交叉口(武珞路与中山路相交)为研究对象,如图1所示,采用四相位定时信号控制.表1为交叉口的小时机动车、非机动车和行人流量调查数据,表2为信号交叉口的相位分配情况.图1 小东门交叉口表1 小东门交叉口小时交通流量调查数据表方向编号 机动车/pcu 非机动车/辆 左直右总量左直右总量行人/人东21040039310033575164274648南30886833215085088234372510西692004627314082200322484北391107616216295192289433600表2 信号交叉口相位分配表s相位绿灯时间黄灯时间全红时间周 期北左直3632南左直3232东左直2232西左直25321353.2 结果分析定义排队计数器,按东、南、西、北的顺序,在该交叉口的各进口道停车线附近设置4组排队计数器.其中排队开始车速的上限值为5.0km/h、排队消散车速的下限值为10.0km/h ,车辆间的最大车头空距12m ,最大排队长度500m ;仿真时间0~3600s ,仿真计数间隔400s.通过V ISSIM 运行,可以得到延误输出文件,由于仿真的随机因素,一次仿真的结果具有不稳定性.所以,进行了3次独立的仿真,保证仿真结果的统计稳定性.再使用点样本法和HCM2000法计算延误,得到结果,见图2和表3.表3 延误结果分析表项 目东西南北V ISSIM 与点样本法误差/%9.1411.3418.3014.07V ISSIM 与HCM2000误差/%8.336.949.348.32 从图2和表3的结果分析数据可知:1)点样本法基于现场数据调查,其计算所得到的是停车延误,故计算结果小于HCM2000法计点样本法停车延误得到的控制延误值.由图2可知,点样本法停车延误与HCM2000控制延误曲线有相似性,所以点样本法停车延误可以乘以一定的转换系数,通过适当修正得到控制延误.2)由于南进口道的停车百分比较大,在点样本法实际调查中不能准确的在15s 的时间间隔内统计出停车车辆数,所以在南进口道,点样本法在计算停车延误时与V ISSIM 仿真有较大的偏差,其他进口道的点样本法停车延误与V ISSIM 仿真的停车延误误差不大.3)V ISSIM 仿真得到的控制延误数据与HCM2000法计算的延误在允许范围内存在一定的误差.这主要是因为HCM 延误模型是针对美国城市交叉口交通流特征建立的,而我国的交叉口交通流特性与美国的存在一定的差异,所以不能直接利用HCM 延误模型分析我国城市交叉口由图2可见,HCM2000延误模型计算曲线与V ISSIM仿真延误曲线变化趋势相似,可以近似认为两者存在一定的线性关系,可以适当修正HCM2000模型使之适合我国混合交通流条件下的信号交叉口的延误计算.4)V ISSIM4.1仿真软件提供了一个虚拟的平台,通过详细地描述交通主体的行为,设定相应参数来反应实际交通状况,因此利用V ISSIM仿真软件得到的交叉口延误数据准确度比较高.4 结束语本文着重论述了交叉口延误的点样本法、HCM2000算法以及模拟仿真的计算方法.利用V ISSIM4.10软件建立仿真平台,并运用这3种方法分别对武汉市小东门交叉口的延误进行了计算.通过实例运用的比较分析可以得到,V ISSIM 仿真软件在信控交叉口延误计算的结果与点样本法、HCM2000延误计算结果吻合较好,具有较好的精准度和实用性.参考文献[1]杨晓光.城市道路交通设计指南[M].北京:人民交通出版社.2003.[2]邵长桥.平面信号交叉口延误分析[D].北京:北京工业大学交通工程系,2002.[3]陈绍宽,郭谨一,王 漩,等.信号交叉口延误计算方法的比较[J].北京交通大学学报,2005,29(3):77280.[4]罗美清,隽志才.V ISSIM在交叉口交通设计与运行分析中的应用[J].武汉理工大学学报:交通科学与工程版,2004,28(2):2322235.[5]王玉鹏.基于VISSIM仿真的交叉口延误分析[J].物流科技,2006(4).25228.[6]Fu L P.A f uzzy queuing model for real2time adaptiveprediction of incident delay for A TMS/A TIS[J].Transportation Planning and Technology,2004, 33(2):19223.[7]Blue V J,Adler J L.Cellular automata microsimula2tion for modeling bi2directional pedestrian walkways [J].Transportation Research,2001,35(3):2932 312.[8]Cheng T C E,Allam S.A review of stochastic mod2elling of delay and capacity at unsignalized priority in2 tersections[J].European Journal of Operational Re2 search,1992,60(3):2472259.Comparison of Analysis Met hods ofIntersection Delay Under Singnal ControlYao Yihu Zhao Yueping(S chool of T rans portation,W uhan U ni versit y of Technolog y,W uhan430063)AbstractThe t raffic delay is an important index to evaluate t he service levels and t he operation efficiency at t he signalized intersection.Based on presenting t he stopped delay and control delay,t his paper em2 p hatically analyses t he delay calculation of spot sample met hod,HCM2000algorit hm and t he simula2 tion met hod.Finally t his paper taking t he example of Wuhan Xiaodongmen intersection to calculate t he intersection delay by simulation software named V ISSIM4.10.According to t he comparison and analysis of V ISSIM simulation wit h spot sample met hod and HCM2000algorit hm,t he accuracy and effectiveness of t his software in calculation of delay at signal2cont rolled intersection have been proved. So t he V ISSIM simulation met hod can be used as an effective way to analyze and evaluate t he t raffic delay at t he signalized intersection.K ey w ords:signalized intersection;delay analyse;V ISSIM simulation。
vissim交叉口研究方法和目的
vissim交叉口研究方法和目的
Vissim交叉口研究是一种基于仿真的交通流分析方法,主要用于研究交通流量、拥堵、行车速度、交通事故等交通问题,并为改善交通运输系统提供参考依据。
其研究方法包括建立交通模型、设定交通流参数和运行模拟等,通过在计算机上模拟交通情况,得出交通状况指标的数据,如交通量、速度、延误时间等。
研究目的主要是为了优化交通流、提高道路通行能力、改善交通安全等方面提供科学依据。
Vissim交叉口研究方法和目的的应用范围广泛,涉及城市交通规划、道路设计、交通管理等多个领域。
- 1 -。
基于VISSIM仿真的交叉口信号优化方案与评价
Internal Combustion Engine & Parts• 41•基于VISSIM仿真的交叉口信号优化方案与评价席睿璞(西安市铁一中学,西安710043)摘要:现如今,城市经济的增长带来一系列交通问题,传统交叉口优化方案的效用已逐渐减弱。
本文利用VISSIM微观仿真软件,通过韦伯斯特配时法和不饱和度法对现状交叉口配时方案进行优化,并结合行程时间、排队长度及延误等指标展开评价。
关键词:VISSIM;交叉口;韦伯斯特配时法;不饱和度法0引言随着我国经济发展水平的不断提高,交通拥堵问题也 成为了人们日益关注的热点。
交通拥堵严重影响了人们的 生活,交叉□的信号配时方案在一定程度上决定了交叉口 的通行能力,因此如何确定最优的交叉□信号配时方案能 够帮助更好地解决相关交通问题[2]。
本文基于此,提出了基于VISSIM仿真的方法进行交 叉□优化。
VISSIM是一种微观的、基于时间间隔和驾驶行 为的仿真建模工具,它可以对各交通条件下城市、公共交 通的运行状况作出有效分析。
1交叉口现状分析1.1交叉□渠化和配时该路□为规则的十字交叉□。
其中南向和东向的进口 道为3车道,出□道为2车道;北向和西向进□道为2车道,出□道为2车道。
交叉□的机动车与非机动车道以分势,也是橡胶悬置系统研究的一大特点。
3.3注重稳健性优化设计确定性优化设计是悬置系统研究的经典方式,基于 所建模型的最优化设计在可行域内寻求系统参数的最优 解,理论上能够充分发挥悬置系统的性能。
但在实际工程 应用过程中,存在众多不确定因素,例如:一般的橡胶悬 置元件刚度的制造误差普遍约为15%[||],利用上述优化结 果指导实际生产可能会产生较大的偏差,因此降低系统 性能对最优参数及其周围参数的敏感度,即采用稳健性 设计来降低参数不确定性带来的系统不稳定是近年来研 究的一个热点。
4结语目前来看,研究人员对一些规则橡胶元件刚度计算 经验公式、橡胶材料的本构模型和橡胶悬置的有限元分 析法都有了深入的研究,在金属橡胶、橡胶液力隔振器的 弹性/阻尼特性方面还有进一步深入研究的空间。
基于VISSIM仿真的道路交叉口改善方案评估
基于VISSIM仿真的道路交叉口改善方案评估摘要:为缓解城市道路交叉口交通拥堵,制定更加合理的改善方案,需要进行科学评估。
以南昌学府大道-丰和大道交叉口交通改善为例,首先,对交叉口现状几何条件、信号配时、交通量等情况进行调查,分析存在的主要问题,提出交通改善的总体方案。
其次,借助VISSIM交通仿真软件,建立仿真模型,对改善前后的行程时间、延误、排队长度等指标进行分析,评估方案的合理性。
对交叉口改善方案进行仿真评估,能够为其它城市道路交叉口交通改善方案研究提供参考。
关键词:VISSIM;交叉口;交通改善;仿真评估0 引言城市道路网络是支撑城市空间结构拓展和经济社会发展,满足城市居民日常交通出行,实现城市之间交通联系的重要载体。
城市道路交通拥堵主要发生在交叉口位置,由于车辆通过交叉口的效率低,交叉口通行能力仅相当于路段的一半左右,这是造成城市道路交叉口成为“交通瓶颈”的主要原因[1]。
解决交叉口通行能力问题,需要对交通规划、设计、建设、运营、管理等各环节进行研究,并合理选择交叉口形式。
在规划阶段,可针对不同类型交叉口选型,建立环境评价、节能评价、经济评价和社会评价的评价指标体系,进行多维度分析,从而提出更加合理可行的规划方案[2]。
在设计、建设阶段,可结合交叉口交通组成复杂、交通行为具有随意性和不确定性的特点,对交通岛、导流线等要素进行精细化设计,从而提高交通安全和运行效率[3]。
在运营、管理阶段,对交叉口进行交通改善,需要从信号配时、交通组织优化、交通管理提升等方面进行研究。
利用交通仿真软件进行改善方案验证和评估,可有助于提高方案的合理性、可行性[4]。
因此,利用交通仿真模型对交叉口改善方案进行评估,已经成为交叉口交通改善治理的一种新思路。
1 VISSIM仿真介绍交通仿真是利用计算机技术,通过建立交通仿真模型,对复杂的城市交通状况进行模拟演练、直观展示的一种技术手段。
依据交通仿真研究对象、层次和指标等不同,可将交通仿真分为宏观交通仿真、中观交通仿真和微观交通仿真三类。
基于VISSIM仿真的交叉口信号配时优化分析
交通工程觀_________________________________________________________________基于VISSIM仿真的交叉口信号配时优化分析魏子凯,梁梦凯(石河子大学机械电气工程学院,新疆石河子832000)摘要:随着我国城市化发展和车辆保有量的增加,城市交通负荷也随之急剧增长,现有交通信号 与交通需求不能很好地。
为了缓解交通延误、提高道路通行效率,文章以石河路一东二路交叉口为例,利用交通VISSIM交叉口建立微观道路交通化分析。
结,优化后交叉口排队长度、车辆延误等指标降低,能够有效缓解交通拥堵、提全性。
关键词:VISSIM;交叉口;信号配时;Webster算法中图分类号:U49..5+1文献标识码:A DOI:1013282/ki.wccst.2021.02.047文章编号::673-4874(2021))2-0174-030引言国发展化进程推进,私家车的了四倍多,交通需求与道路设断产生尖而交叉口道路的重要也,某些交叉口路段通行能力,由此导致了交通拥题严重。
因此,对交叉口的交通状况分析,对信号灯化,可以定程度上提高道路通行能力*3-4+,误,车畅通。
VISSIM为德国PTV开发的一种基驶行为的微观交通真软统,被广泛地交通状况5。
本文以石河路一东二路交叉口为例,利用Vissim交通微交叉口进行仿真,利用Webster:化信号,通度、车误等指标评估改善效果。
1交叉口基本状况石河路学路向四车道的城市道路,方向为东西向,从东至西了路一东二路交叉口、石河学新区、石河学、石河学北校区以及区,交通需求较大,交通作,、上下学高的行人流、车道路通行能力生的。
交叉口为主干道 路与东二路相交形成的交叉口。
交叉口西进口为112m的双向四车道道路,道路两停车位,道路中央为黄色双实线,未设立央分隔栏。
道路两侧基称,35m的非机动车道、-2m人行道,设2m机动车道、非机动车道隔离带。
交叉口延误分析 (vissim)
目录之巴公井开创作1调查交叉口早或晚高峰相关数据11.1调查交叉口早或晚高峰相关数据12根据实际调查建立仿真模型32.1根据实际调查建立仿真模型33.交叉口延误情况33.1信号配时33.2计算延误的结果为44对路口重新评价平均延误44.1优化信号配时与渠化设计之后的信号配时44.2平均延误41调查交叉口早或晚高峰相关数据1.1调查交叉口早或晚高峰相关数据根据小组调研数据所得两个路口6个方向车流量分别为图1府前东街-顺通路东方向直行左转右转小汽车54015660公交车34106南方向小汽车1805830公交车2175南方向小汽车1547436公交车24106表1府前西街-新顺南北大街西方向直行左转右转小汽车52764292公交车2895南方向小汽车314116124公交车25128南方向小汽车40817466公交车241012表22根据实际调查建立仿真模型2.1根据实际调查建立仿真模型图23.交叉口延误情况3.1信号配时Vissim仿真模拟在理想条件下的最大车流量方向延误情况No. 1: Travel time section(s) 1Time; Delay; Stopd; Stops; #Veh; Pers.; #Pers;VehC; All;;;;;;No.:; 1; 1; 1; 1; 1; 1;600; 72.5 86.4; 0.97; 30; 103.6; 37;Total; 72.5; 86.4; 0.97; 30; 103.6; 37;3.2计算延误的结果为运算结果与vissim仿真情况基本一致加入行人和非机动车仿真出的结果比计算结果多30秒属于正常情况No.:; 1; 1; 1; 1; 1; 1;600; 128.7; 112.5; 1.39; 41; 128.7; 41;Total; 128.7; 112.5; 1.39; 41; 128.7; 41;4对路口重新评价平均延误4.1优化信号配时与渠化设计之后的信号配时4.2平均延误No. 1: Travel time section(s) 1Time; Delay; Stopd; Stops; #Veh; Pers.; #Pers;VehC; All;;;;;;No.:; 1; 1; 1; 1; 1; 1;600; 87.0; 62.5; 1.13; 64; 89; 67;Total; 87.0; 62.5; 1.13; 64; 89; 67;。
基于VISSIM仿真的公交流量比与交叉口人均延误时间关系的研究——以南京市北京东路-龙蟠中路交叉口为例
基于ⅥS SI M仿真的公交流量比与交叉口人均延误时问关系的研究以南京市北京东路—龙蟠中路交又口为例羊钊李铁柱过秀成东南大学,交通学院,南京210096摘要:根据信号交叉口已知的车道设置情况和交叉口控制务件可以判断进口道总人均延误值是否最小。
该值与进口道交通量反公交比例有关,其结论可以用于指导上游路段的交通控制.以交叉口人均延误最小化为目标,假定交叉口信号配时、入口车道数,入口车道通行能力等条件不变。
采用ⅥssI M仿真模型进行分析,结果表明,当车道设置条件和交叉口控制条件不变时,随着入口交通量的增大(饱和度从O.5增加至1),最佳公交流量比例逐步上升.关键词:信号交叉口;人均延误;公交比例;模拟仿真中图分类号:U491.2+32文献标识码:A文章编号:1672—4747(2010)04—0126一07 St udy of t he R el at i onshi p be t w ee n B us Per cent ageV I SSI M Si m ul at i onY A N G Z ha o LI T i e-zhu G U0X i u-chengT r anspor t at i on C ol l ege,Sou t hea st U ni t e r si t y,N anj i ng210096,C hi naA bst r a c t:B a se d on t h e kn ow n t r af f i c1ane s et t l em e nt and t r af f i c co nt r01m e t hods at as i gnal i ze d i n t e r se c t i on,i t can be j ud ged w het her t h e aver age de l8y t i m e i s t h e1eas t ac cor di ng t o t h e gi ven t r af f i c v01um e an d bu s per c ent age.T h e r es u l t can be us ed t o gui de t r af f i c co nt r01i n t h e upp er a pp r oac he s.W i t h an obj ect i ve of m i ni m i z i ng t h e aver age del ay t i m e an d s u ppo s i n g t he s i gnal t i m i ng,t h e num ber of t r af f i c1an es an d t h ei r cap aci t i es si蛐1at i on w as ca r r i ed w i t h V I S SI M.The r es ul t s how ed t hat w i t h t he i ncr e as e unc hange d,a nd a收稿日期:2009.11.17.作者简介;羊钊(1988一)。
信号交叉口延误调查与模型分析
信号交叉口延误调查与模型分析摘要车辆在信号交叉口的延误是评价交叉口服务水平和车辆通行效率的一个重要指标,研究信号交叉口延误分析模型将非常有意义。
本文着重对信号交叉口延误模型进行比较分析,分析模型主要分为Webster信号交叉口延误计算模型、美国HCM延误模型以及VISSIM仿真模型,通过比较分析,表明VISSIM软件在信控交叉口延误计算分析中具有较好的精准性和有效性,可以作为交叉口延误分析评价的有效方法之一。
经过延误调查方法比较分析,建立与城市交叉口延误相符合的延误分析模型,为城市信号交叉口和道路系统的分析评价提供理论依据。
关键词:信号交叉口;延误;HCM延误模型;VISSIM仿真模型。
AbstractDelays at signalized intersections vehicle is an important index for the intersection of service and vehicle traffic efficiency,so Signal Intersection Delay Analysis Model will be very meaningful.This article focuses on the intersection of signal delay model comparative analysis, analysis model is divided into Webster signalized intersection delay model, the United States HCM delay model and simulation model VISSIM。
Through comparative analysis, it showed VISSIM software has better accuracy and effectiveness of control in the letter intersection delay calculation and analysis can be used as an effective method of analysis and evaluation of intersection delays.After delays comparative analysis survey methods, establish and urban intersection delay model consistent delay, provide a theoretical basis for the analysis and evaluation of urban signalized intersection and the road system.引言信号交叉口是我国城市道路主要的交叉口形式,信号交叉口的延误计算是交通流理论研究的重要内容,是评价交叉口服务水平的重要指标。
基于VISSIM仿真的交叉口延误分析
64
0
61
0
695
东西向双向左转专用相位, 信号配时周期时长 为 60 秒, 左转专用 12 秒, 东
西 19 秒, 南北 20 秒, 黄灯时间为 3 秒。
在 VISSIM 中的运行结果见图 1。
通过 VISSIM 运行, 可以得到延误输出文件, 由于仿真的随机因素, 一次
仿真的结果具有不稳定性。所以, 对每一个信号配时方案都采用不同的随机
为, 通过设定相应参数来反映实际交通状况, 因此得到延误数据更贴近实际。
表 2 交叉口延误计算结果对比表
因 此 , 在 实 际 应 用 中 采 用 VISSIM 这 一 交 通 仿 真 软 件 进
行交通仿真, 可为城市或非城市交通路网的规划及规划
延 误 /s
进口道 车道
误差/% 方案的比较、调整提供详细、科学的依据。
VISSIM 是由德国 PTV 公司开发的微观交通流仿真系统。该系统是一个离散的、随机的、以 1/10 秒为时间步 长的微观仿真软件。车辆的纵向运动采用了德国 Karlsruhe 大学 Wiedemann 教授的 “心理—生理跟驰模型”; 横向 运动 (车道变换) 采用了基本规则 ( Rule- based) 的算法。不同驾驶员行为的模拟分为保守型和冒险型。
基于VISSIM仿真的驯海路交叉口延误分析及优化设计
基于VISSIM仿真的驯海路交叉口延误分析及优化设计文章首先详细地介绍了驯海路交叉口的现状并对其拥堵问题进行分析,采用微观交通仿真的方法,开展道路交叉口改善优化的研究。
通过信号交叉口调查数据的统计分析,计算平均延误时间、高峰小时系数等评价指标,从交通组织优化方面提出优化方案,并利用VISSIM交通仿真软件对优化方案进行仿真。
仿真结果表明方案具有可行性。
标签:道路交通;优化;仿真引言交叉口是城市道路系统的重要组成部分,也是城市路网中最常见、最普遍、最直接的交通拥堵发生源及交通事故多发地点。
对于信号控制的单点平面交叉口来说,信号配时优化对于减少车流的平均延误、停车次数,提高交叉口的通行能力、服务水平起到至关重要的作用。
目前,德国PTV 公司开发的VISSIM 仿真软件在国内外应用最为广泛;而且VISSIM 能直观、形象、详细地仿真出车辆、道路、交叉口、信号灯等随时间变化的三维动画状态,能真实、精确地重现交通网络交通运行状况,弥补了在拟定交通控制方案及对方案进行评价时因无法直观观测车辆在道路及交叉口的运行状况而引起的不足。
1 路口现状及分析1.1 路口现状1.2 冲突点与冲突区域分析(1)冲突点:A路右转车辆与B路直行车辆形成的冲突点1;A左转车辆与B直行、左转、H直行的车辆形成的冲突点2、3、7;A直行车辆与B直行和H左转车辆形成的冲突点4、5;H左转车辆与B左转车辆形成的冲突点6;H直行车辆与B直行车辆形成的冲突点8;G左转车辆与E左转、C左转、D直行车辆形成的冲突点9、10、11;G直行车辆与E直行和右转车辆形成的冲突点12;D直行车辆与C左转车辆形成的冲突点13;I左转车辆与C直行车辆形成的冲突点14;E直行车辆和C左转车辆形成的冲突点15。
(2)冲突区域(如图中方框内区域所示):A、B、F、H路口交叉区域Ⅰ。
A路车辆直行左转,B路车辆左转直行右转,H路车辆直行右转,均在此处汇合,且B和H路来向车辆以大型车辆居多,加之桥墩与东西方向呈锐角角度(约75度),H左转车辆转弯半径较大,使其它车辆正常行驶受到干扰,使车速降低。
VISSIM在提高交叉口通行能力中的应用
VISSIM在提高交叉口通行能力中的应用摘要:城市道路平面交叉口是道路系统中的重要的组成部分,一旦交叉口发生堵塞,会影响交通的有效运行。
以辽宁省鞍山市园林――二一九路的T型交叉口为研究对象,通过理论分析与VISSIM交通仿真系统相结合的方法,进行仿真和评价,可以为城市信号交叉口的优化和通行能力的提高提供有效的参考。
关键词:城市交通;VISSIM;交叉口;配时;仿真1 概述随着中国经济的飞速发展和城市进程的日益加快,机动车辆保有量快速增长,道路基础设施的建设相对滞后,城市道路的用地空间有限,造成了现今交通拥堵问题日趋严重。
城市道路平面交叉口作为城市交通网络的重要组成部分,最易成为交通拥堵严重的区域。
由于交通量增长速度较快,以前的信号配时设计方案很有可能已不适合交通量急剧变化后的交叉口。
以鞍山市园林――二一九路的T型交叉口为例,通过对平面信号交叉口交通数据的实地采集与分析,利用理论分析同VISSIM交通仿真系统相结合逐步调整信号灯配时方案,为提高道路交通能力提供科学合理的建议。
2 VISSIM城市交叉口的仿真模拟流程VISSIM软件系统能分析在车道类型、交通组成、交通信号控制、停让控制等众多条件下的交通运行情况,具有分析、评价、优化交通网络、设计方案比较等功能,是分析许多交通问题的有效工具[1]。
采用VISSIM进行城市交叉口的仿真模拟流程如下:(1)确定研究对象,并对其进行实地的调查分析和数据采集(各个车道宽、车道数、车流量及行人数量、信号配时);(2)对实地收集的数据进行有效的分析与合理的处理;(3)运用CAD绘制交叉口的现状图;(4)把绘制好的现状图正确的导入VISSIM中从而构建路网;(5)根据前面所得数据对VISSIM进行参数标定,输入车道宽、车道数、相位、车流量等仿真数据;(6)仿真结果输出(优化后行车延误、排队长度、时间占有率);(7)对现状和改善方案进行仿真分析并得出结论。
[2]3 园林路――二一九平面交叉口现状二一九平面交叉口位于鞍山市二一九公园出入口西侧,二一九公园是最受市民青睐的活动场所,人流量较大。
基于Vissim仿真的交叉口交通优化
基于Vissim仿真的交叉口交通优化摘要:随着我国经济快速发展和车辆保有量增加,城市交通负荷也随之急剧增长,交通拥堵成为大中小城市的难题。
交叉口作为影响城市道路交通问题的重要节点,在城市发展进程中扮演着阻碍城市道路交通更优一步的角色。
为了缓解交通延误、提高道路通行效率,文章以某道路交叉口为例,利用交通仿真软件(Vissim)对该交叉口建立仿真模型并进行信号配时优化分析。
提高交叉口通行效率、有效缓解交通拥堵、提高道路安全性。
关键词:道路交叉口;Vissim仿真;信号配时优化0、引言随着机动车保有量剧增,城市道路负荷也随之急剧增长。
交叉口作为道路通行能力、路网通行效率的关键节点,一直是国内外专家学者的研究重点。
韩义磊[1]从车道功能划分和信号配时两方面提出对交叉口的交通组织优化设计方案,并利用VISSIM进行优化前后建模仿真,论证了交通组织优化设计方案的可行性;徐琛辉[2]利用VISSIM仿真软件对待行区设置进行了微观建模仿真,在不改变交叉口几何布局的基础上,以储备最大通行能力为目标,确定了待行区设置方式的适用条件。
邢小高[3]、魏子凯[4]利用VISSIM仿真软件模拟交叉口运行实况,并输出行程时间、排队长度、延误时间等运行参数结果,提出信号控制优化措施,对比分析优化前后的运行结果,证明优化方案的可行性[5]。
综上,目前对于优化信号配时以提高交叉口通行能力已有相关研究[6],因此本文在以往研究的基础上,对某一交叉口的信号配时进行优化改进,以提高交叉口通行能力为目标,在仿真建模下对比分析延误时间、停车次数、排队长度以及交叉口尾气排放等因素,给出提高交叉口通行能力的优化方案。
1、交叉口现状1.1交叉口区域现状该交叉口是一条由最初的双向六车道变为临近交叉口的单向四车道的城市道路,方向为东西向,从西向东连接重庆交通大学、重庆工商大学、重庆第二师范学院以及数个住宅小区和商业区,交通需求较大,交通作业繁忙,尤其是在上下班、高峰时带来的行人流、车流对道路通行能力会产生很大的影响。
基于Vissim的交叉口延误时间估计方法设计与实现
附件B:毕业设计(论文)开题报告1、课题的目的及意义(含国内外的研究现状分析或设计方案比较、选型分析等)交通需求的迅速增长与道路系统建设的相对滞后造成的严重交通问题己经成为世界性矛盾,严重影响了人们的日常生活。
在美国的一些大城市,居民终日饱受严重的交通阻塞之苦,而在城市周围,高度密集的车流使得交通高峰期间高速公路上的车速降到56km/h以下。
在我国,北京、上海等地不断激增的车辆和脆弱的交通系统使城市成为名副其实的“堵城”。
交通问题的恶化,带来了巨大的经济损失,对环境造成了极大的污染和破坏。
如何有效利用现有交通理论,以科学思想指导交通规划、设计、控制和管理,缓解交通拥堵问题,已经成为广大学者深入研究的课题。
随着学者专家的深入研究及工程技术的进步,对交通问题的研究已经逐渐发展成为科学,并形成了系统化的交通流理论。
交通流理论的研究不仅是实际问题的理论需求,同时也具有科学研究价值。
跟驰模型作为交通流理论的重要组成部分,是分析车辆间的微观作用关系重要工具,理解单车道交通流特性的重要手段。
跟驰模型的研究始于20世纪50年代初期,Reusche[1]和Pipes[2]首先从运动学的角度对队列行驶中的车流进行动力学分析。
20世纪50年代后期到60年代初期,通用汽车(GM)实验室在跟驰理论研究方面做了大量工作,极大地推动了跟驰模型的研究,并作为重要的跟驰基础模型沿用至今[3-4]。
1959年,文献[5-7]共同获得了运筹学Lanchester奖,开创了微观交通流理论研究的先河。
从20世纪60年代开始,随着认知心理学及视觉理论的发展,许多学者逐渐认识到跟驰行为并不能被视为纯粹的机械过程,而应更多地考虑驾驶员在驾驶行为中的感知、处理与决策过程,这一时期的研究促成了交通工程领域与心理学之间的交叉融合,最终形成了心理-生理类跟驰模型体系[8-10]。
跟驰模型的研究热潮是在1995年Bando等[11]提出优化速度模型(OV)之后,国内许多著名的学者[12-16]相继提出了不同模型来展现交通流中诸如交通失稳、时走时停、激波、相变等非线性特性,以此来解释交通阻塞形成与消散的机理。
VISSIM报告步骤
VISSIM报告步骤VISSIM仿真实验利⽤AutoCAD软件和鸿业道路6.0软件对312国道进⾏合理的局部路⽹的交通组织,以及平⾯交叉⼝进⾏渠划设计,设计合理的标志标线,并在此基础上进⾏仿真。
获得该路段312国道的V/C值、平均⾏驶速度、流量等的变化。
1导⼊CAD地图⽂件建⽴⼀个精确VISSIM模型的必要条件是:⾄少具有⼀张具有⽐例尺的反映现实路⽹的背景图⽚。
本设计采⽤312国道局部路⽹地图,打开步骤如下:1)依次选择:查看→背景→编辑…,点击加载…,选择导⼊VISSIM的⽬标图⽚⽂件。
2)关闭背景选择窗⼝,在巡航⼯具栏中点击显⽰整个显⽰整个地图。
显⽰整个地图。
3)再次打开背景选择窗⼝,选择待缩放的⽂件,点击⽐例尺。
此时,⿏标指针变成⼀把尺,尺的左上⾓为“热点”。
4)按住并沿着标距拖动⿏标左键。
5)释放⿏标输⼊两点间的实际距离,点击确定,本次设计的所选距离为1400⽶。
6)在背景选择窗⼝中点击起点,可以将背景图⽚移动到⽬标位置。
按住⿏标左键,可以把背景图⽚拖到⼀个新的位置。
7)依次选择:查看→背景→参数…,点击保存。
2图形编辑2.1路段属性和选项路段画法步骤如下:1)在路段的起始位置点击⿏标右键,沿着交通流运⾏⽅向将其拖⾄终点位置,释放⿏标。
2)编辑路段数据包括:路段编号、名称、车道数、路段类型,是否⽣成相反⽅向等。
如下图所⽰:连接器2.2连接。
没有连接器的话,车辆是不能从⼀条路段换到另⼀条路段。
具体步骤如下:1)在第⼀个路段的指定位置(连接器起点)右击并沿着交通流⽅向拖动⿏标到第⼆条路段的指定位置(连接器终点),然后释放⿏标。
2.)编辑连接器数据,如右图所⽰,包括起点路段和终点路段的车道连接状态。
车道1代表最右侧的车道。
和中间点数可以使路段连接平滑过度等。
2.3定义减速区因本次所设计的内容有312国道与⼀条交通量⾮常少的⽀路相交,故在设计过程中在⽀路与312国道相交处的⽀路上设置减速区,设置过程如下:1)选择减速区模式。
交叉口的vissim仿真与优化本科毕业论文
交叉⼝的vissim仿真与优化本科毕业论⽂摘要随着经济的快速发展和城市化进程的不断加快,城市交通量急剧增加,引发了⼀系列严重的交通问题和社会问题。
作为交通⽹络重要组成部分的交叉⼝,往往是交通拥堵、交通事故、交通延误等交通问题的多发地带,成为整个交通⽹络的瓶颈。
近年来,淄博市张店区交通问题⽇益凸显,整个城市的交通设施、管控⽔平急需进⼀步组织优化。
因此,本⽂结合张店交通实际,深⼊研究平⾯信号交叉⼝的交通组织优化⽅法,具有重要的现实意义和实⽤价值。
本⽂⾸先运⽤交通流理论分析了交叉⼝处的交通流运⾏特性,揭⽰了交叉⼝交通问题的成因和根源,为解决此类问题找到了切⼊点和依据。
接着从优化原则、放⾏⽅法、渠化设计和信号优化控制等⼏个⽅⾯,详细探讨了平⾯信号交叉⼝交通组织优化理论和⽅法,指出了各种优化措施的实施⽅法、适⽤条件和注意事项。
最后,利⽤本⽂所研究的优化理论对张店南京路与新村路交叉⼝进⾏优化设计,并运⽤VISSIM仿真软件进⾏仿真实验。
仿真结果表明,根据本⽂研究的交叉⼝交通组织优化理论为解决交叉⼝交通问题提供了⽅法和依据,提出的优化⽅案具有很强有效性和可⾏性。
关键词:平⾯信号交叉⼝,交通组织优化,放⾏⽅法,渠化,信号控制AbstractWith rapid development of economy and the accelerating process of urbanization, the urban traffic flow has been increased sharply, which brings a series of traffic problems and social problems. As an important component of traffic network, the intersectionwith signals is always regarded as the frequent issues area of traffic jams, traffic accidents and traffic delays etc.,meanwhile, it will be the bottleneck for the entire transport network. Recently, the traffic problems in ZiboCity zhangdian district have been emerged up, simultaneously, the transportation facilities and managements in this city need further optimization urgently. Therefore, there is a deep research on optimization methods of traffic organization for intersections with signals in Zibo City zhangdian district in this paper. It will have important significance and practical value in future.Firstly, the characteristics of traffic flow in intersection is analyzed in traffic flow theory in this paper, and the causes of traffic problems occurred in intersection are also revealed to solve such problems. Secondly, the theory and methods of traffic organization optimization for intersection with signals are discussed in detail through optimization principles, discharging method, channelization design, signal optimization control and so on. The suitable conditions, implementing methods, and cautions for optimization methods of traffic organization have been put forward. Finally, Zhangdian NanJing Road and New Village Road intersection is designed in this paper with the simulation experiments by software VISSIM. The simulation results show that, the optimization theory of traffic organization in intersection with signals provides ways and basis to solve the traffic problems. It has been proved feasible and effective.Keywords: intersection with signals, traffic organizing optimization, discharging method, channelization, signal control ABSTRACT (2)第⼀章引⾔ (5)1.1研究背景及意义 (5)1.2国内外研究现状 (5)1.2.1 国外研究现状 (5)1.2.2 国内研究现状 (6)1.3本论⽂的研究内容及技术思路 (7)1.3.1 研究内容 (7)1.3.2 本研究的技术路线 (8)第⼆章交叉⼝通⾏能⼒和服务⽔平 (9)2.1道路通⾏能⼒ (9)2.1.1 基本通⾏能⼒ (9)2.1.2 实际通⾏能⼒ (10)2.1.3平⾯交叉⼝的通⾏能⼒ (12)2.2服务⽔平 (14)2.2.1 道路服务⽔平 (14)2.2.2 交叉⼝服务⽔平 (16)第三章平⾯交叉⼝的优化理论及⽅法 (17) 3.1平⾯交叉⼝优化设计的主要原则 (17) 3.2平⾯交叉⼝交通流运⾏特性 (18)3.2.1 ⼤型交叉⼝的概念 (18)3.2.2 平⾯交叉⼝机动车流特点 (20)3.3平⾯交叉⼝渠化设计 (26)3.3.1交通渠化的概述 (26)3.3.2 渠化设计的措施 (26)3.3.3交叉⼝渠化设计流程 (27)3.4交叉⼝信号控制和相位设计 (28)3.4.1 信号相位、阶段、基本参数 (28) 3.4.2信号控制⽅式的选择 (29)第四章交叉⼝优化⽅案评价指标 (31)4.1服务⽔平(效益指标) (31)4.1.1 饱和流率损失时间 (31)4.1.2 饱和度 (32)4.1.3 延误 (32)4.1.4 排队长度 (34)4.2安全指标 (35)4.2.1 ⼈车分离度 (35)4.2.2 交叉⼝冲突数 (36)4.2.3 交叉⼝安全度 (36)4.3⼩结 (37)5.1南京路与新村西路交叉⼝概述 (39) 5.1.1 交叉⼝附近交通、⼟地使⽤情况 (39) 5.1.2 交叉⼝道路基本情况 (39)5.1.3 交叉⼝的设施情况 (40)5.1.4 交叉⼝的信号配时 (42)5.2交通调查 (43)5.2.1 交通量调查⽅案 (43)5.2.2 延误调查⽅案 (43)5.3交叉⼝交通数据分析与仿真 (44)5.3.1 交叉⼝交通量 (44)5.3.2交叉⼝的延误调查及服务⽔平 (46)5.4交叉⼝优化⽅案及评价 (49)5.4.1 交叉⼝的优化⽅案 (49)5.4.2 优化设计⽅案的评价 (49)5.5结论 (51)结论 (52)参考⽂献 (53)致谢 (55)第⼀章引⾔1.1 研究背景及意义随着我国国民经济的迅速发展,城市化速度不断加快,机动车数量不断增加,城市交通量快速增长,现阶段的城市交通问题是社会经济发展的必然结果:交通延误增加、事故频发、⾏车时间增加、环境污染加重、经济发展受到限制。
基于VISSIM的交叉口感应信号控制仿真研究
绿灯极限延长时间是为了保持最佳绿信比而对各相位规定的绿灯时间延长限度。信号到 达绿灯极限延长时间时,强制绿灯结束并改换相位。绿灯极限延长时间,实际上就是按定时 信号最佳周期时长及绿信比分配到各个相位的绿灯时间,绿灯极限时间一般定为 30~60s[1]。
(1)单位绿灯延长时间的长短必须能使车辆从检测器开出停车线。
(2)单位绿灯延长时间的恰当长度,应尽可能不产生绿灯时间损失。
ห้องสมุดไป่ตู้单位绿灯延长时间可以参考公式 (2)[7]
△i= Di/ Vi 式中:△i——各相位的单位绿灯延时;
Di——为 i 相位关键进口道上检测器与停车线之间的距离,米;
(2)
-2-
定时
平均延误
(秒)
68.0
平均停车
次数
1.29
最大排队 长度(米) 229
表 3 各进口道平均到达率为 1600 辆/小时的输出结果
西进口
南进口
感应
定时
感应
定时
感应
北进口 定时
感应
60.3
66.9
62.1
70.6
67.6
68.1
65.6
1.00
1.21
1.13
230
218
218
1.22
1.24
1.28
1.28
240
240
234
234
由表 1 可以看出,交叉口各向流量均匀且很小时,三种评价指标均反映了各进口道感应 控制效果明显好于定时控制;由表 2 可知,各向流量差异很大(东,西 400 辆/时;南,北 1600 辆/时)时,在交通量较大的南北方向我们可以看出,定时控制下,南北进口道平均延 误时间接近 70 秒,平均停车次数达到 1.26 秒,最大排队长度也达到 230 米以上,而感应控 制下南北进口道三项评价指标值均明显低于定时控制,同时东西方向的感应控制效果也好于 定时控制,此结果说明,在不同流向差异很大时,感应控制能够提高交通流量较大进口道的 通过能力;由表 3 可以看出,交叉口各向流量均匀且很大时,定时控制与感应控制下的各进 口道平均延误,平均停车次数,最大排队长度都显著增加,虽然感应控制还优于定时控制, 但效果不明显,定时控制与感应控制都有向过饱和状态发展的趋势。以下给出在不同交通流 情况下,整个交叉口的感应控制与定时控制总平均延误比较,如图 7 所示(其中交通流 1 为各进口道平均到达率为 400 辆/小时;交通流 2 为东西向平均到达率为 400 辆/小时,南北 向平均到达率为 1600 辆/小时;交通流 3 为各进口道平均到达率为 1600 辆/小时)。
基于VISSIM仿真的平面信号交叉口交通组织优化
基于VISSIM仿真的平面信号交叉口交通组织优化平面信号交叉口是城市道路网中的重要节点,是各类交通流汇集、转向和通过的必经之地。
随着城市的快速发展和车辆保有量的增大,加之道路渠化和信号配时不尽合理,使信号交叉口经常发生交通拥挤、堵塞或交通事故,降低了交叉口的通行能力,因此对交叉口进行组织优化是十分有必要的,本文首先梳理了交叉口渠化和配时方法并给出交通优化组织评价指标,最后选择西安市某交叉口进行实地验证并利用VISSIM进行仿真。
标签:信号交叉口;交通组合;优化方案;交通仿真1 背景平面交叉口构成城市交通网络的关键节点,交叉口的复杂交通特征使其成为交通持续混乱和事故的多发点,降低道路网通行能力,成为城市道路的瓶颈。
因此,对交叉口的交通运行状况进行分析,找出交叉口拥挤堵塞的根源,对其进行优化,减少冲突点和延误,保证行车安全,提高交叉口的通行能力,保证行车畅通,从而提高整个城市路网的通行能力,这在城市交通的设计与治理中具有重要的意义。
2 信号交叉口交通组织优化方法交叉口交通渠化和信号控制优化(相位设置、信号相序、配时方案)是平面信号交叉口优化的常用方法,分别实现交通冲突在时间、空间上的分离。
(1)渠化交通。
通过在交叉范围内设置交通标志、绿化带、隔离带、标线、交通岛和行人安全岛等,来引导行人和车辆沿着各自的运动方向互不影响的安全有序运行,其作用是明确混合交通中各种交通流在空间上的道路使用权。
(2)信号控制优化。
通过设置相位、相序、配时方案,使交叉口原本相互冲突的混合交通流在时间上分离,是管理城市道路交叉口最普遍、有效的方法之一。
在实际规划中首先要对交叉口进行现状调查,根据流量、交叉口几何形状、渠化方案确定相位设置方法,接着计算各相位配时方案。
我国通常利用TRRL 法(Webster法)进行配时,采用TRRL法对单个交叉口信号配时进行优化时,在各时段进口道流量调查的基础上,首先确定该最佳信号周期,然后再确定各相位的有效绿灯时间。
基于VISSIM的无信号环形交叉口与有信号十字交叉口通行延误情况对比
第1期(总第268期)山西交通科技No.l 2021 年 2 月SHANXI SCIENCE &TECHNOLOGY of COMMUNICATIONS Feb.基于VISSIM的无信号环形交叉口与有信号十字交叉口通行延误情况对比杨建国(山西省交通规划勘察设计院有限公司,山西 太原 030032)摘要:运用VISSIM对无信号环形交叉口以及有信号十字交叉口的通行延误情况进行模拟 仿真。
以车均运行延误时间、车均停车延误时间、车均停车次数以及排队长度为评价指标,分析对比两种不同形式的交叉口在不同输入交通量水平下的通行状况,最终确定两种不同形式交叉口的输入交通量的临界值。
关键词:仿真技术;环形交叉口;十字交叉口中图分类号=11491.51 文献标识码:A文章编号=1006-3528(2021)01-0099-04〇引言我国早期为避免交通冲突,在进行交叉口设计 时优先考虑使用环形交叉。
由于我国早期机动车保 有量较少,因此在相当长的一段时期内,环形交叉口 设计在城市道路交叉口运用较多。
但随着我国经济 的迅速发展,城市的机动车保有量急速上升,交通需 求急剧增长。
环形交叉口通行能力不足的弊端逐渐 显露,因此全国各地开始环形交叉口一信号环形交 叉口—般平交口的改造热潮。
但环形交叉口有其 消灭冲突点以及在一定交通量条件下增加交叉口的 通行效率的优点,因此国内外很多学者开始研究在 多大的交通量情况下可以采用环形交叉口形式以提 高通行效率。
目前国内外大多数研究都是基于间隙-接受理 论u i对环形交叉口的通行能力进行分析,也有部分采 取经验回归公式121以及仿真模型[M]进行研究。
本文 通过VISSIM对无信号的环形交叉口与有信号的十 字交叉口进行仿真模拟,根据仿真所得到的数据分 析对比无信号环形交叉口与有信号十字交叉口的通 行延误情况。
研究以三车道环形交叉口为例,十字交 叉口的大小参考环形交叉口进行设置,提出两种不 同形式的交叉口所适应的交通量大小。
【笔记】关于VISSIM节点评价
1、只有改变随机种子,得出的评价文件才会不一样,不然一直都是一样的。
2、节点的尺寸会影响延误及停止次数的数值,但不会对排队长度造成影响。
这需要结合手册中的定义进行理解:交通流量、平均延误、停车时间和停车次数可通过自动生成的评价延误检测区段得到,该区段相当于是节点自带生成的一组行程检测区域,其起点位于节点的各个上游路段(上游距离用户可以自己定义,但不能超越上游节点边界),终点位于节点相应转向的出口处。
乘客数量和基于车辆类别的人均延误也可以一并得到。
我们需要进一步对节点尺寸进行控制,来研究节点内的评价的起终点究竟位于什么地方。
实验结果表明,对于交通流量、平均延误、停车时间和停车次数这些评价指标,节点评价的评价范围,应该是节点与路段的相交处。
同时,有一个值,用于调整与节点的距离值。
默认值是100米。
改变此值,实验表明,延误也会发生改变,但是幅度很小。
此值应该表示,延误评价路段的起点会在节点与路段的相交处再往前移动100m的距离,如果移动出路段的话,就会取路段的起点。
与延误这些评价指标不同的是排队长度,他们是不会受节点边界影响的。
排队长度可由排队计数器得到,排队计数器自动创建,设置在具有转向关系的路段序列的第一个信号灯或优先规则停车线处。
如果不存在这种断面位置,排队计数器将设置在节点的入口处。
3、接下来将研究延误是如何计算的首先将手册中的定义收集一下:在公交站点的可预计停车或停车场的停车均不记作停车次数,乘客的换乘时间或在停止标志前的等待时间或消耗在停车场的时间均不记作延误(而由于进/出公交站点的减速/加速引起的时间损失将算作延误计算的一部分)。
延误时间检测的定义为—与理想的行程时间相比(没有其它车辆,无信号控制)—在一个或一些路段上计算的所有观测车辆的延误时间的平均值。
从对理想行程时间的定义:无其他车辆、无信号控制,可以看出,VISSIM中的延误在,主要反映的是其他车辆的干扰以及信号控制的等候时间。
接下来,我们对如何求平均进一步做分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1调查交叉口早或晚高峰相关数据 (2)
1.1调查交叉口早或晚高峰相关数据 (2)
2根据实际调查建立仿真模型 (3)
2.1根据实际调查建立仿真模型 (3)
3.交叉口延误情况 (4)
3.1信号配时 (4)
3.2计算延误的结果为 (5)
4对路口重新评价平均延误 (7)
4.1优化信号配时与渠化设计之后的信号配时 (8)
4.2平均延误 (8)
1调查交叉口早或晚高峰相关数据1.1调查交叉口早或晚高峰相关数据
根据小组调研数据所得两个路口6个方向车流量分别为
图1
府前东街-顺通路
东方向直行左转右转
小汽车540 156 60
公交车34 10 6
北方向
小汽车180 58 30
公交车21 7 5
南方向
表1
府前西街-新顺南北大街
表2
2根据实际调查建立仿真模型2.1根据实际调查建立仿真模型
图2
3.交叉口延误情况
3.1信号配时
Vissim仿真模拟在理想条件下的最大车流量方向延误情况
No. 1: Travel time section(s) 1
Time; Delay; Stopd; Stops; #Veh; Pers.; #Pers; VehC; All;;;;;; No.:; 1; 1; 1; 1; 1; 1; 600; 72.5 86.4; 0.97; 30; 103.6; 37; Total; 72.5; 86.4; 0.97; 30; 103.6; 37;
3.2计算延误的结果为
运算结果与vissim仿真情况基本一致
加入行人和非机动车仿真出的结果比计算结果多30秒属于正常情况
No.:; 1; 1; 1; 1; 1; 1;
600; 128.7; 112.5; 1.39; 41; 128.7; 41;
Total; 128.7; 112.5; 1.39; 41; 128.7; 41;
4对路口重新评价平均延误
4.1优化信号配时与渠化设计之后的信号配时
4.2平均延误
No. 1: Travel time section(s) 1
Time; Delay; Stopd; Stops; #Veh; Pers.; #Pers; VehC; All;;;;;; No.:; 1; 1; 1; 1; 1; 1; 600; 87.0; 62.5; 1.13; 64; 89; 67; Total; 87.0; 62.5; 1.13; 64; 89; 67;。