电脑ATX电源控制电路及原理

合集下载

atx电源 dc-dc原理

atx电源 dc-dc原理

atx电源 dc-dc原理ATX电源是一种常见的计算机电源,它采用DC-DC原理来实现电能的转换和供应。

本文将详细介绍ATX电源的工作原理以及DC-DC转换的基本原理。

一、ATX电源的工作原理ATX电源是计算机主机中最常见的电源类型之一。

它主要由交流输入模块、整流滤波模块、直流输出模块和控制保护模块组成。

1. 交流输入模块交流输入模块主要负责将交流电源输入转换为直流电源供给整个电源系统。

它通常由整流桥、输入滤波电容和输入瞬态电压抑制电路组成。

整流桥将交流电源转换为脉冲电流,通过输入滤波电容进行滤波,然后输入瞬态电压抑制电路对电压进行稳定处理。

2. 整流滤波模块整流滤波模块主要负责对交流输入模块输出的脉冲电流进行整流和滤波处理。

它通常由大功率开关管和输出滤波电容组成。

大功率开关管控制整流过程,将脉冲电流转换为直流电流,并通过输出滤波电容对直流电压进行平滑处理,使其更加稳定。

3. 直流输出模块直流输出模块主要将整流滤波模块输出的直流电压进行调节和分配。

它通常由控制电路和多路输出电路组成。

控制电路通过反馈控制实现对输出电压的调节和稳定,多路输出电路则将输出电压分配给不同的设备和部件。

4. 控制保护模块控制保护模块主要负责监测和保护电源系统的工作状态。

它通常由过流保护、过压保护、欠压保护和过温保护等功能模块组成。

这些保护功能可以有效地保护电源系统和计算机设备不受电压波动、短路或过载等异常情况的影响。

二、DC-DC转换的基本原理DC-DC转换是指将直流电能转换为不同电压、电流或功率等级的直流电能的过程。

它主要通过变换器实现,变换器是一种电子器件,可以根据输入和输出的电压、电流关系来实现能量的转换。

在DC-DC转换中,常用的变换器有降压变换器、升压变换器和升降压变换器等。

降压变换器可以将高电压转换为低电压,升压变换器可以将低电压转换为高电压,而升降压变换器则可以实现输入输出电压的升降。

DC-DC转换的核心是功率开关器件,它通过开关控制来实现输入和输出之间的电能转换。

电脑ATX电源控制电路的工作原理(带图)

电脑ATX电源控制电路的工作原理(带图)

电脑ATX电源控制电路的工作原理(带图)电脑ATX电源控制电路的工作原理(带图)ATX电源的控制电路见图1。

控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。

494是双排16脚集成电路,工作电压7~40V。

它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。

{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。

本例为此种工作方式,故将{13}脚与{14}脚相连接。

比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。

比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。

494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。

其中a是死区时间比较器。

因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。

两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。

因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。

为防止这样的事情发生,494设置了死区时间比较器a。

从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。

A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。

死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。

电脑atx电源电路原理分析与维修教程整理

电脑atx电源电路原理分析与维修教程整理

ATX 电源的经典维修ATX电源构造简介ATX电源电路构造较复杂,各部分电路不但在功能上互相配合、互相浸透,且各电路参数设置非常严格,稍有不当那么电路不能正常工作。

下面以市面上使用较多的银河、世纪之星A TX电源为例,讲述A TX电源的工作原理、使用与维修。

其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T3之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。

二者通过C2、C3高压瓷片电容构成回路,以消除静电干扰。

其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制电路、多路直流稳压输出电路和PW-OK信号形成电路组成。

弄清各部分电路的工作原理及互相关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。

图13-1 主机电源方框原理图1、交流输入、整流、滤波与开关电源电路交流输入回路包括输入保护电路和抗干扰电路等。

输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制才能:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。

通常要求电脑对通过电网进入的干扰信号抑制才能要强,通过电网对其它电脑等设备的干扰要小。

推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。

推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。

推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作鼓励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。

电脑开关电源的工作原理

电脑开关电源的工作原理

计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。

对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

下面对ATX电源控制电路的工作原理进行较详细的阐述,望能对广大维修者有所帮助。

一、ATX型电源电路的组成及工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。

请参照图1和ATX电源电路原理图。

1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。

市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。

T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。

反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。

Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。

反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。

同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。

随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。

atx电源原理

atx电源原理

atx电源原理
ATX电源是一种常见的计算机电源标准,它提供了电脑所需
的稳定电压和电流。

ATX电源原理基于交流电转化为稳定的
直流电。

具体来说,ATX电源的原理包括以下几个主要部分:
1. 输入滤波器:电源的输入端接入交流电源,通过输入滤波器将输入的交流电转化为纯净的直流电,用来供给后续的电源模块。

2. 整流桥:输入的交流电通过整流桥进行整流,将交流电转化为脉冲状的直流电。

3. 大容量电容:整流后的脉冲电流通过大容量电容进行平滑,削峰填谷,将电压波动降至最低。

4. 直流-直流转换器:通过直流-直流转换器将平滑后的直流电
转化为所需的不同电压级别。

一般电脑电源输出主要有+12V、+5V、+3.3V等。

5. 保护电路:电源还包括多种保护电路,例如过载保护、过电压保护、短路保护等,用于保护计算机内部设备不受损坏。

6. 风扇:ATX电源还配备了一个内置风扇,用于散热,保持
电源的工作温度在安全范围内。

通过以上原理,ATX电源能够为计算机提供稳定可靠的电力
供应,保障计算机正常运行。

这种电源标准已经成为了大多数计算机的标配,也广泛应用于其他电子设备中。

ATX电源电路原理分析和维修教程整理

ATX电源电路原理分析和维修教程整理

ATX电源电路原理分析和维修教程整理一、ATX电源电路原理分析1.交流输入滤波器(AC Input Filtering):这个部分的作用是将进入电源的交流电进行滤波,去除噪音,确保电源的稳定性和安全性。

2.整流器(Rectifier):整流器将交流电转换为直流电。

常见的整流器有桥式整流器,将交流电转换为直流脉动电,然后通过滤波电容进行过滤,得到稳定的直流电。

3.电源开关(Power Switching):电源开关主要是用于控制电源的开关机状态。

当计算机主机开机或者关机时,电源开关会相应地打开或者关闭电源。

4.反馈电路(Feedback Circuit):反馈电路主要用于监测电源输出电压,并根据需要调整电源输出电压的稳定性。

当电源输出电压过高或者过低时,反馈电路会向控制电路发送信号,以调整输出电压。

5.控制电路(Control Circuit):控制电路根据反馈电路的信号,向整流器、开关器件等部分发送控制信号,以实现电源的调整和稳定。

6.保护电路(Protection Circuit):保护电路主要用于确保电源的安全性,例如过流保护、过压保护、过温保护等。

当电源工作过程中出现异常情况时,保护电路会自动切断电源输出,以保护其他电路的安全。

二、ATX电源电路维修教程1.检查电源开关和电源线:首先检查电源开关是否正常工作,然后检查电源线是否损坏或者接触不良。

如果发现问题,可以更换电源开关或者电源线。

2.检查电源输入:使用万用表检查电源输入端的交流电压。

正常情况下,乘以开方根号2(约为1.41),得到的值应当接近电源标称电压(一般为110V或220V)。

3.检查电源输出:使用万用表检查电源输出端的直流电压。

如果输出电压低于或者高于标称电压,可以调整反馈电路或者控制电路来修复问题。

4.检查整流器和滤波电容:如果电源输出电压有脉动或者噪音,可能是整流器或者滤波电容损坏。

使用万用表检查整流器和滤波电容是否正常工作,如果不正常,可以更换相应的部件。

ATX电源原理及常见故障检修

ATX电源原理及常见故障检修
出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡 电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用
万用表测量系统板+5V电源的对地电阻,若大于0.8?,则说明电路板无短路现象;然后将电脑中不必要的
硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,
压正常,则说明故障部位在交流滤波电路中。
ATX电源技术详解
目前,ATX电源广泛应用于电脑中,与AT电源相比,它更符合"绿色电脑"的节能标准它对应的主板是ATX
主板。
1.ATX电源的特点
与AT电源相比,ATX电源增加了“+3.3V、+5VSB、PS-ON”三个输出。其中“+3.3V”输出主要
首先确认电源是否有问题,如果电源确实有问题,则应当更换质量可靠、稳定的新电源。
2.电脑运行伴有“轰轰”的噪声这是出在电源风扇的噪音增大所致,如果电脑长时间没有开启过,电风
扇上面灰尘积攒过多,则可能出现这种现象,解决办法是拆开电脑,卸下电源,将风扇从上面拆下,除
尘。然后再重新装好,开机后一般噪声会消除。
稳定、连续的电流。如果电源出了问题,就会影响电脑的正常工作,甚至损坏硬件。电脑故障,很大一部
分就是由电源引起的。所以,千万别小看这个价格不高的配件,细心呵护吧!本人长期担任电脑维护工
作,积累了一些小经验,在这里和大家共享。
一、电源故障判断
1.硬盘出现坏磁道 不好的电源易导致硬盘出现假坏道,这种故障一般可通过软件修复。碰到此类情况,
N处理电路故障,有变化,再检查8 、11脚有无脉冲输出,若无则TL494损坏。

ATX电源控制电路

ATX电源控制电路

ATX电源控制电路作者:无名转贴自:不祥点击数:1426 文章录入:fjwATX电源控制电路一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。

+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头(图1)9脚引出。

PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。

当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。

PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。

脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。

其次是将ATX开关电源人为唤醒,用一根导线把ATX 插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。

上述操作亦可作为选购ATX开关电源脱机通电验证的方法。

二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。

请参照下图:1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。

ATX开关电源

ATX开关电源

电脑ATX开关电源工作原理与维修技巧辽宁高福永从事或爱好电脑维修,往往先从维修电脑的ATX开关电源起步。

本文以PDL-250型电脑ATX开关电源为例,介绍其工作原理和多种故障的维修思路以及维修技巧.供参考。

一、原理分析1.待机电源待机电源又称辅助电源,电路见附图。

自激振荡部分由Q03、T3、C14、D04、2R21、2R22、2R4等元件组成;稳压部分由IC5(电压基准源)、ICl(光耦)、04(PWM)等元件组成;保护和尖峰吸收部分由Q4、2R23、2R10、C02及2R5、C05A、D06等元件组成。

可见待机电源的构成与部分彩电开关电源(带光耦的)基本一致,详细工作过程也大致相同。

T3次级,一路由D0lA和C09整流滤波输出+22V,为驱动电路T2初级和IC2(TL494cN)○12脚提供工作电压。

一路由D01、C03、L4、C05整流滤波输出+5VSR(Stand Bva)由一根紫色导线经ATX插头送到主板上"电源监控部件"电路,为该电路提供待机电压。

别看待机电源结构简单,在微机系统中却占据着重要地位,一方面它给主控PWM电路和担任多种信号处理的四比较器供电,保障ATX开关电源自行运转;另一方面,它又像永不熄灭的"火种",向主机提供待机电压。

2.主开关电源(1)主控PWH型集成电路TL494CN简介TL494CN内部由振荡器、"死区"比较器、PWM比较器、两个误差放大器l和2、触发器、逻辑门、三极管Q1、Q2、基准电压调节器以及由两个滞回比较器(施密特触发器)组成的欠压封锁电路等部分组成。

其中⑤脚、⑥脚外接定时电容和定时电阻:由触发器和逻辑门构成的逻辑电路由⑩脚控制输出方式,在电脑ATX 开关电源中○13脚接5V基准电压,使内部三极管Q1、Q2工作在推挽输出方式;基准电压调节器将待机电源经○12脚提供的22V工作电压转换为5V基准电压,由○14脚输出。

ATX工作原理

ATX工作原理

ATX工作原理引言概述:ATX(Advanced Technology eXtended)是一种计算机电源标准,广泛应用于个人电脑和服务器等设备中。

它采用了一种高效的工作原理,为计算机提供稳定的电力供应。

本文将详细介绍ATX工作原理的五个部分。

一、电源输入部分1.1 交流电输入:ATX电源的输入端接收来自电网的交流电。

交流电首先通过一个EMI滤波器进行滤波,去除电网中的高频噪声和干扰信号。

1.2 整流器:经过滤波后的交流电进入整流器,将交流电转换为直流电。

整流器常用的技术是桥式整流,它由四个二极管组成,将交流电的负半周转换为正半周。

1.3 直流电滤波:经过整流器转换为直流电后,还存在一些纹波,为了保证电源输出的稳定性,需要进行直流电滤波。

滤波电容器和电感器被用来平滑直流电信号。

二、电源控制部分2.1 主控芯片:ATX电源通过主控芯片来实现对电源的控制和管理。

主控芯片接收来自计算机主板的信号,如开机信号、休眠信号等,并根据这些信号控制电源的开关状态。

2.2 保护电路:ATX电源还配备了多种保护电路,以确保电源和计算机的安全。

例如,过压保护电路可以在电压超过安全范围时自动切断电源输出。

2.3 温度控制:为了防止电源过热,ATX电源还配备了温度传感器和风扇控制电路。

当温度超过设定值时,电源会自动启动风扇进行散热。

三、电源输出部分3.1 电源输出电压:ATX电源提供多个输出电压,如+3.3V、+5V和+12V等。

这些电压通过稳压器芯片进行调整和稳定。

3.2 电源输出功率:ATX电源的输出功率通常以瓦特(W)为单位。

输出功率的大小决定了电源可以供应的负载容量,不同的计算机系统需要不同功率的电源。

3.3 电源线路保护:为了保护计算机系统的稳定运行,ATX电源还提供了多种保护机制,如过流保护、短路保护和过载保护等。

四、待机模式4.1 待机模式介绍:ATX电源支持待机模式,也称为休眠模式。

在待机模式下,电源会降低功耗,但仍保持一定的供电,以便在需要时快速恢复计算机系统的运行。

ATX电源电路工作原理及故障分析详解

ATX电源电路工作原理及故障分析详解

计算机开关电源基本结构及原理一、计算机开关电源的基本结构1.ATX电源与AT电源的区别目前计算机开关电源有AT和ATX两种类型。

ATX电源与AT电源的区别为:1)待机状态不同ATX电源增加了辅助电源电路,只要220V市电输入,无论是否开机,始终输出一组+5V SB待机电压,供PC机主板电源监控单元、网络通信接口、系统时钟芯片等使用,为ATX电源启动作准备。

2)电源启动方式不同AT电源采用交流电源开关直接控制电源的通断,ATX电源则采用点动式电源启闭按钮,实质是用PS-ON直流控制信号启动/关闭电源。

具有键盘开/关机、定时开/关机、Modem唤醒远程开/关机、软件关机等控制功能。

3)输出电压不同AT电源共有四路输出(±5V、±12V),另向主板提供一个PG电源准备就绪的信号。

ATX电源PW-0K信号与PG信号功能相同,还增加了+、+5V SB供电输出和PS-ON电源启闭控制信号,其中+向CPU、PCI总线供电。

各档电压的输出电流值大约如下:+5V +12V -5V -12V + +5V SB21A 6A 0.3A 0.8A 14A 0.8A4)主板综合供电插头接口不同AT电源的6芯P8和P9电源插头,在ATX结构中被20芯双列直排插头所替代,具有可靠的防插反装置。

对于Pentium 4机型的ATX电源,除大4芯(D形)和小4芯电源接口插头外,还增加4芯12V CPU专用电源插头及6芯+、+5V电源增强型插头。

2.计算机开关电源的基本结构目前,计算机电源大多采用他激双管半桥定频调宽式开关电源。

电源中还输出一个特殊的“POWER GOOD”信号。

电源开启后PG信号为低电平,送给系统时钟电路,由该信号产生一个复位信号(RESET)用于系统复位。

经100~500ms的延时后,PG信号由低电平变成高电平,系统复位结束,主机启动并开始正常运行。

PG信号作用就是当电源输出的直流电压均稳定后,才使系统初始化复位,以保证计算机系统状态的稳定与可靠。

tl494ATX电源的控制电路

tl494ATX电源的控制电路

ATX电源的控制电路见图1。

控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。

494是双排16脚集成电路,工作电压7~40V。

它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。

{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。

本例为此种工作方式,故将{13}脚与{14}脚相连接。

比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。

比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。

494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。

其中a是死区时间比较器。

因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。

两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。

因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。

为防止这样的事情发生,494设置了死区时间比较器a。

从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。

A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。

死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。

ATX电源电路图解说明

ATX电源电路图解说明

ATX电源电路图解说明2009年05月20日星期三21:28 一、滤波电路1、电磁干扰电脑电源是把工频交流整流为直流再通过开关变为高频交流其后再整流为稳定直流的一种电源这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声噪声在输入端泄漏出去就表现为辐射噪声和传导噪声在输出端泄漏出去就表现为纹波。

辐射噪声频率高于30MHZ会传播到空间中传导噪声频率在30MHZ以下主要干扰音频设备通过电源线传播到电网中。

外部噪声会进入到电网中的其它电子设备中影响电子设备的运行而供给负载的电源产生的噪声也会泄漏到电源外部因此电脑电源必须有阻止这些噪声进出的功能。

在电脑电源的输入端需要有由电容和电感构成的滤波器用于抑制交流电产生的EMI。

在电源的输出端工频电源的整流波形畸变引起的噪声以及开关工作波形产生的噪声呈现为纹波因此在输出端也需要接入滤波器用于抑制直流电产生的EMI。

2、输入端第一道EMI滤波电路第一道EMI 滤波电容是由X电容白盒子、线圈型电感和两个Y电容构成的用来抑制输入端的高频干扰以及PWM自身产生的高频干扰对电网的污染。

3、第二道EMI滤波电路为保证输入到整流电路中的电流的纯净还需要进行第二道滤波。

此滤波电路是由X电容、Y电容和变压器型电感组成。

4、高压滤波电路高压整流滤波电路把220V的交流市电转换为300V的高压直流电压一路输到开关电路一路输到辅助电源电路。

高压滤波电容的容量对输出端的稳定性有很大影响纹波输出的控制也是基于滤波电容的容量。

纹波是与输出端呈现的输入频率及开关变换频率同步的分量一般为输出电压的0.5以内。

5、低压滤波电路当高频噪声泄漏到负载侧时可能使电脑配件产生故障同时高频噪声也会向空间辐射。

低压端采用的直流线路EMI滤波器。

直流线路EMI 滤波器比较复杂。

电源的直流有5V、12V和3.3V电压对于每路电压都需要进行滤波。

低压端通常有两个大的扼流线圈其中稍大的对5V和12V进行滤波稍小的对3.3V进行滤波。

电脑主机ATX开关电源工作原理分析

电脑主机ATX开关电源工作原理分析

ATX电源是在AT电源的基础桂林伟创电脑维修上发展来的,ATX电源与AT电源不同的地方是多了一个+3.3V电源和+5V SB电源。

不同品牌ATX电源的±5V、±12V电源的电路结构基本上相同,但+3.3V电源的桂林伟创电脑维修电路结构却差别较大。

笔者现列举几种+3.3V电源的电路供爱好者参考。

一、图1是《电子报》去年第48期“普及型ATX电源控制电路的工作原理”介绍的普及型ATX 电源的+3.3V电源电路图。

+3.3V电源由桂林伟创电脑维修脉冲输出变压器Tl的5V绕组经线圈L5、L6降压,由共阴极的肖特基整流块D23整流,再经Ll、C28滤波后得到。

L5、L6的电压降与通过其中桂林伟创电脑维修的电流有关,电流小时压降小,输出电压高,空载时的电压可达9.5V左右。

电流大时电压降大,输出电压低。

为保证在最大负载时+3.3V 电源输出电压不低于+3.3V,线圈L5和L6的电感量应妥善设计。

在本例中,L5和L6采用外直径12mm、内径6mm、厚4mm的磁心,用φ0.93mm的漆包线穿绕8T,在负载电流为10A时,未经稳压的输出电压为+3.5V。

如果要求桂林伟创电脑维修负载电流更大,可适当减少线圈的匝数.世纪之星ST-ATX320电源将两个线圈的匝数减少为7T,+3.3V 电源可输出更大的电流。

低于最大负载电流桂林伟创电脑维修及空载时,电源的输出电压会超过+3.3V。

为使+3.3V电源输出电压稳定,设置了由TL43l及Q5等组成的稳压电路。

此时电源的空载输出电压近似等于Vrefx(1+R26/R29)。

Vref为TL431管子内部的基准电压值,为2.44V-2.55V,一般取2.5V,则输出电压约等于2.5×(1+4.7/13)=3.4V。

若某种原因使输出电压上升,经R26和R29分压以后,送到控制极R的电位也跟着上升,TL431阴极K的电位下降,经R17使Q5的基极电位下降,Q5通过的桂林伟创电脑维修电流增大,也就是流经L5和L6的电流增加.其上的电压降增大,于是+3.3V电源的输出电压回落,从而保持了输出电压的稳定。

ATX电源电路的工作原理与维修

ATX电源电路的工作原理与维修

三、检修的基本方法与技巧计算机ATX开关电源与日常生活中彩电的开关电源显著的区别是:前者取消了传统的市电按键开关,采用新型的触点开关,并且依靠+5VSB、PS控制信号的组合来实现电源的自动开启和自动关闭。

主机在通电的瞬间,主机电源会向主板发送一个Power Good(简称PG)信号,如果主机电源的输入电压在额定范围之内,输出电压也达到最低检测电平(+5V输出为4.75V以上),并且让时间延迟约100ms~500ms后(目的是让电源电压变得更加稳定),PG 电路就会发出“电源正常”的信号,接着CPU会产生一个复位信号,执行BIOS中的自检,主机才能正常启动。

+5VSB是供主机系统在ATX待机状态时的电源,以及开启和关闭自动管理模块及其远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由A TX插头(图2)⑨脚引出。

PS为主机开启或关闭电源以及网络计算机远程唤醒电源的控制信号,不同型号的A TX开关电源,待机时的电压值各不相同,常见的待机电压值为3V、3.6V、4.6V。

当按下主机面板的POWER电源开关或实现网络唤醒远程开机时,受控启动后PS由主板的电子开关接地,使用绿色线从ATX插头○14脚输入。

PG是供主板检测电源好坏的输出信号,使用灰色线由A TX插头⑧脚引出,待机状态为低电平(0V),受控启动电压输出稳定的高电平(+5V)。

脱机带电检测ATX电源,首先测量在待机状态下的PS和PG信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它任何电压。

其次是将ATX开关电源进行人工唤醒,方法是:用一根导线把A TX插头14脚(绿色线)PS信号与任一地端(黑色线3、7、13、15、16、17)中的任一脚短接,这一步是检测的关键(否则,通电时开关电源风扇将不旋转,整个电路无任何反应,导致无法检修或无法判断其故障部位和质量好坏)。

将ATX电源由待机状态唤醒为启动受控状态,此时PS信号变为低电平,PG、+5VSB信号变为高电平,这时可观察到开关电源风扇旋转。

计算机ATX电源电路的工作原理与维修

计算机ATX电源电路的工作原理与维修

计算机ATX电源电路的工作原理与维修ATX电源电路的工作原理与维修第一部分 LWT2005型开关电源随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX 开关电源又将成为维修界的一个新的亮点。

本文以市面上最常见的LWT2005型开关电源为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。

一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。

一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。

它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。

ATX开关电源的功率一般为250W,300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。

为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。

原理图和输出20P插头线序定义如下图所示:第1页第2页20P插头线序定义二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。

参照实物绘出整机电路图,如图所示(LWT2005型ATX开关电源电路图)。

1、输入整流滤波电路第3页只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。

如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V 左右直流脉动电压。

C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。

TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。

ATX电源电路原理分析及维修教程

ATX电源电路原理分析及维修教程

ATX电源电路原理分析及维修教程ATX电源是电脑主机中非常重要的一个组成部分,它主要负责将交流电转换为直流电,供给计算机各个硬件设备所需的电能。

在使用过程中,由于各种原因,ATX电源可能会出现故障,所以了解ATX电源的原理和维修方法非常重要。

首先,让我们来分析ATX电源的工作原理。

ATX电源主要包含以下几个部分:1.输入电路:输入电路接收交流电,负责将交流电转换为直流电,并将电压稳定在所需的数值范围内。

输入电路还包括过载保护电路,以防止电流过大造成损坏。

2.电源控制电路:电源控制电路负责监控电源的工作状态,并根据需要控制输出电压和电流的稳定性。

该电路还包括电源开关,以便打开或关闭电源。

3.输出电路:输出电路将稳定的直流电供给计算机各个硬件设备,如主板、显卡、硬盘等。

输出电路还包括过流保护和短路保护电路,以防止电流过大和短路造成损坏。

在了解了ATX电源的工作原理后,下面是一些常见的ATX电源故障和维修方法:1.电源无法启动:如果电源无法启动,可能是由于电源开关故障造成的。

此时可以通过更换电源开关来解决问题。

2.电源无法提供足够的电力:如果电源无法提供足够的电力,可能是由于输出电路或者输入电路存在故障。

可以通过检查输出电路和输入电路的元件,如电容、电阻等是否正常来确定问题,并进行更换修复。

3.电源发出噪音:电源发出噪音可能是由于风扇故障或者元件松动引起的。

可以通过检查风扇是否正常工作和重新连接元件来解决问题。

4.电源烧毁:电源烧毁可能是由于过载或者短路引起的。

可以通过检查过流保护和短路保护电路是否正常来确定问题,并进行修复。

维修ATX电源时,需要注意以下几点:1.在拆卸和检修电源时,一定要断开电源供电,以免触电或导致其他危险。

2.检查电源元件时,可以使用万用表、电压表和电流表等工具,保证测量的准确性。

3.在更换元件时,应选择符合规格要求的元件,并进行正确的安装和连接。

总结起来,ATX电源是电脑主机中非常重要的一个组成部分,理解其工作原理并掌握维修方法非常重要。

ATX工作原理

ATX工作原理

ATX工作原理引言概述:ATX是一种常见的电源规格,广泛应用于个人电脑和其他电子设备中。

了解ATX的工作原理对于理解电脑硬件和故障排除至关重要。

本文将详细介绍ATX工作原理的五个部份。

一、电源输入1.1 交流电输入:ATX电源通过电源插座接收交流电,通常为110V或者220V。

交流电输入经过整流器将其转换为直流电。

1.2 整流器:ATX电源中的整流器是一个重要的组件。

它将交流电转换为直流电,以供电脑内部的其他电子元件使用。

1.3 滤波器:滤波器用于去除电源输入中的噪声和干扰。

它确保电源输出的稳定性和纯净性。

二、电源转换2.1 电源开关:ATX电源上的电源开关用于控制电源的开关状态,使其可以启动或者关闭电脑系统。

2.2 电源管理芯片:ATX电源中的电源管理芯片负责监测电源状态和控制电源的输出。

它确保电源在系统需要时提供适当的电力,并在系统关闭时进行适当的断电。

2.3 电源输出:ATX电源通过多个电源路线向电脑的不同组件提供电力,如主板、硬盘、显卡等。

这些电源路线提供不同的电压和电流,以满足各个组件的需求。

三、保护机制3.1 过载保护:ATX电源具有过载保护功能,当电脑系统需要的电力超过电源的额定功率时,电源会自动关闭以防止损坏。

3.2 过电流保护:过电流保护机制可以防止电源输出过大的电流,以保护电脑内部的电子元件免受伤害。

3.3 过热保护:ATX电源还具有过热保护功能,当电源温度过高时,它会自动关闭以防止过热引起火灾或者其他安全问题。

四、电源控制4.1 电源控制信号:ATX电源通过主板上的电源控制信号进行通信。

这些信号包括启动信号、睡眠信号和断电信号等,用于控制电源的开关状态和电力输出。

4.2 电源状态指示灯:ATX电源上通常有一个指示灯,用于显示电源的工作状态。

例如,当电源正常工作时,指示灯会亮起,当电源关闭或者故障时,指示灯会熄灭。

4.3 电源管理:ATX电源还支持电源管理功能,可以通过操作系统或者BIOS 设置来控制电源的功耗和休眠模式等。

ATX电源工作原理信号分析及维修思路

ATX电源工作原理信号分析及维修思路

ATX微机开关电源、电路图一、ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。

交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。

C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。

TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。

L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。

C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。

R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存的电荷,从而避免电击。

2、高压尖峰吸收电路D18、R004和C01组成高压尖峰吸收电路。

当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。

3、辅助电源电路整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。

Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。

atx工作原理

atx工作原理

atx工作原理
ATX工作原理是指电源ATX标准的一种工作方式,用于供电
设备如电脑主机等的电源控制和管理。

它采用交流变为直流的方式,将交流电转换为主机所需的直流电。

它主要由变压器、整流器、滤波器、稳压器和保护电路组成。

首先,交流电通过变压器将输入电压降低并进行隔离,然后通过整流器将交流电转换为直流电。

接下来,经过滤波器去除直流电中的纹波电压,使输出电压较为稳定。

然后,稳压器将稳定的直流电压提供给电源管理芯片。

电源管理芯片负责对电源进行控制和管理。

它根据主机的需求调节输出电压和电流,以满足主机各个部件的电力需求。

同时,它具备短路保护、过流保护、过压保护等功能,保证电源的安全性和稳定性。

另外,ATX电源还具备对主机的开关控制功能。

当用户按下
主机的开机按钮时,电源管理芯片接收到信号后会启动电源,并向主机其他部件发送开机信号。

当用户关机时,电源管理芯片接收到关机信号后会断开电源,并将关闭信号发送给其他部件。

总之,ATX工作原理通过交流电转换为直流电,并由电源管
理芯片对电源进行管理和控制,以满足主机各个部件的电力需求,并具备保护功能和开关控制功能。

这种工作原理保证了电源的稳定性和可靠性,为各类设备的供电提供了有效的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电脑ATX电源控制电路及原理
电脑ATX电源控制电路及原理
ATX电源的控制电路见图1。

控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。

494是双排16脚集成电路,工作电压7~40V。

它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。

{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。

本例为此种工作方式,故将{13}脚与{14}脚相连接。

比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。

比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。

494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。

其中a是死区时间比较器。

因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。

两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。

因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。

为防止这样的事情发生,494设置了死区时间比较器a。

从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。

A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。

死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。

494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。

与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电
平,则输出端输出低电平。

反相器的作用是把输入信号隔离放大后反相输出。

与非门则相当于一个与门和一个反相器的组合。

T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。

如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。

比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。

339是四比较器集成电路。

按管脚的顺序把内部四个比较器设为A、B、C、D比较器。

494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能。

一、产生PW-OK信号
PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约+5V),主机在获得此信号后才开始工作。

接通电源时,要求PW-OK信号比±5V、±12V、+3.3V电源延迟数百毫秒才产生,关机时PW-OK信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘。

ATX电源接通市电后,辅助电源立即工作。

一方面输出+5VSB电源,同时向494的{12}脚提供十几伏到二十多伏的直流电源。

494从{14}脚输出+5V基准电源,锯齿波振荡器也开始起振工作。

若主机未开机,PS-ON信号为高电平,经R37使339的B比较器{6}脚亦为高电平,因电阻R37小于R44,{6}脚电平高于{7}脚电平,B比较器输出端{1}脚输出低电平,经D36的钳位作用,A比较器的反相端{4}脚亦为低电平,其电平低于同相端{5}脚的电平,输出端{2}脚呈高电平,经R41使494的{4}脚为高电平,故494内部的死区时间比较器a输出低电平,与门1也因此输出低电平并进而使与门2和与门3输出低电平,封锁了振荡器的输出,{8}脚、{11}脚无脉冲输出,ATX电源无±5V、±12V、+3.3V电源输出,主机处于待机状态。

因+5V、+12V电源输出为零,经电阻R15、R16使494的{1}脚电平亦为零,494的c比较器的输出端{3}脚输出亦为零,经R48使339的{9}脚亦为零电平,故339的C比较器的输出端{14}脚为零电平。

另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。

因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。

开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。

正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。

PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。

此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。

494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}
脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。

关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。

在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。

上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。

此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。

二、稳压
494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。

当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。

由于494内的放大器增益很高,故稳压精度很好。

从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。

如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。

要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。

三、过流保护
过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。

随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促
使调制脉冲的宽度变窄从而使负载电流减小。

另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V电源的输出,达到过流及短路保护的目的。

需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。

相关文档
最新文档