2020年黑龙江省哈尔滨市中考数学试卷(附详解)
2020年黑龙江省哈尔滨中考数学试卷含答案
5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第I卷选择题(共30分)(涂卡)
一、选择题(每小题3分,共计30分)
1. 的倒数是( )
A. B. C.8D.
2.下列运算一定正确的是( )
A. B. C. D.
10.如图,在 中,点 在 边上,连接 ,点 在 边上,过点 作 ,交 于点 ,过点 作 ,交 于点 ,则下列式子一定正确的是( )
Aቤተ መጻሕፍቲ ባይዱ B. C. D.
二、填空题(每小题3分,共计30分)
11.将数4790000用科学记数法表示为_________.
12.在函数 中,自变量 的取值范围是_________.
2020年黑龙江省哈尔滨市初中学业水平考试
数学答案解析
一、
1.【答案】A
【解析】 的倒数是 ,
故选:A.
2.【答案】C
【解析】A、 ,原计算错误,故此选项不合题意;
B、 ,原计算错误,故此选项不合题意;
C、 ,原计算正确,故此选项合题意;
D、 ,原计算错误,故此选项不合题意.
故选:C.
3.【答案】B
25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.
(1)求每个大地球仪和每个小地球仪各多少元;
(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?
19.在 中, , 为 边上的高, , ,则 的长为_________.
2020年哈尔滨市中考数学试卷-含答案
A. B. C. D.
6.将抛物线 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( )
A. B. C. D.
7.如图,在 中, ,垂足为D, 与 关于直线AD对称,点 B对称点是 ,则 的度数是( )
补全条形统计图如图所示:
(3)800× =320(名),
答:估计该中学最喜欢剪纸小组的学生有320名.
24.(1)证明:如图1,
,
,
在 和 中,
,
∴ (SAS),
∴ ;
(2)顶角为45°的等腰三角形有以下四个: 、 、 、 .
证明:∵ , ,
∴ , ,
∵ , ,即: 是等腰三角形, ;
∴ ,
∴ ,
∴ ,
(1)在这次调查中,一共抽取了多少名学生;
(2)请通过计算补全条形统计图;
(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.
24.已知,在 中, ,点D,点E在BC上, ,连接 .
(1)如图1,求证: ;
(2)如图2,当 时,过点B作 ,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.
25.昌云中学计划 地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.
(1)求每个大地球仪和每个小地球仪各多少元;
(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.
26.已知 是 外接圆,AD为 的直径, ,垂足为E,连接BO,延长BO交AC于点F.
2020年黑龙江省哈尔滨市中考数学测试试卷(包含答案)
2020年黑龙江省哈尔滨市中考数学测试卷一.选择题(每题3分,满分30分)1.倒数为﹣2的数是()A.2B.﹣2C.﹣D.2.下列运算中,正确的是()A.6a﹣5a=1B.a2•a3=a5C.a6÷a3=a2D.(a2)3=a5 3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.如图所示,正三棱柱的左视图()A.B.C.D.5.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4B.6C.8D.106.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2D.y=﹣2(x+1)2﹣27.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m8.下列函数中,y是x的反比例函数的是()A.y=2x B.y=﹣x﹣1C.y=D.y=﹣x9.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.△ABE≌△AGF B.AE=AF C.AE=EF D.10.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15B.10C.7.5D.5二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.若代数式在实数范围内有意义,则x的取值范围是.13.如图,长方形的长宽分别为a,b,且a比b大5,面积为10,则a2b﹣ab2的值为.14.计算:=.15.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=﹣5,则整数x的取值是.16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.17.在半径为3cm的⊙O中,45°的圆周角所对的弧长为cm.18.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,∠AOB =60°,AC=12,则BE的长为.19.如图,PA,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=度.20.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E 三点在同一条直线上,连接BD,则下列结论正确的是.①△ABD≌△ACE②∠ACE+∠DBC=45°③BD⊥CE④∠EAB+∠DBC=180°三.解答题21.(7分)先化简,再求值:÷,其中x=sin45°,y=cos60°.22.(7分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点)及过格点的直线l.(1)画出△ABC关于直线l对称的△A1B1C1;(2)将△ABC向上平移3个单位长度,再向左平移1个单位长度,画出平移后的△A2B2C2;(3)以A、A1、A2为顶点的三角形中,tan∠A2AA1=.23.(8分)书籍是人类进步的阶梯.联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:一个学期平均一天阅读课外书籍所有时间统计表时间(分钟)20406080100120人数(名)433115542请你根据以上信息解答下列问题:(1)补全图1、图2;(2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有4000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.24.(8分)在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.25.(10分)已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC=3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG ⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案一.选择题1.解:倒数为﹣2的数是﹣.故选:C.2.解:A、6a﹣5a=a,故此选项错误;B、a2•a3=a5,正确;C、a6÷a3=a3,故此选项错误;D、(a2)3=a6,故此选项错误;故选:B.3.解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.4.解:主视图是一个矩形,俯视图是两个矩形,左视图是正三角形,故选:A.5.解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.6.解:∵把抛物线y=2x2绕原点旋转180°,∴新抛物线解析式为:y=﹣2x2,∵再向右平移1个单位,向下平移2个单位,∴平移后抛物线的解析式为y=﹣2(x﹣1)2﹣2.故选:C.7.解:∵河坝横断面的迎水坡AB的坡比为3:4,BC=6m,∴=,即=,解得:AC=8.故AB===10(m).故选:C.8.解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.9.解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴B结论正确;在Rt△ABE和Rt△AGF中,,∴Rt△ABE≌Rt△AGF(HL),∴A结论正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴D结论正确;∵△AEF不是等边三角形,∴EF≠AF,∴C结论错误.故选:C.10.解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴=()2=,∴=,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:根据题意得:3﹣2x≥0,解得:x≤.13.解:∵长方形的长宽分别为a,b,且a比b大5,面积为10,∴a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=5×10=50.故答案为:50.14.解:原式=2×3=6.故答案为:6.15.解:∵[m]表示不大于m的最大整数,∴﹣5≤<﹣4,解得:﹣17≤x<﹣14,∴整数x为﹣17,﹣16,﹣15,故答案为﹣17,﹣16,﹣15.16.解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.17.解:根据圆周角定理,得弧所对的圆心角是90°,根据弧长的公式l==cm,故答案为:π.18.解:在矩形ABCD中,对角线AC与BD相交于点O,∴AC=BD=12,OA=AC=6,OB=BD,∴OA=OB=6,∵∠AOB=60°,∴△ABO是等边三角形,∵AE⊥BD,∴BE=OB=3;故答案为:3.19.解:∵PA,PB是⊙O的两条切线,∴PA=PB,∴∠PAB=∠PBA==63°,在△AFD和△BDE中,,∴△AFD≌△BDE(SAS)∴∠AFD=∠BDE,∴∠EDF=180°﹣∠BDE﹣∠ADF=180°﹣∠AFD﹣∠ADF=∠FAD=63°,故答案为:63.20.解:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故①符合题意,∴BD=CE,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故②符合题意,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故③符合题意,∵∠BAC+∠DAE+∠BAE+∠DAC=360°,∴∠BAE+∠DAC=180°,∵BD⊥CE,∠ADE=45°,∴∠ADB=45°=∠ACB,∴∠DAC=∠CBD,∴∠BAE+∠DBC=180°,故④符合题意,故答案为:①②③④.三.解答题(共5小题,满分40分)21.解:原式=÷=•=,当x=sin45°=,y=cos60°=时,原式==.22.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图,∵A2A=,A2A1=,∴A2A1=A2A,设AA1交直线l于点O,∴A1O=,∴A1O=AO,∴A2O⊥AA1,∴tan∠A2AA1==2,故答案为:2.23.解:(1)根据题意得:100﹣(9+38+25+11+9+3)=5(人);1﹣(35%+25%+6%)=34%,补全图形,如图所示;(2)根据题意得:=3(本),则这100名学生一个学期平均每人阅读课外书籍3本;根据题意得:3×4000=12000(本),则估计这个学校学生一个学期阅读课外书籍共12000本;(3)根据表格得:众数为20分钟,中位数为40分钟.24.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.25.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
2020年黑龙江哈尔滨中考数学试卷及答案(word解析版)
哈尔滨市2020年初中升学考试数学试卷题序一二三四五六七八总分得分一、选择题(每小题3分,共计30分)1.(2020哈尔滨,1,3分)-13的倒数是( ).A.3B.-3C.-13D.13【答案】B.2.(2020哈尔滨,2,3分)下列计算正确的是( ).A.a3+a2=a3B.a3·a2=a6C.(a2)3=a6D.(a2)2=a22【答案】C.3.(2020哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A.B.C.D.【答案】D.4.(2020哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这( ).【答案】A.5.(2020哈尔滨,5,3分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=x2+2 D.y=x2-2【答案】D.6.(2020哈尔滨,6,3分)反比例函数y=1-2kx的图象经过点(-2,3),则k的值为( ).A.6B.-6C.72D.-72正面第4题A.【答案】 C . 7.(2020哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ). A .4 B .3 C .52D .2(第7题图) 【答案】 B . 8.(2020哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2020哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2020哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2020哈尔滨,11,3分)把98000用科学记数法表示为_______________. 【答案】9.8×104.12.(2020哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________.【答案】x ≠3.13.(2020哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2020哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1. 15.(2020哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y ); 16.(2020哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2020哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2020哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%.19.(2020哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13.20.(2020哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为________.EODC B A(第20题图) 【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(2020哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2. 【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2,∴原式=1a +2=1 23-2+2=1 23=36.22.(2020哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 223.(2020哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2020哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2020哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE . (1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BOAB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt△BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2020哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天. (2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天.27.(2020哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60º,∵BC⊥AB,∴∠ABC=90º,∴∠ACB=30º,∠OBC=30º,∴∠ACB=∠OBC,∴OC=OB=AB=OA=3,∴AC=6,∴BC=32AC=33.(2)解:如图1,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=60º=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3-t,∴ON=3-(3-t)=t,∴PN=t+t=2t,∵OE∥QN,∴△POE∽△PNQ,∴OEQN=OPPN,∴OE3-t=12,OE=32-12t,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30º,∴EF=BE,∴m=BE=OB-OE=12t+32(0<t<3).(3)如图2,∵∠BE′F′=∠BEF=180º-∠EBF-∠EFB=120º,∴∠AE′G=60º=∠E′AG,∴GE′=GA,∴△AE′G为等边三角形.∵QE′=BE′-BQ=m-t=12t+32-t=32-12t,∴GE′=GA=AE′=AB-BE′=32-12 t=QE′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA=90º,∴QG=3AG=323-123t,∵EF∥OC,∴BFBC=BEOB,∴BF33=m3,∴BF=3m=323+123t,∵CF=BC-BF=323-123t,CP=CO-OP=3-t,∴CFCB=323-123t33=3-t6=CPAC.∵∠FCP=∠BCA,∴△FCP∽△BCA,∴PFAB=CPAC,∴PF=3-t2,∵2BQ-BF=33QG,∴2t-3-t2=33×(323-123t),∴t=1.∴当t=1时,2BQ-PF=33QG.28.(2020哈尔滨,28,10分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD点点G.(1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,F A =FC ,∴FE =F A ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GF A ,∴△AFG ∽△BF A ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .友情提示:一、认真对待每一次考试。
2020年黑龙江省哈尔滨市中考数学试卷(附答案详解)
2020年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·山东省枣庄市·历年真题)−8的倒数是()A. −18B. −8 C. 18D. 82.(2021·四川省乐山市·模拟题)下列运算一定正确的是()A. a2+a2=a4B. a2⋅a4=a8C. (a2)4=a8D. (a+b)2=a2+b23.(2020·黑龙江省哈尔滨市·月考试卷)下列图形中既是轴对称图形又是中心对称图形的是()A. 扇形B. 正方形C. 等腰直角三角形D. 正五边形4.(2021·湖北省武汉市·模拟题)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.(2021·山东省泰安市·模拟题)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A. 25°B. 20°C. 30°D. 35°6. (2021·安徽省合肥市·月考试卷)将抛物线y =x 2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为( )A. y =(x +3)2+5B. y =(x −3)2+5C. y =(x +5)2+3D. y =(x −5)2+37. (2020·河北省·单元测试)如图,在Rt △ABC 中,∠BAC =90°,∠B =50°,AD ⊥BC ,垂足为D ,△ADB 与△ADB′关于直线AD 对称,点B 的对称点是点B′,则∠CAB′的度数为( )A. 10°B. 20°C. 30°D. 40°8. (2021·湖南省·单元测试)方程2x+5=1x−2的解为( )A. x =−1B. x =5C. x =7D. x =99. (2021·辽宁省大连市·模拟题)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )A. 23B. 12C. 13D. 1910. (2021·四川省乐山市·模拟题)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF//BC ,交AD 于点F ,过点E 作EG//AB ,交BC 于点G ,则下列式子一定正确的是( )A. AE EC =EFCDB. EF CD =EGABC. AF FD =BGGCD. CG BC =AFAD二、填空题(本大题共10小题,共30.0分)11. (2020·黑龙江省哈尔滨市·历年真题)将数4790000用科学记数法表示为______. 12. (2021·湖南省怀化市·模拟题)在函数y =xx−7中,自变量x 的取值范围是______. 13. (2021·湖南省怀化市·模拟题)已知反比例函数y =kx 的图象经过点(−3,4),则k 的值为______.14. (2021·宁夏回族自治区固原市·模拟题)计算√24+6√16的结果是______.15. (2021·湖南省怀化市·模拟题)把多项式m 2n +6mn +9n 分解因式的结果是______. 16. (2021·广东省深圳市·模拟题)抛物线y =3(x −1)2+8的顶点坐标为______. 17. (2020·黑龙江省哈尔滨市·历年真题)不等式组{x3≤−1,3x +5<2的解集是______.18. (2020·黑龙江省哈尔滨市·历年真题)一个扇形的面积是13πcm 2,半径是6cm ,则此扇形的圆心角是______度.19. (2021·广东省深圳市·模拟题)在△ABC 中,∠ABC =60°,AD 为BC 边上的高,AD =6√3,CD =1,则BC 的长为______.20. (2021·湖南省邵阳市·模拟题)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段BO 上,连接AE ,若CD =2BE ,∠DAE =∠DEA ,EO =1,则线段AE 的长为______.三、解答题(本大题共7小题,共60.0分)21. (2021·广东省深圳市·模拟题)先化简,再求代数式(1−2x+1)÷x 2−12x+2的值,其中x =4cos30°−1.22. (2021·湖南省怀化市·模拟题)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD 的端点均在小正方形的顶点上.(1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上; (2)在图中画出以CD 为边的等腰三角形CDG ,点G 在小正方形的顶点上,且△CDG 的周长为10+√10.连接EG ,请直接写出线段EG 的长.23.(2021·江苏省徐州市·模拟题)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(2021·全国·单元测试)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF//AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(2021·黑龙江省哈尔滨市·月考试卷)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(2020·黑龙江省哈尔滨市·历年真题)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG//BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为9√2,求线段5 CG的长.27.(2021·湖北省·单元测试)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的x,过点C作CM⊥y轴,垂线与过点O的直线相交于点C,直线OC的解析式为y=34垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,的值;垂足为D,交OC于点E,若NC=OM,求PEOD(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ−FG=√2AF,求点P的坐标.答案和解析1.【答案】A【知识点】倒数【解析】【分析】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】,解:−8的倒数是−18故选:A.2.【答案】C【知识点】幂的乘方与积的乘方、同底数幂的乘法、合并同类项、完全平方公式【解析】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2⋅a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.【答案】B【知识点】中心对称图形、轴对称图形【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【知识点】简单组合体的三视图【解析】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.【答案】B【知识点】切线的性质、圆周角定理【解析】【分析】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.根据切线的性质和圆周角定理即可得到结论.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°−70°=20°.故选B.6.【答案】D【知识点】二次函数图象与几何变换【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x−5)2+3;故选:D.7.【答案】A【知识点】三角形的外角性质、轴对称的基本性质【解析】【分析】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.由余角的性质可求∠C=40°,由轴对称的性质可得∠AB′B=∠B=50°,由外角性质可求解.【解答】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,∴∠AB′B=∠B=50°,∴∠CAB′=∠AB′B−∠C=10°,故选:A.8.【答案】D【知识点】分式方程的一般解法【解析】解:方程的两边同乘(x+5)(x−2)得:2(x−2)=x−5,解得x=9,经检验,x=9是原方程的解.故选:D.根据解分式方程的步骤解答即可.本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.【答案】A【知识点】概率公式【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红球的个数除以球的总个数即可得.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,故选:A.10.【答案】C【知识点】相似三角形的判定与性质、平行线分线段成比例【解析】【试题解析】【分析】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF//BC,∴AFFD =AEEC,∵EG//AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.11.【答案】4.79×106【知识点】科学记数法-绝对值较大的数【解析】解:4790000=4.79×106,故答案为:4.79×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠7【知识点】函数自变量的取值范围【解析】【分析】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.根据分母不等于0列式计算即可得解.【解答】解:由题意得x−7≠0,解得x≠7.故答案为x≠7.13.【答案】−12【知识点】反比例函数图象上点的坐标特征【解析】解:∵反比例函数y=k的图象经过点(−3,4),x∴k=−3×4=−12,故答案为:−12.即可求k的值.把(−3,4)代入函数解析式y=kx本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.【答案】3√6【知识点】二次根式的性质、二次根式的加减【解析】【分析】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解答】解:原式=2√6+√6=3√6.故答案为:3√6.15.【答案】n(m+3)2【知识点】提公因式法与公式法的综合运用【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.直接提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.【答案】(1,8)【知识点】二次函数的性质【解析】解:∵抛物线y=3(x−1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).已知抛物线顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k).本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.【答案】x≤−3【知识点】一元一次不等式组的解法【解析】解:{x3≤−1 ①3x+5<2 ②,由①得,x≤−3;由②得,x<−1,故此不等式组的解集为:x≤−3.故答案为:x≤−3.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】130【知识点】扇形面积的计算【解析】解:设这个扇形的圆心角为n°,nπ×62360=13π,解得,n=130,故答案为:130.根据扇形面积公式S=nπr2360,即可求得这个扇形的圆心角的度数.本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=nπr2360.19.【答案】5或7【知识点】特殊角的三角函数值、锐角三角函数的定义、解直角三角形【解析】解:在Rt△ABD中,∠ABC=60°,AD=6√3,∴BD=ADtanB =6√3√3=6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD−CD=6−1=5,故答案为:7或5.在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.【答案】2√2【知识点】菱形的性质、勾股定理、等腰三角形的判定【解析】【分析】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.【解答】解:∵CD=2BE,设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32x,∵OE+BE=BO,∴1+x=32x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA=√42−32=√7,在Rt△AOE中,AE=√12+(√7)2=2√2.故答案为2√2.21.【答案】解:原式=x−1x+1⋅2(x+1) (x−1)(x+1)=2x+1,∵x=4cos30°−1=4×√32−1=2√3−1,∴原式=22√3−1+1=√33.【知识点】特殊角的三角函数值、分式的化简求值【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.【答案】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【知识点】勾股定理、等腰三角形的判定、作图与测量【解析】(1)画出边长为√10的正方形即可.(2)画出两腰为10,底为√10的等腰三角形即可.本题考查作图−应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.【答案】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:(3)800×2050=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【知识点】用样本估计总体、条形统计图【解析】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的2050,因此估计总体800名的2050是最喜欢“舞蹈”的人数. 24.【答案】(1)证明:∵AB =AC ,∵∠B =∠C ,在△ABD 和△ACE 中,{AB =AC ∠B =∠C BD =CE,∴△ABD≌△ACE(SAS),∴AD =AE ;(2)∵AD =AE ,∴∠ADE =∠AED ,∵BF//AC ,∴∠FDB =∠C =45°,∵∠ABC =∠C =∠DAE =45°,∠BDF =∠ADE ,∴∠F =∠BDF ,∠BEA =∠BAE ,∠CDA =∠CAD ,∴满足条件的等腰三角形有:△ABE ,△ACD ,△DAE ,△DBF .【知识点】等腰三角形的判定与性质、全等三角形的判定与性质【解析】(1)根据SAS 可证△ABD≌△ACE ,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.【答案】解:(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意可得: {x +3y =1362x +y =132, 解得:{x =52y =28, 答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据题意可得:52a +28(30−a)≤960,解得:a ≤5,答:最多可以购买5个大地球仪.【知识点】一元一次不等式的应用、二元一次方程组的应用【解析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则每个小地球仪为(30−a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.【答案】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH//AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG//BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE=√OB2−OE2=√9x2−x2=2√2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=BEAE =NFAN,∴2√2x4x =NFAN,∴AN=√2NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=BEOE =NFON,∴2√2xx =NFON,∴ON=√24NF,∴AO=AN+ON=5√24NF,∵△AOF的面积为9√25,∴12×AO×NF=12×5√24NF2=9√25,∴NF=6√25,∴AO=5√24NF=3=3x,∴x=1,∴BE=2√2=OH,AE=4,DG=DE=2,∴AC=√AE2+CE2=√16+8=2√6,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4√2,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴ADAC =AGAM=DGCM,∴2√6=4√2AM=2CM,∴CM=2√63,AM=8√33,∴GM=√AG2−AM2=√32−643=4√63,∴CG=GM−CM=2√63.【知识点】圆的综合【解析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE= DH=x,OD=3x=OA=OB,勾股定理可求BE=2√2x,由锐角三角函数可求AN=√2NF,ON=√24NF,可得AO=AN+ON=5√24NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2√2=OH,AE=4,DG=DE=2,勾股定理可求AC=2√6,连接AG ,过点A 作AM ⊥CG ,交GC 的延长线于M ,通过证明△ACM∽△ADG ,由相似三角形的性质可求AM ,CM 的长,由勾股定理可求GM 的长,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF 的长是本题的关键. 27.【答案】解:(1)∵CM ⊥y 轴,OM =9,∴y =9时,9=34x ,解得x =12,∴C(12,9),∵AC ⊥x 轴,∴A(12,0),∵OA =OB ,∴B(0,−12),设直线AB 的解析式为y =kx +b ,则有{b =−1212k +b =0, 解得{k =1b =−12, ∴直线AB 的解析式为y =x −12.(2)如图2中,∵∠CMO =∠MOA =∠OAC =90°,∴四边形OACM 是矩形,∴AO =CM =12,∵NC =OM =9,∴MN =CM −NC =12−9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=34x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD−DE=12a−3a=9a,∴PEOD =94.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF//x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°−45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=√2m,QR=SF=12−m,∵GQ−FG=√2AF,∴GQ=√2×√2m+6−m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12−m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴DEDH =DHPD,由(2)可知DE=3a,PD=12a,∴3aDH =DH12a,∴DH=6a,∴tan∠PHD =PD DH =12a 6a =2,∵∠PHD =∠FHT ,∴tan∠FHT =TF HT =2, ∴HT =2,∵OT =OD +DH +HT ,∴4a +6a +2=8,∴a =35,∴OD =125,PD =12×35=365,∴P(125,365).【知识点】一次函数综合【解析】(1)求出A ,B 两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON 的解析式为y =3x ,设点E 的横坐标为4a ,则D(4a,0),求出PE ,OD(用a 表示)即可解决问题.(3)如图3中,设直线FG 交CA 的延长线于R ,交y 轴于S ,过点F 作FT ⊥OA 于T.证明△OFS≌△FQR(AAS),推出SF =QR ,再证明△BSG≌△QRG(AAS),推出SG =GR =6,设FR =m ,则AR =m ,AF =√2m ,QR =SF =12−m ,GQ −FG =√2AF ,根据GQ 2=GR 2+QR 2,可得(m +6)2=62+(12−m)2,解得m =4,由题意tan∠DHE =tan∠DPH ,可得DE DH =DH PD ,由(2)可知DE =3a ,PD =12a ,推出3a DH =DH 12a ,可得DH =6a ,推出tan∠PHD =PD DH =12a 6a =2,由∠PHD =∠FHT ,可得tan∠FHT =TF HT =2,推出HT =2,再根据OT =OD +DH +HT ,构建方程求出a 即可解决问题.本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020年黑龙江省哈尔滨市中考数学试卷(有详细解析)
2020年黑龙江省哈尔滨市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.−8的倒数是()A. −18B. −8 C. 18D. 82.下列运算一定正确的是()A. a2+a2=a4B. a2⋅a4=a8C. (a2)4=a8D. (a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A. 扇形B. 正方形C. 等腰直角三角形D. 正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A. 25°B. 20°C. 30°D. 35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A. y=(x+3)2+5B. y=(x−3)2+5C. y=(x+5)2+3D. y=(x−5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数为()A. 10°B. 20°C. 30°D. 40°8. 方程2x+5=1x−2的解为( ) A. x =−1 B. x =5 C. x =7 D. x =99. 一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )A. 23B. 12C. 13D. 19 10. 如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF//BC ,交AD 于点F ,过点E 作EG//AB ,交BC 于点G ,则下列式子一定正确的是( )A. AE EC =EF CDB. EF CD =EG ABC. AF FD =BG GCD. CG BC =AFAD 二、填空题(本大题共10小题,共30.0分)11. 将数4790000用科学记数法表示为______.12. 在函数y =xx−7中,自变量x 的取值范围是______.13. 已知反比例函数y =k x 的图象经过点(−3,4),则k 的值为______.14. 计算√24+6√16的结果是______. 15. 把多项式m 2n +6mn +9n 分解因式的结果是______.16. 抛物线y =3(x −1)2+8的顶点坐标为______.17. 不等式组{x3≤−1,3x +5<2的解集是______. 18. 一个扇形的面积是13πcm 2,半径是6cm ,则此扇形的圆心角是______度.19. 在△ABC 中,∠ABC =60°,AD 为BC 边上的高,AD =6√3,CD =1,则BC 的长为______.20. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段BO 上,连接AE ,若CD =2BE ,∠DAE =∠DEA ,EO =1,则线段AE 的长为______.三、解答题(本大题共7小题,共60.0分)21. 先化简,再求代数式(1−2x+1)÷x 2−12x+2的值,其中x =4cos30°−1.22. 如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上;(2)在图中画出以CD 为边的等腰三角形CDG ,点G 在小正方形的顶点上,且△CDG23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF//AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG//BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为9√2,求线段5 CG的长.27.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于x,过点C作CM⊥y轴,垂足为M,OM=9.点C,直线OC的解析式为y=34(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求PE的值;OD(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ−FG=√2AF,求点P的坐标.答案和解析1.A,解:−8的倒数是−182.C解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2⋅a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.3.B解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.4.C解:从左边看第一层是两个小正方形,第二层右边一个小正方形,5.B解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°−70°=20°.6.D解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x−5)2+3;7.A解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,∴∠AB′B=∠B=50°,∴∠CAB′=∠AB′B−∠C=10°,8.D解:方程的两边同乘(x+5)(x−2)得:2(x−2)=x−5,解得x=9,经检验,x=9是原方程的解.9.A解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,10.C解:∵EF//BC,∴AFFD =AEEC,∵EG//AB,∴AEEC =BGGC,∴AFFD =BGGC,11.4.79×106解:4790000=4.79×106,12.x≠7解:由题意得x−7≠0,解得x≠7.13.−12解:∵反比例函数y=kx的图象经过点(−3,4),∴k=−3×4=−12,14.3√6解:原式=2√6+√6=3√6.15.n(m+3)2解:原式=n(m2+6m+9)=n(m+3)2.16. (1,8)解:∵抛物线y =3(x −1)2+8是顶点式,∴顶点坐标是(1,8).17. x ≤−3解:{x 3≤−1 ①3x +5<2 ②, 由①得,x ≤−3;由②得,x <−1,故此不等式组的解集为:x ≤−3.18. 130解:设这个扇形的圆心角为n°,nπ×62360=13π,解得,n =130,19. 5或7解:在Rt △ABD 中,∠ABC =60°,AD =6√3,∴BD =AD tanB =√3√3=6,如图1、图2所示:BC =BD +CD =6+1=7,BC =BD −CD =6−1=5,20. 2√2解:设BE =x ,则CD =2x ,∵四边形ABCD 为菱形,∴AB =AD =CD =2x ,OB =OD ,AC ⊥BD ,∵∠DAE =∠DEA ,∴DE =DA =2x ,∴BD =3x ,∴OB =OD =32x ,∵OE +BE =BO ,∴1+x =32x ,解得x =2,即AB =4,OB =3,在Rt △AOB 中,OA =√42−32=√7,在Rt △AOE 中,AE =√12+(√7)2=2√2.21.解:原式=x−1x+1⋅2(x+1) (x−1)(x+1)=2x+1,∵x=4cos30°−1=4×√32−1=2√3−1,∴原式=2√3−1+1=√33.22.解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.23.解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:(3)800×2050=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.24.(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF//AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.25. 解:(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意可得: {x +3y =1362x +y =132, 解得:{x =52y =28, 答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据题意可得: 52a +28(30−a)≤960,解得:a ≤5,答:最多可以购买5个大地球仪.26. 证明:(1)∵AD 为⊙O 的直径,AD ⊥BC ,∴BE =EC ,∴AB =AC ,又∵AD ⊥BC ,∴∠BAD =∠CAD ,∵OA =OB ,∴∠BAD =∠ABO ,∴∠BAD =∠ABO =∠CAD ,∵∠BFC =∠BAC +∠ABO ,∴∠BFC =∠BAD +∠EAD +∠ABO =3∠CAD ;(2)如图2,连接AG ,∵AD 是直径,∴∠AGD =90°,∵点H 是DG 中点,∴DH =HG ,又∵AO =DO ,∴OH//AG ,AG =2OH ,∴∠AGD =∠OHD =90°,∵DG//BF ,∴∠BOE =∠ODH ,又∵∠OEB =∠OHD =90°,BO =DO ,∴△BOE≌△ODH(AAS),∴BE =OH ;(3)如图3,过点F 作FN ⊥AD ,交AD 于N ,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE=√OB2−OE2=√9x2−x2=2√2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=BEAE =NFAN,∴2√2x4x =NFAN,∴AN=√2NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=BEOE =NFON,∴2√2xx =NFON,∴ON=√24NF,∴AO=AN+ON=5√24NF,∵△AOF的面积为9√25,∴12×AO×NF=12×5√24NF2=9√25,∴NF=6√25,∴AO=5√24NF=3=3x,∴x=1,∴BE=2√2=OH,AE=4,DG=DE=2,∴AC=√AE2+CE2=√16+8=2√6,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4√2,∵四边形ADGC 是圆内接四边形,∴∠ACM =∠ADG ,又∵∠AMC =∠AGD =90°,∴△ACM∽△ADG , ∴AD AC =AG AM =DG CM , ∴2√6=4√2AM =2CM ,∴CM =2√63,AM =8√33, ∴GM =√AG 2−AM 2=√32−643=4√63, ∴CG =GM −CM =2√63.27. 解:(1)∵CM ⊥y 轴,OM =9,∴y =9时,9=34x ,解得x =12,∴C(12,9),∵AC ⊥x 轴,∴A(12,0),∵OA =OB ,∴B(0,−12),设直线AB 的解析式为y =kx +b ,则有{b =−1212k +b =0, 解得{k =1b =−12, ∴直线AB 的解析式为y =x −12.(2)如图2中,∵∠CMO =∠MOA =∠OAC =90°,∴四边形OACM 是矩形,∴AO =CM =12,∵NC =OM =9,∴MN=CM−NC=12−9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=34x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD−DE=12a−3a=9a,∴PEOD =94.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF//x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°−45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB =∠AFR =45°, ∴∠SBF =∠SFB =45°, ∴SF =SB =QR ,∵∠SGB =∠QGR ,∠BSG =∠R , ∴△BSG≌△QRG(AAS), ∴SG =GR =6,设FR =m ,则AR =m ,AF =√2m ,QR =SF =12−m , ∵GQ −FG =√2AF ,∴GQ =√2×√2m +6−m =m +6, ∵GQ 2=GR 2+QR 2, ∴(m +6)2=62+(12−m)2, 解得m =4,∴FS =8,AR =4,∵∠OAB =∠FAR ,FT ⊥OA ,FR ⊥AR , ∴FT =FR =AR =4,∠OTF =90°, ∴四边形OSFT 是矩形, ∴OT =SF =8,∵∠DHE =∠DPH ,∴tan∠DHE =tan∠DPH , ∴DE DH =DH PD ,由(2)可知DE =3a ,PD =12a , ∴3a DH =DH 12a ,∴DH =6a ,∴tan∠PHD =PD DH =12a 6a =2,∵∠PHD =∠FHT ,∴tan∠FHT =TF HT =2, ∴HT =2,∵OT =OD +DH +HT , ∴4a +6a +2=8,∴a =35,∴OD =125,PD =12×35=365, ∴P(125,365).。
2020年黑龙江省哈尔滨市中考数学试卷和答案解析
2020年黑龙江省哈尔滨市中考数学试卷和答案解析一、选择题(每小题3分,共计30分)1.(3分)﹣8的倒数是()A.﹣B.﹣8C.8D.解析:根据乘积为1的两个数互为倒数,可得一个数的倒数.参考答案:解:﹣8的倒数是﹣,故选:A.点拨:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2解析:根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.参考答案:解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.点拨:本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.参考答案:解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.点拨:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.点拨:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO 的度数为()A.25°B.20°C.30°D.35°解析:根据切线的性质和圆周角定理即可得到结论.参考答案:解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.点拨:此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3解析:根据“上加下减,左加右减”的原则进行解答即可.参考答案:解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.点拨:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°解析:由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.参考答案:解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.点拨:本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.(3分)方程=的解为()A.x=﹣1B.x=5C.x=7D.x=9解析:根据解分式方程的步骤解答即可.参考答案:解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.点拨:本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.解析:用红球的个数除以球的总个数即可得.参考答案:解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是=,故选:A.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.(3分)如图,在△ABC中,点D在BC边上,连接AD,点E 在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=解析:根据平行线分线段成比例性质进行解答便可.参考答案:解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.点拨:本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.二、填空题(每小题3分,共计30分)11.(3分)将数4790000用科学记数法表示为 4.79×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:4790000=4.79×106,故答案为:4.79×106.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)在函数y=中,自变量x的取值范围是x≠7.解析:根据分母不等于0列式计算即可得解.参考答案:解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.点拨:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)已知反比例函数y=的图象经过点(﹣3,4),则k的值为﹣12.解析:把(﹣3,4)代入函数解析式y=即可求k的值.参考答案:解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.点拨:本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.(3分)计算+6的结果是.解析:根据二次根式的性质化简二次根式后,再合并同类二次根式即可.参考答案:解:原式=.故答案为:.点拨:本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.(3分)把多项式m2n+6mn+9n分解因式的结果是n(m+3)2.解析:直接提取公因式n,再利用完全平方公式分解因式得出答案.参考答案:解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.点拨:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.(3分)抛物线y=3(x﹣1)2+8的顶点坐标为(1,8).解析:已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).参考答案:解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).点拨:本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.(3分)不等式组的解集是x≤﹣3.解析:分别求出各不等式的解集,再求出其公共解集即可.参考答案:解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.点拨:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(3分)一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是130度.解析:根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.参考答案:解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.点拨:本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.(3分)在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为5或7.解析:在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.参考答案:解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD﹣CD=6﹣1=5,故答案为:7或5.点拨:本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为2.解析:设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD =2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.参考答案:解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA==,在Rt△AOE中,AE==2.故答案为2.点拨:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.解析:直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.参考答案:解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.点拨:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.解析:(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.参考答案:解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.点拨:本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.解析:(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.参考答案:解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.点拨:本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.解析:(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.参考答案:(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.点拨:考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?解析:(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.参考答案:解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.点拨:本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD ⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.解析:(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.参考答案:证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC 的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F 作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.解析:(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.参考答案:解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).点拨:本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020年黑龙江省哈尔滨市中考数学试卷(含答案)
黑龙江省哈尔滨市2020年中考数学试卷1.(3分)(2020年黑龙江哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2020年黑龙江哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2020年黑龙江哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2020年黑龙江哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2020年黑龙江哈尔滨)在反比例函数的图象的每一条曲线上,y都随x 的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6.(3分)(2020年黑龙江哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2020年黑龙江哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2020年黑龙江哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2020年黑龙江哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B 是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2020年黑龙江哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2020年黑龙江哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2020年黑龙江哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2020年黑龙江哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2020年黑龙江哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2020年黑龙江哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2020年黑龙江哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2020年黑龙江哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD 边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2020年黑龙江哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2020年黑龙江哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB 边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2020年黑龙江哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=5m.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2020年黑龙江哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2020年黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2020年黑龙江哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2020年黑龙江哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2020年黑龙江哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2020年黑龙江哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2020年黑龙江哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B 的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.考点:二次函数综合题.分析:(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)利用已知得出AD=BD则∠BAD=∠ABD=45°,进而得出tan∠BOD=tan∠MPF,故==3,MF=3PF=3t,即可得出d与t的函数关系;(3)首先利用S△ACN=S△PMN,则AC2=2t2,得出AC=2t,CN=2t,则M(4﹣2t,6t),求出t的值,进而得出△PMQ∽△NBR,求出R点坐标.解答:解:(1)∵y=﹣x+4与x轴交于点A,∴A(4,0),∵点B的横坐标为1,且直线y=﹣x+4经过点B,∴B(1,3),∵抛物线y=ax2+bx经过A(4,0),B(1,3),∴,解得:,∴a=﹣1,b=4;(2)如图,作BD⊥x轴于点D,延长MP交x轴于点E,∵B(1,3),A(4,0),∴OD=1,BD=3,OA=4,∴AD=3,∴AD=BD,∵∠BDA=90°,∠BAD=∠ABD=45°,∵MC⊥x轴,∴∠ANC=∠BAD=45°,∴∠PNF=∠ANC=45°,∵PF⊥MC,∴∠FPN=∠PNF=45°,∴NF=PF=t,∵∠DFM=∠ECM=90°,∴PF∥EC,∴∠MPF=∠MEC,∵ME∥OB,∴∠MEC=∠BOD,∴∠MPF=∠BOD,∴tan∠BOD=tan∠MPF,∴==3,∴MF=3PF=3t,∵MN=MF+FN,∴d=3t+t=4t;(3)如备用图,由(2)知,PF=t,MN=4t,∴S△PMN=MN×PF=×4t×t=2t2,∵∠CAN=∠ANC,∴CN=AC,∴S△ACN=AC2,∵S△ACN=S△PMN,∴AC2=2t2,∴AC=2t,∴CN=2t,∴MC=MN+CN=6t,∴OC=OA﹣AC=4﹣2t,∴M(4﹣2t,6t),由(1)知抛物线的解析式为:y=﹣x2+4x,将M(4﹣2t,6t)代入y=﹣x2+4x得:﹣(4﹣2t)2+4(4﹣2t)=6t,解得:t1=0(舍),t2=,∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=,∵AB=3,∴BN=2,作NH⊥RQ于点H,∵QR∥MN,∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,∴∠MNH=∠NCO,∴NH∥OC,∴∠HNR=∠NOC,∴tan∠HNR=tan∠NOC,∴==,设RH=n,则HN=3n,∴RN=n,QN=3n,∴PQ=QN﹣PN=3n﹣,∵ON==,OB==,∴OB=ON,∴∠OBN=∠BNO,∵PM∥OB,∴∠OBN=∠MPB,∴∠MPB=∠BNO,∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,∴∠BRN=∠MQP,∴△PMQ∽△NBR,∴=,∴=,解得:n=,∴R的横坐标为:3﹣=,R的纵坐标为:1﹣=,∴R(,).点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,得出△PMQ∽△NBR,进而得出n的值是解题关键.28.(10分)(2020年黑龙江哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.考点:相似形综合题.分析:(1)根据等式的性质,可得∠APE=∠ADE,根据等腰三角形的性质,可得∠PAD=2β,根据直角三角形的性质,可得∠AEB+∠CBE=90°,根据等式的性质,可得∠ABC=∠ACB,根据等腰三角形的判定,可得答案;(2)根据相似三角形的判定与性质,可得∠ABE=∠ACD,根据等腰三角形的性质,可得∠GND=∠GDN,根据对顶角的性质,可得∠AGF的度数,根据三角形外角的性质,∠AFG 的度数,根据直角三角形的性质,可得BF与MH的关系,根据等腰三角形的性质,可得∠FRM=∠FMR,根据平行线的判定与性质,可得∠CBD=∠RMB,根据相似三角形的判定与性质,可得,根据线段的和差,可得BR=BF﹣FR,根据等量代换,可得答案.解答:(1)证明:如图1,作∠BAP=∠DAE=β,AP交BD于P,设∠CBD=α,∠CAD=β,∵∠ADB=∠CAD+∠ABD,∠APE=∠BAP+∠ABD,∴∠APE=∠ADE,AP=AD.∵AC⊥BD∴∠PAE=∠DAE=β,∴∠PAD=2β,∠BAD=3β.∵∠BAD=3∠CBD,∴3β=3α,β=α.∵AC⊥BD,∴∠ACB=90°﹣∠CBE=90°﹣α=90°﹣β.∵∠ABC=180°﹣∠BAC﹣∠ACB=90°﹣β,∴∠ACB=∠ABC,∴△ABC为等腰三角形;(2)2MH=FM+CD.证明:如图2,由(1)知AP=AD,AB=AC,∠BAP=∠CAD=β,∴△ABP∽△ACD,∴∠ABE=∠ACD.∵AC⊥BD,∴∠GDN=90°﹣β,∵GN=GD,∴∠GND=∠GDN=90°﹣β,∴∠NGD=180°﹣∠GND﹣∠GDN=2β.∴∠AGF=∠NGD=2β.∴∠AFG=∠BAD﹣∠AGF=3β﹣2β=β.∵FN平分∠BFM,∴∠NFM=∠AFG=β,∴FM∥AE,∴∠FMN=90°.∵H为BF的中点,∴BF=2MH.在FB上截取FR=FM,连接RM,∴∠FRM=∠FMR=90°﹣β.∵∠ABC=90°﹣β,∴∠FRM=∠ABC,∴RM∥BC,∴∠CBD=∠RMB.∵∠CAD=∠CBD=β,∴∠RMB=∠CAD.∵∠RBM=∠ACD,∴△RMB∽△DAC,∴,∴BR=CD.∵BR=BF﹣FR,∴FB﹣FM=BR=CD,FB=FM+CD.∴2MH=FM+CD.精品试卷点评:本题考查了相似形综合题,(1)利用了等腰三角形的性质,等腰三角形的判定,直角三角形的性质;(2)相似三角形的判定与性质,直角三角形的性质,三角形外角的性质,平行线的判定与性质,利用的知识点多,题目稍有难度,相似三角形的判定与性质是解题关键.友情提示:一、认真对待每一次考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1页(共 22页)
A.25°
B.20°
C.30°
D.35°
6.(3 分)将抛物线 y=x2 向上平移 3 个单位长度,再向右平移 5 个单位长度,所得到的拋
物线为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
7.(3 分)如图,在 Rt△ABC 中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为 D,△ADB
.
14.(3 分)计算 t6 的结果是
.
15.(3 分)把多项式 m2n+6mn+9n 分解因式的结果是 16.(3 分)抛物线 y=3(x﹣1)2+8 的顶点坐标为
. .
,
17.(3 分)不等式组
的解集是
.
t h<
18.(3 分)一个扇形的面积是 13πcm2,半径是 6cm,则此扇形的圆心角是
度.
与△ADB'关于直线 AD 对称,点 B 的对称点是点 B',则∠CAB'的度数为( )
A.10°
B.20°
C.30°
D.40°
8.(3 分)方程 th A.x=﹣1
的解为( ) B.x=5
C.x=7
D.x=9
9.(3 分)一个不透明的袋子中装有 9 个小球,其中 6 个红球、3 个绿球,这些小球除颜色
19.(3 分)在△ABC 中,∠ABCபைடு நூலகம்60°,AD 为 BC 边上的高,AD=6 ,CD=1,则 BC
的长为
.
20.(3 分)如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,点 E 在线段 BO 上,连
接 AE,若 CD=2BE,∠DAE=∠DEA,EO=1,则线段 AE 的长为
.
24.(8 分)已知:在△ABC 中,AB=AC,点 D、点 E 在边 BC 上,BD=CE,连接 AD、 AE. (1)如图 1,求证:AD=AE; (2)如图 2,当∠DAE=∠C=45°时,过点 B 作 BF∥AC 交 AD 的延长线于点 F,在不 添加任何辅助线的情况下,请直接写出图 2 中的四个等腰三角形,使写出的每个等腰三 角形的顶角都等于 45°.
A.
扇形
B.
正方形
C.
等腰直角三角形
D.
正五边形
4.(3 分)五个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A.
B.
C.
D.
5.(3 分)如图,AB 为⊙O 的切线,点 A 为切点,OB 交⊙O 于点 C,点 D 在⊙O 上,连接 AD、CD,OA,若∠ADC=35°,则∠ABO 的度数为( )
CG 的长. 27.(10 分)已知:在平面直角坐标系中,点 O 为坐标原点,直线 AB 与 x 轴的正半轴交于
点 A,与 y 轴的负半轴交于点 B,OA=OB,过点 A 作 x 轴的垂线与过点 O 的直线相交于 点 C,直线 OC 的解析式为 y x,过点 C 作 CM⊥y 轴,垂足为 M,OM=9. (1)如图 1,求直线 AB 的解析式; (2)如图 2,点 N 在线段 MC 上,连接 ON,点 P 在线段 ON 上,过点 P 作 PD⊥x 轴,
25.(10 分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买 1 个大地球仪和 3 个小地球仪需用 136 元;若购买 2 个大地球仪和 1 个小地球仪需用 132 元. (1)求每个大地球仪和每个小地球仪各多少元; (2)昌云中学决定购买以上两种地球仪共 30 个,总费用不超过 960 元,那么昌云中学 最多可以购买多少个大地球仪?
R R≘ A.R‸ ‸
R≘ Rt
B.‸
t
二、填空题(每小题 3 分,共计 30 分)
≘ tt
C.≘
t‸
第 2页(共 22页)
‸t ≘ D.t‸
11.(3 分)将数 4790000 用科学记数法表示为
.
12.(3 分)在函数 y
中,自变量 x 的取值范围是
.
13.(3 分)已知反比例函数 y 的图象经过点(﹣3,4),则 k 的值为
2020 年黑龙江省哈尔滨市中考数学试卷
一、选择题(每小题 3 分,共计 30 分) 1.(3 分)﹣8 的倒数是( )
A.
B.﹣8
C.8
D.
2.(3 分)下列运算一定正确的是( )
A.a2+a2=a4
B.a2•a4=a8
C.(a2)4=a8
D.(a+b)2=a2+b2
3.(3 分)下列图形中既是轴对称图形又是中心对称图形的是( )
正方形的顶点上. (1)在图中画出以 AB 为边的正方形 ABEF,点 E 和点 F 均在小正方形的顶点上; (2)在图中画出以 CD 为边的等腰三角形 CDG,点 G 在小正方形的顶点上,且△CDG 的周长为 10t t.连接 EG,请直接写出线段 EG 的长.
第 3页(共 22页)
23.(8 分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为 主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类? (必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结 果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所 调查人数的 30%.请你根据图中提供的信息回答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)请通过计算补全条形统计图; (3)若冬威中学共有 800 名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.
三、解答题(其中 21~22 题各 7 分,23~24 题各 8 分,25~27 题各 10 分,共计 60 分) 21.(7 分)先化简,再求代数式(1 t )÷ t 的值,其中 x=4cos30°﹣1. 22.(7 分)如图,方格纸中每个小正方形的边长均为 1,线段 AB 和线段 CD 的端点均在小
外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )
A.
B.
C.
D.
10.(3 分)如图,在△ABC 中,点 D 在 BC 边上,连接 AD,点 E 在 AC 边上,过点 E 作 EF∥BC,交 AD 于点 F,过点 E 作 EG∥AB,交 BC 于点 G,则下列式子一定正确的是 ()
26.(10 分)已知:⊙O 是△ABC 的外接圆,AD 为⊙O 的直径,AD⊥BC,垂足为 E,连接
第 4页(共 22页)
BO,延长 BO 交 AC 于点 F. (1)如图 1,求证:∠BFC=3∠CAD; (2)如图 2,过点 D 作 DG∥BF 交⊙O 于点 G,点 H 为 DG 的中点,连接 OH,求证: BE=OH; (3)如图 3,在(2)的条件下,连接 CG,若 DG=DE,△AOF 的面积为 h ,求线段