化学仪器分析期末考试知识点总结(全面)复习过程

合集下载

仪器分析知识点总结期末

仪器分析知识点总结期末

仪器分析知识点总结期末引言仪器分析是一门应用化学和物理学原理的科学,涉及仪器、仪表、光学和电子学等多个学科,用于测定和分析物质样品的成分和性质。

仪器分析在各个领域都有广泛的应用,包括环境监测、制药、食品安全、医学诊断和天文学等。

本篇文章将对仪器分析的基本概念、常见的分析仪器和技术、质量控制以及未来发展方向等进行总结和分析。

一、仪器分析基础知识1. 仪器分析的基本原理仪器分析是利用物理、化学或生物学原理构建各种仪器和设备,用于检测和测定样品中的成分、结构和性质。

基本原理包括光谱学、电化学、分子光度法、色谱法、质谱法、X射线衍射法等。

在实际应用中,可以根据需要选择不同的分析原理和仪器进行样品分析。

2. 仪器分析的步骤仪器分析一般包括取样、制备、分析和数据处理等步骤。

取样是从样品中获取代表性的部分;制备是指针对样品的物理或化学处理,以适应分析仪器的要求;分析是使用仪器进行测定,获取样品的性质和组分信息;数据处理是指对分析结果进行统计分析、质量控制和报告撰写等。

3. 仪器分析的应用领域仪器分析在环境监测、医学诊断、食品安全、农业生产、材料检测、制药和化工等领域都有重要应用。

例如,质谱法在药物研发和医学诊断中有重要应用;光谱学在化学分析和环境监测中起到关键作用;色谱法在食品安全和环境保护中发挥作用。

二、常见的分析仪器和技术1. 分光光度计分光光度计是一种用于测定物质浓度的仪器,利用物质吸收或发射光的特性进行分析。

分光光度计包括紫外可见分光光度计、红外分光光度计和荧光光度计等,广泛应用于化学分析、生物医药和环境监测等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,用于测定物质的分子结构和质量。

质谱仪主要有气相质谱仪和液相质谱仪两大类,可用于药物分析、环境监测和食品安全等领域。

3. 色谱仪色谱仪是一种用于分离和测定混合物中组分的仪器。

常见的色谱仪包括气相色谱仪和液相色谱仪,广泛应用于环境检测、食品安全和医学诊断等领域。

仪器分析期末知识点总结

仪器分析期末知识点总结

仪器分析期末知识点总结仪器分析是现代化学分析的重要手段之一,它利用各种仪器设备来检测和分析物质的成分、结构、性质等信息。

仪器分析技术具有灵敏、准确、高效等优点,已经广泛应用于化学、环境、医药、食品等领域。

本文将从基本仪器分析原理、常用仪器、质谱、光谱分析、色谱分析等方面进行知识点总结,以便于同学们在期末复习时进行复习。

一、基本仪器分析原理1. 仪器分析的基本原理仪器分析是通过测量样品的物理性质,如质量、电子结构、核磁共振等,间接或直接地确定样品中的化学成分或结构。

一般包括以下几个基本原理:(1)光学原理:利用物质与光的相互作用,通过测量光的吸收、散射或发射等来分析物质的成分、性质。

(2)电化学原理:通过测量电流、电势、电荷量等来分析物质。

(3)质谱原理:利用质子、中子、电子等粒子与物质相互作用的规律,测定物质的成分、结构。

(4)色谱原理:利用物质在固、液、气相中的分配系数差异,通过色谱柱分离、检测来分析物质。

2. 仪器分析的基本步骤仪器分析一般包括样品的前处理、仪器的操作和测量、数据的处理与分析等步骤。

具体可以分为以下几个步骤:(1)样品的前处理:首先需要对样品进行前处理,包括样品的取样、样品的溶解、稀释、萃取等,以便于后续的仪器操作。

(2)仪器的操作和测量:根据仪器的不同,进行样品的操作和测量,包括光谱分析、质谱分析、色谱分析等。

(3)数据的处理与分析:对测得的数据进行处理、分析,得出结论和结果。

二、常用仪器1. 紫外可见分光光度计紫外可见分光光度计是一种广泛应用的光学仪器,可用于测量物质的吸收、散射等光学性质,对分析有机物、无机物、生物分子等具有重要意义。

其原理是利用物质对特定波长光的吸收程度来分析物质的成分、浓度等信息。

2. 红外光谱仪红外光谱仪是一种通过测量物质对红外辐射的吸收、散射来分析物质的结构、功能团、成分等信息的仪器。

其原理是利用物质分子在红外光波段的振动、转动运动,吸收特定频率的红外辐射,从而得到物质的光谱信息。

化学考研仪器分析期末总结

化学考研仪器分析期末总结

化学考研仪器分析期末总结一、引言化学仪器分析是化学专业的一门重要课程,主要研究化学样品的定性和定量分析方法。

通过本学期的学习,我对于常见的化学仪器和分析方法有了较为深入的了解,并且在实验中运用和操作了不少仪器,加深了对化学仪器分析的理论和实践的掌握。

以下是对本学期所学内容的总结和回顾。

二、仪器的分类本课程主要学习了常见的化学仪器,可以分为以下几类:1. 光电类仪器:包括紫外可见分光光度计、红外光谱仪等。

这类仪器主要利用样品对于电磁辐射的吸收或发射特性进行分析。

2. 电化学类仪器:包括电导仪、电化学分析仪器等。

利用样品的电化学性质进行分析。

3. 质谱类仪器:包括质谱仪等。

利用质谱仪的技术原理进行分析。

4. 色谱类仪器:包括气相色谱仪、液相色谱仪等。

利用样品在固定相和流动相间的分配系数差异进行分离和分析。

5. 元素分析仪器:包括原子吸收光谱仪、原子发射光谱仪等。

利用样品中元素的特定吸收或发射光谱进行分析。

三、常见分析方法本学期学习了多种分析方法,主要包括定性分析、定量分析和仪器分析方法等。

1. 定性分析方法:通过观察样品的颜色变化、溶解度变化、析出物形成等现象来鉴定样品中的成分。

常用的方法有重力滤液法、滤过法、沉淀法等。

2. 定量分析方法:通过对样品的浓度、质量等进行测定来确定其含量。

根据测定原理的不同,常见的方法有酸碱滴定法、氧化还原滴定法、络合滴定法等。

3. 仪器分析方法:利用仪器分析方法可以进行更为准确和精确的分析。

常见的仪器分析方法有光谱分析法、电化学分析法、色谱分析法等。

四、实验操作在本学期的实验中,我熟练使用了多种仪器,如分光光度计、电化学分析仪器、色谱仪等,并且进行了一系列操作和实验。

这些实验的目的是加深对于仪器的了解,提高操作的实践能力。

1. 分光光度计实验:通过实验中对标准溶液的测定和分析,学习了分光光度计的操作和原理,并掌握了如何进行吸光度和浓度的关系计算。

2. 电化学实验:通过对电解质溶液的电导率的测定,了解了电导仪的使用和测量方法,并对电解质溶液的电导性质有了更深入的了解。

仪器分析期末总结

仪器分析期末总结

仪器分析期末重点知识总结第一章1.化学分析是以物质化学反应为基础的分析方法。

仪器分析是以物质的物理性质和物理化学性质为基础的分析方法。

2.仪器分析法的数量级。

3.仪器分析方法分为光学分析法、电化学分析法、色谱法、和其它仪器分析法。

4.定量分析普遍使用的方法:标准曲线法。

标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。

5.许多方法的灵敏度随实验条件而变化,所以现在一般不用灵敏度作为方法的评价指标。

6.精密度公式:7.准确度常用相对误差量度。

方法有较好的精密度并且消除了系统误差后,才有较好的准确度。

8.检出限:信噪比取3。

方法的灵敏度越高,精密度越好,检出限就越低。

精密度、准确度和检出限三个指标作为分析方法的主要评价指标。

第二章1.光学分析法:根据物质发射的电磁辐射或电磁辐射与物质相互作用建立起来的分析方法。

2.电磁辐射具有波粒二象性:波动性和微粒性。

3.4.普朗克方程将电磁辐射的波动性和微粒性联系在一起。

5.电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。

6.并不是原子中任何两个能级之间都能够发生跃迁。

不符合光谱选择定则的跃迁叫禁戒跃迁。

7.原子光谱又称线状光谱。

物质的原子光谱依其获得的方式不同分为发射光谱、吸收光谱和荧光光谱。

8.根据光谱产生的机理不同,分子光谱又可分为分子吸收光谱和分子发光光谱。

分子对辐射能的选择性吸收由基态或较低能级跃迁到较高能级产生的分子光谱叫做分子吸收光谱。

目前学过的分子吸收光谱:紫外可见吸收光谱和红外吸收光谱。

第三章1.紫外-可见吸收光谱是根据溶液中物质的分子或离子对紫外可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收光度法。

2.电子跃迁类型:3.把4.烯化合物随着共轭体系的增大其吸收峰红移,摩尔吸收系数也会随共轭体系增大而发生显著100%r s s x =变化。

5.能使声色团吸收峰红移、吸收强度增大的集团成为助色团。

期末不挂科仪器分析总结

期末不挂科仪器分析总结

期末不挂科仪器分析总结一、引言仪器分析是化学和相关学科中的一门重要课程,它旨在培养学生分析实验的能力和科学研究的素养。

通过本学期的学习和实验,我对仪器分析的原理和应用有了更深入的了解。

本文将对本学期的仪器分析课程进行总结,包括仪器分析的基本原理、常用分析仪器的工作原理和应用等。

二、仪器分析的基本原理仪器分析是利用仪器和设备来进行物质定性和定量分析的一种方法。

它包括了许多常用的仪器和设备,如色谱仪、质谱仪、光谱仪等。

仪器分析的基本原理是利用物质的特性或与物质相互作用的原理来进行分析。

比如光谱仪利用物质对光的吸收、散射、发射等特性来进行定性和定量分析;质谱仪利用物质在电场中的特性来分析物质的组成和结构;色谱仪利用物质在气相或液相中的分配行为来分析物质的成分等。

三、常用分析仪器的工作原理和应用1. 色谱仪的工作原理和应用:色谱仪是一种利用物质在固定相和流动相之间分配行为进行分析的仪器。

在色谱仪中,样品通过固定相,根据不同成分的分配系数在固定相和流动相之间进行分离,然后通过检测器进行检测。

色谱仪广泛应用于食品分析、环境监测、药物分析等领域。

2. 质谱仪的工作原理和应用:质谱仪是一种通过将样品中的物质分子转化为离子,并进行质量分析的仪器。

在质谱仪中,样品经过电离器产生离子,然后通过质量分析器进行质量分析。

质谱仪广泛应用于有机化合物的结构分析、生物分子的定性和定量分析等领域。

3. 光谱仪的工作原理和应用:光谱仪是一种利用物质对光的吸收、散射、发射等特性进行分析的仪器。

在光谱仪中,样品通过光束,根据样品对光的吸收、散射、发射等特性进行分析。

光谱仪广泛应用于药物分析、环境监测、食品分析等领域。

四、实验中的仪器分析本学期我还参与了几个仪器分析实验,通过这些实验我对仪器分析有了更深入的了解。

比如我们在一次实验中使用色谱仪对某种食品中的添加剂进行分析。

通过色谱仪的分析,我们确定了食品中的添加剂种类和含量。

在另一次实验中,我们使用质谱仪对一种药物进行质量分析。

仪器分析期末总结

仪器分析期末总结

仪器分析期末总结一、引言仪器分析是现代化学分析的重要组成部分,具有灵敏度高、选择性好、准确度高等优点。

本学期我们学习了仪器分析的基本原理、常用的仪器设备以及仪器操作技术和数据处理方法。

通过理论学习和实验操作,我对仪器分析的工作原理及其在实际应用中的重要性有了更深入的理解。

以下是我对本学期学习内容的总结和体会。

二、仪器分析的原理及分类仪器分析是利用物理或化学性质测试和分析样品中所含组分的一种方法。

仪器分析通常包括光谱分析、电化学分析和分离技术等。

光谱分析主要通过测量样品对光的吸收、发射或散射来获得样品的信息。

电化学分析则利用电化学现象测量样品中的电流、电压和电导等参数。

分离技术则是通过对样品进行分离和纯化来获得所需信息。

三、常用的仪器设备及其原理1. 紫外可见分光光度计:紫外可见分光光度计利用样品对紫外或可见光的吸收来测定样品中某种物质的含量。

其原理是根据比尔-朗伯定律,将吸收光强与浓度之间的关系建立起来。

2. 离子色谱仪:离子色谱仪主要用于离子物质的分离和测定。

通过控制离子交换树脂中的离子交换反应,将样品中的离子分离出来,并通过检测器进行测定。

3. 气相色谱仪:气相色谱仪是一种常用的分析仪器,主要用于描写样品中有机物的组成和浓度。

其原理是样品在高温下通过色谱柱和载气的相互作用进行分离,然后通过检测器对分离出的物质进行检测。

四、仪器分析的操作技术和数据处理方法1. 标定和校准:在进行仪器分析前,需进行标定和校准,以确保测量结果的准确性和可靠性。

标定是通过测量标准样品来校准仪器,确定仪器的响应和测量范围。

校准是通过测量校准样品,检查仪器的准确度并进行修正。

2. 仪器操作:仪器分析的操作过程需要严格遵守仪器设备的操作规程和操作步骤。

特别是在涉及到有毒有害物质的操作时要加强安全防护和措施,确保实验操作的安全性。

3. 数据处理:仪器分析的结果通常需要进行数据处理和分析。

数据处理包括数据整理、统计分析和结果呈现等。

考试复习重点总结仪器分析总结

考试复习重点总结仪器分析总结

仪器分析、检验仪器原理及维护(掌握)临床检验仪器的常用性能指标:灵敏性,误差,噪声,最小检测量,精确度,可靠性,重复性,分辨率,测量范围和示值范围,线性范围,响应时间,频率响应范围。

(熟悉)误差:两种表示方法。

一是绝对误差,二是相对误差。

(熟悉)离心机的工作原理:离心机就是利用离心机转子高速旋转产生的强大的离心力,迫使液体中的微粒克服扩散,加快沉降速度,把样品中具有不同沉降系数和浮力密度的物质分离开。

(熟悉)离心力:由于物体旋转而产生脱离旋转中心的力,也是物体作圆周运动所产生的向心力的反作用力。

(熟悉)相对离心力:通常颗粒在离心过程中的离心力是相对于颗粒本身所受的重力而言,因此把这种离心力叫做相对离心力。

(熟悉)离心机的分类:按转速分可分为低速、高速、超速离心机等;按用途可分为制备型、分析型和制备分析两用型;(熟悉)离心机的主要技术参数:3、最大容量离心机一次可分离样品的最大体积,通常表示为m×n。

(掌握)差速离心法:差速离心法又称为分步离心法。

根据被分离物的沉降速度不同,采用不同的离心速度和时间进行分步离心的方法,称为差速离心法。

该方法主要用于分离大小和密度差异较大的颗粒。

优点:操作简单,离心后用倾倒法即可将上清液与沉淀分开,并可使用容量较大的角式转子;分离时间短、重复性高;样品处理量大。

缺点:分辨率有限、分离效果差,沉淀系数在同一个数量级内的各种粒子不容易分开,不能一次得到纯颗粒;壁效应严重,特别是当颗粒很大或浓度很高时,在离心管一侧会出现沉淀,颗粒被挤压,离心力过大,离心时间过长会使颗粒变形、聚集而失活。

(P24)(掌握)密度梯度离心法:密度梯度离心法又称区带离心法,该方法主要用于沉降速度差别不大的微粒,将样品放在一定惰性梯度介质中进行离心沉淀或沉降平衡,在一定离心力下把颗粒分配到梯度液中某些特定位置上,形成不同区带的分离方法。

优点:具有很好的分辨率、分离效果好,可一次获得较纯的颗粒;适用范围广,既能分离沉淀系数差的颗粒,又能分离有一定浮力密度的颗粒;颗粒不会积压变形、能保持颗粒活性,并防止已形成的区带由于对流而引起混合。

仪器分析笔记期末总结

仪器分析笔记期末总结

仪器分析笔记期末总结首先,仪器分析是化学学科的一项重要领域。

在化学研究、生产和实验中,仪器分析扮演着重要的角色。

通过仪器分析,我们可以得到更加准确、敏感和快速的实验结果。

例如,在药物研究中,仪器分析可以帮助我们确定药物的纯度和结构,从而评估其疗效和安全性。

在环境监测中,仪器分析可以帮助我们检测大气中的污染物、水中的有害物质以及土壤中的重金属等,从而保护环境和人类健康。

因此,仪器分析是化学学科不可或缺的一部分。

其次,仪器操作和实验技能是仪器分析课程的核心。

在课程中,我们学习了多种仪器的原理和操作,并进行了实验操作。

例如,我们学习了光谱仪的原理和应用,通过测量样品的吸收光谱来确定其组成和浓度。

我们还学习了质谱仪的原理和操作,通过测量样品中离子的质荷比来确定其结构和分子量。

通过这些实验操作,我们不仅学到了各种仪器的操作技巧,还培养了实验设计、数据处理和结果分析的能力。

另外,仪器分析还涉及到数据处理和结果分析。

在实验过程中,我们需要采集大量的数据,然后通过统计分析和图表绘制来处理这些数据。

在课程中,老师给我们讲解了如何进行数据处理和结果分析,并通过实例演示了具体操作步骤。

通过这些实践,我们学会了如何提取和计算出有关物质的信息,例如,测量样品中物质的浓度、离子的质荷比和元素的相对含量等。

这些结果不仅是实验的重要依据,还可以为后续的研究工作提供参考。

除了以上的知识和技能,仪器分析课程还加强了我们的实验安全和质量控制意识。

在实验操作中,我们必须严格遵守实验室的操作规程,正确佩戴防护设备,正确使用仪器和试剂,以防止事故和产生误差。

同时,我们还学会了质量控制的方法,例如,实验中要进行空白对照、加标回收和重复测定等,以确保实验结果的准确性和可靠性。

通过这门课程的学习,我不仅对仪器分析的重要性有了更深入的理解,也掌握了基本的实验技能和数据处理方法。

这些知识和技能不仅可以应用于实验室研究和生产,还可以在日常生活中为我解决化学问题和提高化学素养提供帮助。

化学仪器研究分析期末考试知识点总结(全面)

化学仪器研究分析期末考试知识点总结(全面)

化学仪器分析期末考试知识点总结(全面)————————————————————————————————作者:————————————————————————————————日期:分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

M+hv→M*2、带光谱和线光谱带光谱:是分子光谱法的表现形式。

分子光谱法是由分子中电子能级、振动和转动能级的变化产生。

线光谱:是原子光谱法的表现形式。

原子光谱法是由原子外层或内层电子能级的变化产生的。

化学仪器分析期末考试总结

化学仪器分析期末考试总结

化学仪器分析期末考试总结离子色谱法测定自来水中卤素离子实验原理离子色谱在分离阴离子时,常用NaHCO3混合溶液为滚动相(淋洗液),以阴离子交换交换柱为固定相,水样中待测离子随淋洗液进入离子交换柱系统(由保护柱和分离柱组成)。

根据分离柱对各种阴离子亲和力不同,已分离的阴离子流经阴离子抑制系统转换成搞颠倒的强酸,二淋洗液则转换成弱电导率的碳酸。

由电导检测器测量各种离子组分的电导率,已保留时间定性、峰高或峰面积定量。

思考题1、离子色谱仪如何抑制淋洗液NaHCO3-Na2CO3电导淋洗液电解生成的H+可有效地淋出液的背景电导值。

样品溶液进入离子色谱后,其阴离子最终将色谱柱中所有可交换的离子置换出来,同时由检测器转换为恒定的信号—基线。

然后进样少量样品,样品离子即被树脂柱所接受,并与等同数量的淋洗液离子交换。

如果样品中所有离子的浓度大于淋洗液离子浓度,当他沿着柱子移动,并通过电导检测器便得到一个正峰,反之得到一个负峰。

进样后,淋洗液离子继续不断地经泵输入色谱,对树脂的可交换部位与样品离子进行竞争,并且使样品离子沿着柱子移动。

由于样品离子对数值有着不同的亲和能力,因而不同的样品,离子沿柱以不同的速度移动,最后完成分离。

2、在一定固定相色谱条件测定试样中F-、Cl-、Br-、NO3-、PO43-、SO42-简述决定保留时间参数规律影响保留时间的参数:离子的性质(价态,尺寸,极化程度,酸的电离强度)参数①价态待测离子的价态越高,保留时间越长。

但多价离子的保留如正磷酸盐与淋洗液的pH值有关,例如PO43-pH在8~9时,PO43-以H3PO4-形式存在,离子价态H3PO43-<so42-,所以po43-在so42-之前流出< bdsfid="71" p=""></so42-,所以po43-在so42-之前流出<>参数②离子半径离子半径越大,保留时间越长参数③极化程度离子极化程度越强,保留时间越长红外光谱测定有机化合物的结构实验原理红外光谱时研究分子振动和转动信息的分子光谱,它反映了分子化学键的特征吸收频率,根据红外光谱的峰位,峰强及峰形,判断化合物中可能存在的官能团,从而可用于化合物结构判断。

大二化学仪器分析知识点

大二化学仪器分析知识点

大二化学仪器分析知识点化学仪器分析是一个重要的化学分析技术领域,涉及多种仪器的原理、操作和应用。

对于大二化学专业的学生来说,了解和掌握化学仪器分析的知识点是非常重要的。

本文将介绍一些大二化学仪器分析中的关键知识点,帮助学生更好地理解并应用于实践。

一、电化学方法1. 电化学分析基本原理:电化学方法是利用电极与溶液中的物质发生氧化还原反应进行分析的方法。

通过测定电流、电压等电化学参数,可以获得样品中物质的含量信息。

2. 电极的分类与特点:常见的电极有玻璃电极、金属电极、气体电极等。

不同类型的电极具有不同的应用范围和特点。

3. 电化学分析方法:包括电位滴定法、电位分析法、电导法、极谱法等。

每种方法有其独特的测量原理和应用场景。

二、光谱分析方法1. 紫外可见吸收光谱:利用物质对紫外或可见光的吸收特性,来了解物质的结构和含量。

常见的仪器有紫外可见分光光度计。

2. 红外光谱:利用物质对红外光吸收的特性,了解化合物的结构和特性。

常见的仪器有红外光谱仪。

3. 原子吸收光谱:利用原子对特定波长的光的吸收特性,测定样品中特定元素的含量。

常见的仪器有火焰原子吸收光谱仪和石墨炉原子吸收光谱仪。

三、色谱分析方法1. 气相色谱:根据物质在气相载体中的分配行为,来分离和定量分析混合物。

常见的仪器有气相色谱仪。

2. 液相色谱:根据物质在液相载体中的分配行为,来进行分离和定量分析。

常见的仪器有高效液相色谱仪和离子色谱仪。

四、质谱分析方法1. 质谱仪原理:利用质谱仪对化合物分子进行分析和测定,常见的质谱仪有质谱联用仪和飞行时间质谱仪等。

2. 质谱指纹图谱:利用质谱仪对样品进行分析,通过分析得到的质谱指纹图谱来鉴定和定量物质。

五、其他仪器分析方法1. 热分析:通过对样品在升高温度过程中的物理和化学性质的变化进行分析,包括差示扫描量热法、热重分析法等。

2. 核磁共振:通过对样品中的核自旋进行磁共振现象的研究,来了解样品的分子结构和化学环境。

仪器分析知识点复习汇总

仪器分析知识点复习汇总

仪器分析知识点复习汇总仪器分析是化学分析中的一个重要分支,主要研究利用各种仪器设备进行样品分析和检测的方法和技术。

下面是仪器分析的一些知识点复习汇总:1.基本概念:仪器分析是利用仪器设备对样品进行分析和检测的方法。

仪器分析可以分为定性分析和定量分析两个方面。

2.仪器分类:仪器主要分为电化学仪器、光谱仪器、质谱仪器、色谱仪器、微量元素分析仪器等几个大类。

3.电化学仪器:电化学仪器包括电解池、电渗析仪、电导仪、计时电位计等,主要用于电化学分析和电化学过程研究。

4.光谱仪器:光谱仪器包括分光光度计、紫外可见分光光度计、荧光光谱仪、红外光谱仪等,主要用于分析和检测样品的光谱特性。

5.质谱仪器:质谱仪器包括质谱仪和气相色谱-质谱联用仪,可用于分析样品中的有机化合物的结构和组成。

6.色谱仪器:色谱仪器包括气相色谱仪、液相色谱仪、离子色谱仪等,主要用于分离和定性分析样品中的化合物。

7.微量元素分析仪器:微量元素分析仪器包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等,主要用于测定样品中的微量元素含量。

8.仪器分析的步骤:仪器分析通常包括样品的制备、测量条件的选择与优化、光谱或电位的测量、数据处理与结果分析等几个步骤。

9.仪器分析中的常见问题:仪器分析中常见的问题包括仪器的灵敏度、选择性、准确度和重现性等。

灵敏度指的是仪器检测样品中目标物质的能力,选择性指的是仪器只检测样品中的目标物质而不受其他物质的干扰,准确度指的是仪器检测结果与真实值之间的偏差,重现性指的是多次测量同一样品的结果之间的一致性。

10.仪器分析的应用:仪器分析广泛应用于环境监测、食品质量安全检测、医药检验等领域。

在环境监测中,仪器分析可以检测大气中的污染物、水中的有机污染物和无机污染物等。

在食品质量安全检测中,仪器分析可以检测食品中的农药残留、重金属含量等。

在医药检验中,仪器分析可以分析药物的纯度、含量等。

以上是仪器分析的一些基本知识点复习汇总。

仪器分析下期末总结

仪器分析下期末总结

仪器分析下期末总结一、引言仪器分析是化学专业的一门重要课程,旨在培养学生熟练掌握各种仪器的原理、结构和使用方法,以及数据的处理与分析能力。

通过这门课程的学习,我对仪器分析的理论和实际操作得到了很大的提升,并且深刻理解了仪器分析在化学研究和工业生产中的重要作用。

在本次期末总结中,我将针对仪器分析的基本原理、常用方法和实际应用进行回顾和总结,同时分享一些课堂实验和实践中的经验和收获。

二、仪器分析的基本原理仪器分析是化学分析领域的一种重要手段,主要通过测量和记录被测样品的某种性质来实现分析目的。

仪器分析的基本原理包括光谱分析、电化学分析、色谱分析和质谱分析等,每种分析方法都有其独特的原理和应用。

1. 光谱分析光谱分析是利用物质在特定光波长下的吸收、发射或散射现象来确定其组成和浓度的分析方法。

常见的光谱分析方法包括紫外-可见光谱分析、红外光谱分析和核磁共振光谱分析等。

这些分析方法广泛应用于物质结构的解析、有机物的定性定量分析以及环境污染物的检测等领域。

2. 电化学分析电化学分析是通过测量物质在电化学系统中的电荷转移过程来实现定量分析的方法。

常见的电化学分析方法包括电位滴定法、安培计法和极谱法等。

这些方法在药物分析、环境检测和生物分析等方面具有重要应用,尤其是电化学传感器在医学诊断和生物传感领域显示出巨大的潜力。

3. 色谱分析色谱分析是利用不同物质在固定相和流动相之间的分配系数差异来实现分离和分析的方法。

常见的色谱分析方法包括气相色谱法、液相色谱法和离子色谱法等。

这些方法广泛应用于有机物的分离、纯化和定性定量分析,可以有效提高样品分析的灵敏度和准确性。

4. 质谱分析质谱分析是利用静态或动态的质量谱仪对物质分子的质量和结构进行测定的方法。

常见的质谱分析方法包括质谱仪、气相色谱质谱联用分析和液相色谱质谱联用分析等。

这些方法在药物研究、有机合成和环境监测等领域得到广泛应用,可以准确快速地对物质进行鉴定和定性定量分析。

仪器分析必考知识点总结

仪器分析必考知识点总结

仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。

在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。

2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。

它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。

仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。

3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。

它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。

二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。

主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。

主要包括气相色谱、液相色谱、超高效液相色谱等。

3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。

主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。

4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。

主要包括电化学电位法、极谱法、循环伏安法等。

5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。

主要包括热重分析、差示扫描量热分析、热膨胀分析等。

6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。

主要包括激光诱导击穿光谱、激光诱导荧光光谱等。

三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。

在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。

2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。

仪器分析[第一章绪论]山东大学期末考试知识点复习

仪器分析[第一章绪论]山东大学期末考试知识点复习

仪器分析[第一章绪论]山东大学期末考试知识点复习第一章绪论重点内容概要1.仪器分析的分类与特点仪器分析分为电化学分析、色谱分析、光分析、质谱分析及热分析五大部分。

电化学分析包括电位分析、电导分析、库仑分析及伏安分析;色谱分析包括气相色谱、液相色谱、超临界流体色谱、薄层色谱和毛细管电泳等;光分析(光谱法和非光谱法)包括原子发射光谱法、原子吸收光谱法、x射线光谱法、分子荧光和磷光光度法、化学发光分析法、紫外一可见光谱法、红外光谱法、拉曼光谱法和核磁共振波谱法等。

仪器分析的特点:①速度快;②灵敏度高;③重现性好;④样品用量少;⑤选择性高。

局限性是仪器装置复杂,相对误差较大。

2.分析化学发展的三个阶段通常将分析化学的发展分为三个阶段或三次变革:阶段一:20世纪初,依据溶液中四大反应平衡理论,形成了分析化学的理论基础,使分析化学由一门操作技术变成一门科学,形成了分析化学的第一次变革。

阶段二:20世纪40年代以后,由于物理学、电子学的发展,半导体材料工业和原子能工业生产的需要,使仪器分析处于大发展时期。

这时期的一系列重大科学发现,为仪器分析的建立和发展奠定基础。

仪器分析的发展引发了分析化学的第二次变革。

阶段三:20世纪80年代初出现了以计算机应用为标志的分析化学第三次变革。

3.计算机对仪器分析发展的促进作用计算机对仪器分析发展的促进作用表现在:促进了仪器分析自动化;促进新型分析仪器的出现;实现分析仪器的智能化和网络化。

4.仪器分析中的计算机应用的主要方面仪器分析中的计算机应用的主要方面包括:计算机控制下的数据采集;计算机自动控制;计算机数据处理;专家系统与人工智能;网络技术与虚拟技术等。

5.信息和熵设一事件有几种可能性,各自的概率为p,Shannon定义信息熵为i(1-1) 熵是事件不确定程度的度量,不确定程度越大,熵就越大。

对于一个概率密度为p(x)的连续型分布熵的定义为(1-2) 信息量I为(1-3) 如果事件发生后的概率不等于1,即它是不确定的,则信息量可表示为(1-4)是事件发生后的概率。

仪器分析期末考试重点总结

仪器分析期末考试重点总结

气相色谱基本原理:借在两相间分配原理而使混合物中各组分分离。

气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。

组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。

载气系统、进样系统、色谱柱与柱箱、检测系统、记录与数据处理系统。

气相色谱仪具有一个让载气连续运行,管路密闭的气路系统.进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.固定液:是一些高沸点的有机化合物,例如,角鲨烷,作为固定相被均匀地涂抹在担体上。

担体:多孔,比表面积大,表面无吸附性,是用来承担固定液的物质。

例如:硅藻土。

气相色谱法的特点:高选择性(复杂混合物,有机同系物、异构体。

手性异构体)高灵敏度(可以检测出μg.g-1(10-6)级至(10-9)级的物质量)高效能、快速、应用范围广(气:沸点低于400℃的各种有机或无机试样的分析)(液:高沸点、热不稳定、生物试样的分离分析)缺:被分离组分的定性较为困难。

分配过程:组分在固定相和流动相间发生的吸附、脱附,或溶解、挥发的过程 分配系数:在一定温度下,组分在两相间分配达到平衡时的浓度(单位:g / mL )比,K 分配比:在一定温度下,组分在两相间分配达到平衡时的质量比(容量因子\容量比) k k 容量因子越大,保留时间越长。

β为相比。

β= VM/VS V M 为流动相体积,即柱内固定相颗粒间的空隙体积;V S 为固定相体积,气-液色谱柱(为固定液体积);气-固色谱柱:为吸附剂表面容量r 21 = t ´R2 / t ´R1= V ´R2 / V ´R1= α 滞留因子=质量分数ω: u s :组分在色谱柱内的线速度; u :流动相在色谱柱内的线速度 塔板理论的假设:在每一个平衡过程间隔内,平衡可以迅速达到;将载气看作成脉动(间歇)过程;试样沿色谱柱方向的扩散可忽略;每次分配的分配系数相同。

仪器分析章节知识点总结

仪器分析章节知识点总结

仪器分析章节知识点总结一、仪器分析的基本原理仪器分析是利用物理化学性质以及仪器设备进行样品的检测和分析。

它的基本原理包括样品的前处理、仪器的分析原理和数据处理等。

1. 样品的前处理样品的前处理是仪器分析的第一步,它包括样品的采集、预处理、前处理和标定等。

样品的采集包括样品的收集、保存、取样和保存等。

样品的预处理主要是对样品进行处理,使其适合于仪器分析。

前处理主要是对样品进行分离、富集和纯化等。

样品的标定主要是对仪器进行标定,使其保持准确的分析结果。

2. 仪器的分析原理仪器的分析原理是仪器分析的核心内容,它主要包括原子吸收光谱、荧光光谱、质谱、色谱、电化学分析等各种仪器的分析原理。

这些原理主要是根据样品的化学性质、光学性质、电化学性质等来进行分析,从而获得样品的基本信息。

3. 数据处理数据处理是仪器分析的最后一步,它主要包括数据采集、数据处理和数据解释等。

数据采集主要是对样品的分析数据进行采集,数据处理主要是对数据进行处理,数据解释主要是对数据的结论进行解释。

二、常用仪器设备的原理和应用仪器分析包括各种仪器设备的应用,主要包括原子吸收光谱仪、质谱仪、色谱仪、荧光光谱仪、拉曼光谱仪、红外光谱仪等。

1. 原子吸收光谱仪原子吸收光谱仪是一种用于检测金属元素含量的仪器设备,它主要是通过吸收光谱的方式来检测样品中的金属元素含量。

原子吸收光谱仪主要包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪等。

2. 质谱仪质谱仪是一种用于检测样品中有机物质含量的仪器设备,它主要是通过样品的质谱图谱来进行分析。

质谱仪主要包括质子共振质谱仪、气相质谱仪、液相质谱仪等。

3. 色谱仪色谱仪是一种用于检测样品中化合物含量的仪器设备,它主要是通过样品的色谱图谱来进行分析。

色谱仪主要包括气相色谱仪、液相色谱仪等。

4. 荧光光谱仪荧光光谱仪是一种用于检测样品中发光物质含量的仪器设备,它主要是通过样品的荧光光谱图谱来进行分析。

仪器分析课程知识点总结

仪器分析课程知识点总结

仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。

其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。

其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。

3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。

其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。

二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。

其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。

2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。

其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。

3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。

其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。

4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。

其原理是根据核磁共振现象来对化合物进行定性和定量分析。

5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。

其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。

6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。

其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。

仪器分析期末复习总结(师范班).

仪器分析期末复习总结(师范班).

方法名称、原子发射光谱 AAS 原子吸收光谱 AES 紫外可见光谱 UV-Vis 主要研究对象无机物、元素分析无机物、元素分析不饱和有机物,尤其是含共轭体系的有机化学物及某些无机物,不适合饱和的有机物应用 1.定性分析 2.定量分析 1.定量分析 1.定性分析:初步确定化合物的归属 2.判断顺反异构体 3.化合物纯度判定4.定量分析红外吸收光谱 IR 振动中伴随有偶极距变化的的有机化合物,主要用于确定化合物的官能团 1.定性分析:已知物确定或纯度判定;未知物结构确定 2.定量分析 1.定量分析:无机化合物分析(配位);有机物含量分析(很多化合物几乎同时发生光致发光,故荧光很少用于定性分子发光(荧光、能产生荧光(磷光)的化合物(含磷光)光谱超共轭脂肪族化合物和芳香族化合物)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学仪器分析期末考试知识点总结(全面)分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

M+hv→M* 2、带光谱和线光谱带光谱:是分子光谱法的表现形式。

分子光谱法是由分子中电子能级、振动和转动能级的变化产生。

线光谱:是原子光谱法的表现形式。

原子光谱法是由原子外层或内层电子能级的变化产生的。

2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。

3、谱线变宽的因素(P-131):⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。

故又称热变宽。

Doppler宽度随温度升高和相对原子质量减小而变宽。

⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起外界压力愈大,浓度越高,谱线愈宽。

⒈引起谱线变宽的主要因素有哪些?⑴自然变宽:无外界因素影响时谱线具有的宽度⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。

故又称热变宽。

⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。

⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场)⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。

③富燃火焰:指燃气大于化学元素计量的火焰。

其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。

⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰?一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。

消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。

二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。

消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。

(2)加入释放剂(广泛应用)(3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。

(4)加基体改进剂(5)分离法三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。

负误差消除方法:加入过量消电离剂。

(所谓的消电离剂, 是电离电位较低的元素。

加入时, 产生大量电子, 抑制被测元素电离。

)四. 光谱干扰:吸收线重叠:①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线②谱线重叠干扰--选其它分析线五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。

(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。

光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。

背景干扰,一般使吸收值增加。

产生正误差。

)消除方法:⑴用邻近非共振线校正背景⑵连续光源校正背景(氘灯扣背景)⑶Zeaman 效应校正背景⑷自吸效应校正背景第3章紫外-可见分光光度法(P21)3.1.5 影响紫外-可见光谱的因素:溶剂的影响极性:水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚3.2 光的吸收定律Lambert-Beer 定律:A =k c l = -lgT = lgI0 / Il—cm,c--mol/L,k 值称为摩尔吸光系数—ε(L·mol-1·cm-1)A =εlc3.4 分析条件的选择单光束分光光度计特点:只有一条光束单波长双光束分光光度计特点:在同一台仪器中使用两个完全相同的光束。

双波长分光光度计:不需要参比溶液透光率读数的影响:1、分子光谱是如何产生的?它与原子光谱的主要区别是什么?分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱它与原子光谱的主要区别在于表现形式为带光谱。

(原子光谱是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。

)2、试说明有机化合物紫外光谱产生的原因。

机化合物紫外光谱的电子跃迁有哪几种类型?吸收带有哪几种类型?有机化合物分子的价电子在吸收辐射并跃迁到高能级后所产生的吸收光谱。

机化合物紫外光谱电子跃迁常见的4种类型:σ→σ*,n→σ* ,π→π*,n→π*①饱和有机化合物:σ→σ* 跃迁,n→σ*跃迁②不饱和脂肪族化合物:π→π*,n→π*③芳香族化合物:E1和E2带,B带3、在分光光度法测定中,为什么尽可能选择最大吸收波长为测量波长?因为选择最大吸收波长为测量波长,能保证测量有较高的灵敏度,且此处的曲线较为平坦,吸光系数变化不大,对beer定律的偏离较小。

4、在分光光度测量中,引起对Lambrt-Beer定律偏离的主要因素有哪些?如何克服这些因素对测量的影响?偏离Lambert-Beer Law 的因素主要与样品和仪器有关。

(1)与测定样品溶液有关的因素浓度:当l不变,c > 0.01M 时, Beer定律会发生偏离。

溶剂:当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待测物具有不同的吸收光谱,出现化学偏离。

光散射:当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大,Beer定律产生正偏差。

(2)与仪器有关的因素单色光:Beer定律只适用于单色光,非绝对的单色光,有可能造成Beer定律偏离。

谱带宽度:当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。

对应克服方法:①c ≤ 0.01M②避免使用会与待测物发生反应的溶剂③避免试样是胶体或有悬浮物④在保证一定光强的前提下,用尽可能窄的有效带宽宽度。

⑤选择吸光物质的最大吸收波长作为分析波长5、极性溶剂为什么会使π→π*跃迁的吸收峰长移,却使n→π*跃迁的吸收峰短移?溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。

在π→π*跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。

在n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。

第五章分子发光分析法(P88)1.荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。

2.激发光谱和发射光谱:激发光谱:将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F),以F做纵坐标,激发光波长λ做横坐标作图。

激发光谱反映了激发光波长与荧光强度之间的关系。

发射光谱:固定激发光波长,让物质发射的荧光通过单色器,测定不同波长的荧光强度,以荧光强度F做纵坐标,荧光波长λ做横坐标作图。

荧光光谱反映了发射的荧光波长与荧光强度的关系。

3. 荧光和分子结构的关系发射荧光的物质应同时具备以下两个条件:物质分子必须具有能够吸收紫外或可见光的结构,并且能产生π→π* 或 n→π* 跃迁。

荧光物质必须有较大的荧光量子产率。

(1)跃迁类型:π→π*较n→π*跃迁的荧光效率高。

(2)共轭结构:凡是能提高π电子共轭度的结构,都会增大荧光强度,并使荧光光谱长移。

(3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。

(4)取代基效应:在芳香化合物的芳香环上,给电子基团增强荧光,吸电子基团减弱荧光。

荧光分析法的特点优点:灵敏度高(提高激发光强度,可提高荧光强度),达ng/ml;选择性强(比较容易排除其它物质的干扰),重现性好;取样少。

缺点:许多物质本身不能发射荧光,因此,应用不够广泛。

荧光分析法与UV-Vis法的比较相同点:都需要吸收紫外-可见光,产生电子能级跃迁。

不同点:荧光法测定的是物质经紫外-可见光照射后发射出的荧光的强度 (F);UV-Vis法测定的是物质对紫外-可见光的吸收程度 (A) ;荧光法定量测定的灵敏度比UV-Vis法高。

1、名词解释:单重态:当基态分子的电子都配对时,S = 0,多重性 M=1,这样的电子能态称为单重态。

单重电子激发态:当基态分子的成对电子吸收光能之后,被激发到某一激发态上。

如果它的自旋方向不变, S=0,M=1,这时的激发态叫单重电子激发态。

三重态:若通过分子内部的一些能量转移,或能阶间的跨越,成对电子中的一个电子自旋方向倒转,使两个电子自旋方向相同而不配对,这时S=1,M=3,这种电子激发态称三重电子激发态(三重态)系间跨越:指的是不同多重度状态间的一种无辐射跃迁过程。

相关文档
最新文档