(课件)概率论与数理统计:抽样分布

合集下载

概率论与数理统计 第六章 样本及抽样分布

概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n

X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )



F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]

z
(1)标准正态分布分位点

(x)
( x)dx 1 ( x)dx


z
z1
( x)
Pr[ X z ]

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。

在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。

1、随机样本总体:试验的全部可能的观察值。

=样本空间个体:每⼀个可能观察值。

=样本点容量:总体中所包含的个体的个数。

有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。

所以将不区分总体与相应的随机变量,统称为总体X。

样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。

对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。

则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。

n称为样本的容量。

进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。

2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。

统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。

统计量也是⼀个随机变量。

g(x1,x2,...,xn)是统计量的观测值。

常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。

总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

(概率论与数理统计 茆诗松) 第5章 统计量及其分布
例5.3.6 设总体X 的分布为仅取0,1,2的 离散
均匀分布,分布列为
x0 1 2
p 1/3 1/3 1/3
现从中抽取容量为3的样本,其一切可能取值有 33=27种, (表5.3.6)
x0 1 2
p 1/3 1/3 1/3
P(x(1)=0) = ?
ቤተ መጻሕፍቲ ባይዱ
可给出的 x(1) , x(2), x(3) 分布列如下 :
n
(x x ) 0. i i1
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,
(xi x)2最小,其中c为任意给定常数。
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本,
x 为样本均值。
(1) 若总体分布为N(, 2),则
是将样本观测值由小到大排列后得到的第 i 个 观测值。
其中, x(1)=minx1, x2,…, xn称为该样本的最小次序统计量, 称 x(n)=maxx1,x2,…,xn为该样本的最大次序统计量。
在一个样本中,x1, x2,…,xn 是独立同分布的,而 次序统计量 x(1), x(2),…, x(n) 则既不独立,分布也 不相同,看下例。

p R ( r ) 0 1 r n ( n 1 ) [ ( y r ) y ] n 2 d y n ( n 1 ) r n 2 ( 1 r )
这正是参数为(n1, 2)的贝塔分布。
5.3.6 样本分位数与样本中位数
样本中位数也是一个很常见的统计量,它也是 次序统计量的函数,通常如下定义:
在n
不大时,常用
s2
1 n n1i1
(xi
x)2

概率论与数理统计6.5正态总体下的抽样分布

概率论与数理统计6.5正态总体下的抽样分布

已知 未知
已知,用S
未知,用S
*
N分布(定理6.5)
t(n-1)分布(定理6.6)
F (n1, n2 )分布(定理6.7) F (n1 1, n2 1)分布(定理6.8)
§6.5正态总体下的抽样分布
定理 6.5.1 设 X1, X 2 , , X n 为来自正态总体
N(, 2 ) 的简单随机样本, X 是样本均值,
Xi
2
35.2
P
20 i 1
Xi
2
7.4
0.975 0.005 0.97
17
例5:设某厂的灯泡使用寿命X ~ (1000, 2),单位小时
现抽样9个样本,样本方差为1002小时2。求P X 1062
解:T
X S*
~
t(n 1)
n
P
X
1062
P
X 1000 100 3
1)
n
2
E(S 2 )
2
1 n
n i1
E( Xi
)( X
) (n 1) 2
n
2 E[
1 n
n i1
(
Xi
)(
X
)]
(n
1)
n
2
2E[( X )2 ] (n 1) 2
n
2D X (n 1) 2
n
2 2 (n 1) 2 (n 1) 2
n
n
n
E(S *2 ) E( n S 2 ) n E(S 2 ) 2
P
1
2
20 i1
Xi X
2
35.2
P
1
2
20 i1
Xi X

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

浙大概率论与数理统计课件第六章样本及抽样分布

浙大概率论与数理统计课件第六章样本及抽样分布
f *( x, x2 ,, xn ) =f(x1) f(x2) … f(xn)
简单随机样本是应用中最常见的情形,今后, 当说到“X1,X2,…,Xn是取自某总体的样本”时,若
不特别说明,就指简单随机样本.
2021/4/22
13
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/4/22
2
例如:
某公路上行驶车辆的速度服从什么分布是未知的;
电视机的使用寿命服从什么分布是未知的; 产品是否合格服从两点分布,但参数——合格率p是 未知的;
数理统计的任务则是以概率论为基础,根据试验 所得到的数据,对研究对象的客观统计规律性做出合 理的推断。
2021/4/22
3
学习的基本内容
N(0,1), 则称随机变量:
2
X
2 1
X 22
Xn2
所服从的分布为自由度为 n 的 分2布.
记为 2 ~ 2 (n)
2021/4/22
28
22 分布的密度函数为
f
( x; n)
1
2n 2 (n
2)
n 1 x
x2 e 2
0
其中伽玛函数( x)通过积分
( x) ett x1dt, x 0 0
bk
1n
n
1
(
i 1
xi
x )k
k 1,2,
k 1,2,
2021/4/22
24
请注意 :
若总体X的k阶矩E( X k ) k存在,则当n 时,

东华大学《概率论与数理统计》课件 第6章样本与抽样分布

东华大学《概率论与数理统计》课件 第6章样本与抽样分布

X

n



本的
观察

,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X

5
来自X的简

随机样本.试指出
X1
X

2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X

n


F的

个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

概率论与数理统计基本概念及抽样分布PPT课件

概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,

2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α

( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2

E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)

概率论与数理统计课件:数理统计基础知识

概率论与数理统计课件:数理统计基础知识

数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体

概率论与数理统计课件(完整版)

概率论与数理统计课件(完整版)
例1. 两架飞机依次轮番对同一目标投弹, 每次投下一颗炸弹, 每架飞机各带3颗炸弹, 第1架扔一颗炸弹击中目标的概率为0.3, 第2架的概率为0.4, 求炸弹未完全耗尽而击中目标的概率。
1. 计算相互独立的积事件的概率: 若已知n个事件A1, A2, …, An相互独立,则 P(A1A2…An)=P(A1)P(A2)…P(An)
系统一:先串联后并联
A1
B1
A2
B2
A3
B3
A4
B4
*
例3. 100件乐器,验收方案是从中任 取3件测试(相互独立的), 3件测试后都认为音色纯则接收这批 乐器,测试情况如下: 经测试认为音色纯 认为音色不纯 乐器音色纯 0.99 0.01 乐器音色不纯 0.05 0.95
*
1. 公式法:
当A=S时, P(B|S)=P(B), 条件概率化为无条件概率, 因此无条件概率可看成条件概率.

计算条件概率有两种方法:
*
2.缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2次取到奇数的概率.
*
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
*
2. 样本空间与随机事件
样本空间的分类:
离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
空集φ不包含任何样本点, 它在每次试验中都不发生,称为不可能事件。

概率论与数理统计第一章课件

概率论与数理统计第一章课件
样本均值
所有样本点的平均值
样本方差
描述样本点离散程度的量
无偏估计
样本统计量的值等于总体参数的真实值
t分布与F分布
t分布
用于描述小样本数据的分布情况,也 称学生t分布
F分布
用于描述两个比例的方差之间的比例 关系
04
参数估计
点估计与估计量
点估计
用样本统计量来估计未知参数的 过程。
估计量
用于估计未知参数的样本统计量。
假设检验的分类单侧检验、双侧检验。来自 单侧与双侧检验单侧检验
01
只关注参数的一个方向是否满足假设,如检验平均值是否大于
某个值。
双侧检验
02
关注参数的两个方向是否满足假设,如检验平均值是否在两个
值之间。
单侧与双侧检验的选择
03
根据实际问题需求和数据特征选择合适的检验方式。
显著性检验与P值
显著性检验
通过比较样本数据与理论分布,判断样本数据是否显著地偏离理 论分布。
P值
观察到的数据或更极端数据出现的概率,用于判断是否拒绝或接 受假设。
P值的解读
P值越小,表明数据越显著地偏离理论分布,假设越可能不成立。
第一类错误与第二类错误
1 2
第一类错误
拒绝实际上成立的假设,也称为假阳性错误。
第二类错误
接受实际上不成立的假设,也称为假阴性错误。
3
错误率控制
通过调整临界值的大小,可以控制第一类错误和 第二类错误的概率,从而实现错误率控制。
通过参数估计,还可以对生产过 程进行实时监控和预警,及时发 现并解决生产中的问题,保证生
产的稳定性和可靠性。
假设检验在医学研究中的应用
假设检验是数理统计中的一种 重要方法,在医学研究中有着

概率论与数理统计6.第六章:样本及抽样分布

概率论与数理统计6.第六章:样本及抽样分布

),
,
,
,
是来
Z=
(

证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 (X ) 即为 X 的标准差。
二、单正态总体的抽样分布
设总体 X (不管服从什么分布,只要均值和方差存在)的均值为 ,方差为 2 ,
X1, X2,
X n 是来自 X 的一个样本, X , S 2 分别是样本均值和样本方差,则有: E(X ) , D(X ) 2
n
E(S2)
E
1 n 1
,
Sw
Sw2
二、单正态总体的抽样分布
证明:(1) (n1 1)S12
12
2
(n1
1),
(n2
1)
2 2
S22
2 (n2 1)
因为 S12, S22 相互独立,则由 F 分布定义
(n1 1)S12
2 1
(n1 1)
(n2 1)S22
2 2
(n2 1)
FБайду номын сангаас
(n1
1,
n2
1)
S12
2 1
S22
2 2
F (n1 1, n2 1)
2 (n 1)
T
X
n
n 1 2 (n 1)
S
2
t(n 1)
二、单正态总体的抽样分布
例 1.设 X1, X 2 ,, X n 是来自 N (, 2 ) 的样本,则统计量
T ( X ) n ~ t(n 1)
S 例 2.设 X 1, X 2 ,, X n 是来自 N (1 , 2 ) ,Y1 ,Y2 ,,Yn 是来自 N (2 , 2 ) 的两
二、单正态总体的抽样分布
定理4 设 X1, X2, Xn 是来自正态总体 X N (, 2) 的一个
样本, X , S 2 分别是样本均值和样本方差,则有:
(i) (n 1) S 2
2
1
2
n
(Xi )2
i 1
2 (n)
(ii)T
X
S
t(n 1)
n
注:
X
n
N (0,1), n 1 S 2 2
则有:
(i) X
N
(,
2
n
); (ii )
X
N (0,1)
n
定理 3:设 X1, X 2 , X n 是来自正态总体 X N (, 2 ) 的一个样本, X , S 2 分别是样
本均值和样本方差,则有:
(i) (n 1) S 2
2
1
2
n
(Xi
i 1
X )2
2 (n 1)
(ii) X与S 2 相互独立。
n2
2)
Sw
n1 n2
二、单正态总体的抽样分布
例 3.记
S
2
1
1 n1 1
n1
(Xi
i 1
X
)
2

S
2
2
1 n2 1
n2
(Y j
j 1
Y)2

F
S12
S
2 2
~
F (n1
1, n2
1)

若两个正态分布的方差
2 1

2 2
不等,则统计量
F
S12
/
S
2 2
2 1
/
2 2
~ F(n1 1, n2 1)
抽样分布
有限总体的抽样分布 单正态总体的抽样分布 双正态总体的抽样分布
一、有限总体的抽样分布
定理1 设总体中个体总数(也称总体大小)为 ,样N 本
容量 n(n N ) 为且总体有有限均值 ,方差 ,2 则
(ⅰ) EX
(ⅱ)当抽样是有放回时
(X)
n
当抽样是无放回时 (X) N n N 1 n
n i 1
(
Xi
X
)2
E
1 n 1
(
n i 1
X
2 i
nX
2 )

1 n 1
n i 1
E
(
X
2 i
)
nE ( X
2
)
1 n 1
n i 1
(
2
2
)
2
n( n
2
)
2
E(S2) 2
二、单正态总体的抽样分布
定理 2:设 X1, X 2 , X n 是来自正态总体 X N (, 2 ) 的一个样本, X 是样本均值,
个独立样本,记
X
1
n1
, n1
Xi
i 1
1 Y
n2
, , n2
Yj
j 1
S
2
1
1 n1 1
n1
(Xi
i 1
X )2
S
2
2
1 n2 1
n2
(Y j
j 1
Y
)2

S
2 w
(n1
1)S12
(n2
1)
S
2 2
n1 n2 2
,Sw
S
2 w

则统计量
T
(X
Y ) (1 2 )
11
~
t (n1
设 X 服从 tn 分布,求下列随机变量的分布:(1) X 2 ;(2) X 2
谢谢聆听!
二、单正态总体的抽样分布
(2)
X Y
N (1
2
,
2 1
n1
2 2
n2
)
所以
U ( X Y ) (1 2 ) 11
n1 n2
N (0,1)
又因为
(n1 1)S12
12
2
(n1
1),
(n2
1)
2 2
S22
2 (n2 1)
由 2 分布的可加性
V (n1 1)S12 (n2 1)S22
12
2 2
n1 i 1
(Xi
X )2, S22
1 n2 1
n2 i 1
(Yi
Y )2
分别是这两个样本的样本方
差。则有:
(1)
S12 S22
12
2 2
F (n1 1, n2 1);
(2)

2 1
2 2
2

( X Y ) (1 2 )
Sw
11 n1 n2
t(n1 n2 2)
其中:
Sw2
(n1
1)S12 (n2 1)S22 n1 n2 2
2 (n1 n2 2)
二、单正态总体的抽样分布
由于U,V 相互独立,由 t 分布定义:
U
V
n1 n2 2
( X Y ) (1 2 )
11
n1 n2
( X Y ) (1 2 )
(n1 1)S12
2
(n2 1)S22
2
Sw
11 n1 n2
n1 n2 2
t(n1 n2 2)
三、双正态总体的抽样分布
定 理 5 : 设 X1, X 2 , X n1与Y1,Y2, Yn2 分 别 是 来 自 正 态 总 体
N
(1,
2 1
)和N
(
2
,
2 2
)
的样本,且这两个样
本相互独立,设
1 n1
1 n2
X
n1
i 1
Xi ,Y
n2
Yi
i 1
分别是这两个样本的样本均值;
S12
1 n1 1
相关文档
最新文档