数学平行四边形的专项培优 易错 难题练习题(含答案)及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).

(1)当点N落在边BC上时,求t的值.

(2)当点N到点A、B的距离相等时,求t的值.

(3)当点Q沿D→B运动时,求S与t之间的函数表达式.

(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.

【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)

t=1或

【解析】

试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;

(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.

(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.

试题解析:(1)∵△PQN与△ABC都是等边三角形,

∴当点N落在边BC上时,点Q与点B重合.

∴DQ=3

∴2t=3.

∴t=;

(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,

∴PD=DQ,

当0<t<时,

此时,PD=t,DQ=2t

∴t=2t

∴t=0(不合题意,舍去),

当≤t<3时,

此时,PD=t,DQ=6﹣2t

∴t=6﹣2t,

解得t=2;

综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t

当点M在BC边上时,

∴MN=BQ

∵PQ=MN=3t,BQ=3﹣2t

∴3t=3﹣2t

∴解得t=

如图①,当0≤t≤时,

S△PNQ=PQ2=t2;

∴S=S菱形PQMN=2S△PNQ=t2,

如图②,当≤t≤时,

设MN、MQ与边BC的交点分别是E、F,

∵MN=PQ=3t,NE=BQ=3﹣2t,

∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,

∵△EMF是等边三角形,

∴S△EMF=ME2=(5t﹣3)2

(4)MN、MQ与边BC的交点分别是E、F,

此时<t<,

t=1或.

考点:几何变换综合题

2.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;

(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

【答案】(1)作图参见解析;(2)作图参见解析.

【解析】

试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.

试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;

(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:

考点:1.作图﹣应用与设计作图;2.勾股定理.

3.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把

△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?

4

65

22

5

【解析】

【分析】

分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作

B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,2222

B N'+;如图2,当∠AFB′=90°

+DN= 3.2 5.6

时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,2222

B N'+;

+DN=22

【详解】

如图1,当∠AB′F=90°时,此时A、B′、E三点共线,

∵∠B=90°,∴2222

++,

AB BE=86

∵B′E=BE=6,∴AB′=4,

∵B′F=BF,AF+BF=AB=8,

在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,

∴AF=5,BF=3,

过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,

∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,

相关文档
最新文档