湘教版数学七年级下册期末测试

合集下载

湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试卷含答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--湘教版七年级下册数学期末考试试题一、单选题1.下列各图标中,是轴对称图形的个数有( )A .1个B .2个C .3个D .4个2.以{x =1x =−1为解的二元一次方程组是( )A .{x +x =0x −x =2B .{x +x =0x −x =−2 C .{x +x =0x −x =1 D .{x +x =0x −x =−1 3.若x 2−x 2=3,则(x +x )2⋅(x −x )2的值是( ) A .3B .6C .9D .184.如图,AB ∥CD ,AE 平分∠xxx 交CD 于点E ,若∠x =40°,则∠xxx 的度数是( )A .40°B .70°C .110°D .130°5.如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是( )A .∠1=∠3B .∠1=∠6C .∠2=∠6D .∠5=∠76.把x 2y ﹣2y 2x+y 3分解因式正确的是A .y (x 2﹣2xy+y 2)B .x 2y ﹣y 2(2x ﹣y )C .y (x ﹣y )2D .y (x+y )27.有一组数据:3,5,5,6,7,这组数据的众数为( ) A .3B .5C .6D .78.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元.设大圆珠笔为x 元/枝,小圆珠笔为y 元/枝,根据题意,列方程组正确的是( ) A .{3x −2x =112x +3x =14 B .{3x +2x =112x +3x =14 C .{14x +11x =32x +3x =11D .{3x +2x =142x +3x =119.已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( ). A .0B .1C .﹣1D .﹣210.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A .4 B .3 C .2 D .1二、填空题11.计算(−2x 3y 2)3⋅4xy 2=________________________. 12.因式分解:6(x ﹣3)+x (3﹣x )= .13.已知21x y =⎧⎨=⎩是二元一次方程组7{1ax by ax by +=-=的解,则a b -= .14.如图,将ABC ∆向右平移5cm 得到DEF ∆,如果ABC ∆的周长是16cm ,那么五边形ABEFD 的周长是________cm.15.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为_____.16.已知直线a b c ∥∥,a 与b 的距离是2cm ,b 与c 的距离是3cm ,则a 与c 的距离是________cm.17.某校七年级(1)班50名同学中,13岁的有25人,14岁的有23人,15岁的有2人,则这个班同学年龄的中位数是________岁. 18.已知3m a =,2n a =,则2m n a +=________.三、解答题19.先化简,再求值:2(2)(2)(2)x x x +---,其中14x =20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴; (2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可).21.给出三个多项式:a 2+3ab ﹣2b 2,b 2﹣3ab ,ab+6b 2,任请选择两个多项式进行加法运算,并把结果分解因式.22.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC ∥BD ,∠A =∠B ,试猜想AE 与BF 的位置关系,并说明理由.23.某班在甲、乙两名同学中选拔一人参加学校数学竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:回答下列问题:(1)请分别求出甲、乙两同学测试成绩的平均数;(2)经计算知26S =甲,226S =乙,你认为选拔谁参加比赛更合适,说明理由.24.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255.请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.25.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?26.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是:∠APB=________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面不完整的推理证明.请将这个证明过程补充完整,并在括号内填上依据.过点P作PE∥AC.∴∠A=∠APE(________________________________)∵AC∥BD,∴BD∥PE(________________________________)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=________________.(________________)(3)随着以后的学习你还会发现平行线的许多用途.如图3,在小学中我们已知道,三角形ABC中,∠A+∠B+∠C=180°.试构造平行线说明理由.参考答案1.C【解析】【分析】根据轴对称图形的定义判断即可.【详解】解:第一、二、四个图形沿如下图所示直线折叠后,直线两旁的部分能够完全重合,是轴对称图形,而第三个图形则不可以,所以轴对称图形有3个.故选:C【点睛】本题考查了轴对称图形,判断轴对称图形的关键是看这个图形能否沿一条直线折叠后,直线两旁的部分能够完全重合.2.A【解析】【分析】将{x=1y=−1代入四个选项判断即可.【详解】解:将{x=1y=−1代入A得{1−1=01−(−1)=2,满足两个方程,故A正确.故选:A【点睛】本题考查了二元一次方程组的解,即二元一次方程组的解是构成二元一次方程组的两个方程的公共解,本题采用排除法较为简便.3.C【解析】【分析】根据平方差公式可得(a+b)⋅(a−b)的值,易知(a+b)2⋅(a−b)2的值.【详解】解:由a2−b2=3可知(a+b)⋅(a−b)=3,所以(a+b)2⋅(a−b)2=[(a+b)⋅(a−b)]2=32=9故选:C【点睛】本题考查了平方差公式,利用平方差公式对式子适当变形是解题的关键. 4.B【分析】根据平行线的性质可知∠BAC,由角平分线的性质可知∠BAE,根据两直线平行内错角相等可得结论.【详解】解:∵AB∥CD∴∠C+∠BAC=180°,∠AEC=∠BAE∵∠C=40°∴∠BAC=140°∵ AE平分∠CAB∴∠BAE=12∠BAC=70°∴∠AEC=70°故选:B【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练应用平行线的性质求角的度数是解题的关键.5.C【解析】【分析】根据平行线的判定定理判断即可.【详解】解:∠1,∠3是对顶角,不能判断a∥b,A错误;∵∠6=∠8,∠1=∠6∴∠1=∠8,∠1,∠8是同旁内角,故其相等不能判断a∥b,B错误;∵∠6=∠8,∠2=∠6∴∠2=∠8,∠2,∠8是内错角,内错角相等,两直线平行,所以a∥b,C正确;∠5,∠7是对顶角,不能判断a∥b,D错误;故选:C本题考查了平行线的判定,熟练掌握其判定方法是解题的关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.C【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式a后继续应用完全平方公式分解即可:()()222322x y2y x y y x2xy y y x y-+=-+=-故选C7.B【解析】试题分析:根据众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,因此众数是5.故选B考点:众数8.D【解析】【分析】根据“3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元”可得方程组.【详解】解:根据题意得{3x+2y=14 2x+3y=11故选:D【点睛】本题考查了二元一次方程组的实际应用,理清题中等量关系是解题的关键. 9.B【解析】试题分析:所求代数式前两项提取2,变形为2(a2+2a)-1,将已知等式代入得:2×1-1=1,故选B.考点:代数式求值.10.B【解析】【分析】可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:{x=0y=5,{x=1y=3,{x=2y=1,故在不造成浪费的前提下有三种截法.故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.11.−32x10y8【解析】【分析】先由幂的乘方法则计算乘方,再根据单项式乘单项式的计算方法计算即可. 【详解】解:(−2x3y2)3⋅4xy2=−8x9y6⋅4xy2=−32x10y8故答案为:−32x10y8【点睛】本题考查了单项式乘单项式,有乘方先算乘方,单项式乘单项式即把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.12.(x ﹣3)(6﹣x )【解析】试题分析:原式变形后,提取公因式即可得到结果.解:原式=6(x ﹣3)﹣x (x ﹣3)=(x ﹣3)(6﹣x ),故答案为(x ﹣3)(6﹣x )点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.13.-1【解析】把21x y =⎧⎨=⎩代入二元一次方程组71ax by ax by +=⎧⎨-=⎩得2721a b a b +⎧⎨-⎩=①=②①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∴a-b=2-3=-1;故答案为-1.14.26【解析】【分析】 根据平移的性质对应线段相等可知AB+EF+DF 的值,由对应点所连线段相等且等于平移距离可知AD 、BE 的长,易知周长.【详解】解:由平移可得:5,,,AD BE cm DE AB DF AC EF BC =====,所以16ABC AB DF EF AB AC BC C cm ∆++=++==,五边形ABEFD 的周长为165526AB DF EF AD BE cm ++++=++=.故答案为:26【点睛】本题考查了平移的性质,平移前后的两个图形,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,利用平移线段的性质可求线段的长度,利用角的性质可求平移图形中角的度数,灵活应用平移的性质是解题的关键.15.55°.【解析】【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数【详解】如图所示:因为三角板的直角顶点在直线b上.若∠1=35°,所以∠3=90°-35°=55°,因为a∥b,所以∠2=∠3=55°故填55°【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键16.1或5【解析】【分析】直线c可能在直线b的上方或下方,分情况讨论,根据平行线间的距离即可求解【详解】∥∥,所以a与c的距离解:如图,若直线c在直线b的上方,因为直线a b c=-=.321如图,若直线c 在直线b 的下方,因为直线a b c ∥∥,所以a 与c 的距离325=+=.故答案为:1或5【点睛】本题考查了平行线间的距离,平行线间的距离处处相等,正确理解平行线间距离的含义是解题的关键.17.【解析】【分析】将年龄按从小到大顺序排列,取最中间两个数的平均值即可.【详解】解:由题意可知处于最中间位置的年龄为13岁和14岁, 所以这个班同学年龄的中位数是131413.52+=岁. 故答案为:【点睛】本题考查了中位数,将一列数据按从小到大的顺序排列,处于最中间位置的数(处于最中间位置的有两个数则取其平均数)即为中位数,正确理解中位数的定义是求中位数的关键18.12【解析】【分析】根据同底数幂乘法的逆运算可知22m n m n a a a +=⋅,由幂的乘方的逆运算可知22()m n m n a a a a ⋅=⋅,再将3m a =,2n a =代入求解.解:2222()3212m n m n m n a a a a a +=⋅=⋅=⨯=.故答案为:12【点睛】本题考查了幂的运算,同底数幂的乘法逆运算m n m n a a a +=⋅,幂的乘方的逆运算 ()()mn m n n m a a a ==,灵活利用幂的逆运算将所求式转化为已知式是解题的关键. 19.原式48x =-;-7【解析】【分析】根据平方差公式和完全平方差公式先化简原式再代入求值即可.【详解】解:2(2)(2)(2)x x x +---()22444x x x =---+22444x x x =--+-48x =- 把14x =代入上式,得: 1484874x -=⨯-=- 【点睛】本题考查了乘法公式,平方差公式22()()a b a b a b +-=-,完全平方公式 222()2a b a ab b ±=±+,灵活应用乘法公式进行整式的化简是解题的关键. 20.见解析.【解析】【分析】(1)所添加的正方形要使图形有两条对称轴,故可添加在第二排第二列的位置;(2)要求只有一条对称轴,故可添加在第三排第五列的位置.解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的含义是画轴对称图形的前提. 21.(a+b)(a﹣b)【解析】试题分析:根据平方差公式,可得答案.试题解析:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).22.AE∥BF,理由见解析.【解析】【分析】根据两直线平行同位角相等,可判断∠B=∠DOE,再根据∠A=∠B,即可得到∠DOE=∠A,进而得出AC∥BD.【详解】AC∥BD,理由:∵AE∥BF,∴∠B =∠DOE .∵∠A =∠B ,∴∠DOE =∠A ,∴AC ∥BD .【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行.23.(1)83,83;(2)选拔甲参加比赛更合适,理由见解析.【解析】【分析】(1)求出甲乙两人各自的总成绩再除以测试次数即可;(2)方差越小数据越稳定,结合两人的平均分及方差可判断谁更合适.【详解】解:(1)甲的平均分为1(7986828583)835++++= 乙的平均分为:1(8879908177)835++++= (2)选拔甲参加比赛更合适,因为甲、乙两人的平均分相同.说明两人水平差不多,而22S S <甲乙,说明甲比乙发挥稳定,所以选拔甲参加比赛更合适【点睛】本题主要考查了平均数和方差,平均数常用来反映数据的总体趋势,方差用来反映数据的稳定性,方差越小越稳定,熟练掌握平均数的定义及方差的含义是解题的关键.24.2.【解析】试题分析:原式变形后,利用平方差公式计算即可得到结果.试题解析:原式=24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1615112122⎛⎫-+ ⎪⎝⎭=2. 考点:平方差公式.25.(1)74400元;(2)126300元;(3)第三种方案获利最大【解析】分析:(1)、若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)、30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)、30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.详解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则,解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57600元,21天精加工数量为21吨可获利21×4000=84000,因此共获利141600,所以(3)>(2)>(1),即第三种方案获利最大.点睛:此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题,属于基础题型.得出等量关系是解题的关键.26.(1)∠APB=∠A+∠B;(2)见解析;(3)见解析【解析】【分析】(1)由两直线平行内错角相等可得∠APB,∠A,∠B之间的数量关系;(2)过点P作PE∥AC,易知BD∥PE,根据两直线平行内错角相等可得∠A=∠APE,∠B=∠BPE等量代换可得结论;(3)过点A作直线DE∥BC,由两直线平行内错角相等可得∠DAB=∠B,∠EAC=∠C,由平角的定义知∠DAB+∠BAC+∠EAC=180°,等量代换即可.【详解】解:(1)如图,过点P作PE∥AC.∴∠A=∠APE∵AC∥BD∴BD∥PE∴∠B=∠BPE∵∠APB=∠BPE+∠APE,∴∠APB=∠A+∠B所以∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B(2)过点P作PE∥AC.∴∠A=∠APE(两直线平行,内错角相等)∵AC∥BD,∴BD∥PE(如果两条直线都和第三条直线平行,那么这两条件直线也平行)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=∠B−∠A.(等量代换)(3)过点A作直线DE∥BC,∵DE∥BC.∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC+∠B+∠C=180°(等量代换)【点睛】本题考查了平行线的判定和性质,通过构造平行线将角进行拆分或合并是解题的关键.。

湘教版七年级数学下册期末试卷及答案【完整版】

湘教版七年级数学下册期末试卷及答案【完整版】

湘教版七年级数学下册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元 3.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .54.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( )A .3 个B .4 个C .6 个D .7 个6.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.已知(x ﹣1)3=64,则x 的值为_________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.因式分解:34a a -=_____________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程组(1)532321x yx y+=⎧⎨+=⎩(2)4(1)3(1)2223x yyx y--=--⎧⎪⎨+=⎪⎩(3)2311632x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩2.若关于x的方程221933mx x x+=-+-有增根,则增根是多少?并求方程产生增根时m的值.3.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、D2、C3、D4、C5、C6、B7、B8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、60°3、54、1-(答案不唯一)5、(2)(2)a a a +-6、1三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)23x y =⎧⎨=⎩;(3)123x y z ⎧⎪⎨⎪⎩===. 2、x =3或-3是原方程的增根;m =6或12.3、(1)略;(2)78°.4、∠EDC =40°5、(1)75,54;(2)补图见解析;(3)600人.25003km.6、①Q=100﹣6t;② 10L;③。

湘教版七年级下册数学期末考试题(附答案)

湘教版七年级下册数学期末考试题(附答案)

湘教版七年级下册数学期末考试题(附答案)1.由方程组正确答案:C改写:求解以下方程组:2.把方程正确答案:B改写:将以下方程化简:3.设正确答案:C改写:已知:4.若正确答案:D改写:如果5.多项式2x2-4xy+2x提取公因式2x后,另一个因式为()正确答案:A改写:将2x²-4xy+2x提取公因式2x得到2x(x-2y+1),因此另一个因式为x-2y。

6.下列分解因式正确的是()正确答案:C改写:将a²-6a+9分解因式得到(a-3)²。

7.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()正确答案:B改写:在图中,∠2与∠1互补,因此∠2=90°-∠1=60°。

8.直线l3与l1,l2相交得如图所示的5个角,其中互为对顶角的是()正确答案:D改写:在图中,∠1和∠5互为对顶角,因此选D。

9.下列各项中,不是由平移设计的是()正确答案:C改写:以下哪个图形不是通过平移得到的?10.下面四个手机APP图标中,可看作轴对称图形的是()正确答案:B改写:以下哪个图标是轴对称图形?11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()正确答案:C改写:在这组数据中,众数为2,因此2出现的次数最多。

中位数为3,平均数为(2+4+x+2+4+7)/6=19/6.12.一组数据2,4,x,6,8的众数为2,则x的值为()正确答案:A改写:在这组数据中,2出现的次数最多,因此x=2.13.在方程3x-y=5中,用含x的代数式表示y为________.正确答案:3x-5改写:将方程3x-y=5化简得到y=3x-5.14.若(x+2)(2x-n)=2x2+mx-2,则m+n=________.正确答案:0改写:将方程(x+2)(2x-n)=2x²+mx-2化简得到2n-3x²+2x=mx-2,因此m+n=0.15.若一个正方形的面积为4a2+12ab+9b2(a>,b>),则这个正方形的边长为________.正确答案:(2a+3b)改写:将正方形的面积4a²+12ab+9b²分解因式得到(2a+3b)²,因此正方形的边长为2a+3b。

湘教版七年级数学下册期末考试卷及答案【完整版】

湘教版七年级数学下册期末考试卷及答案【完整版】

湘教版七年级数学下册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差-()A.0.2 kg B.0.3 kg C.0.4 kg D.50.4 kg2.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠的大小为()∠=,则1A.14 B.16 C.90αα-- D.443.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数-不一定是负数C.若a是正数,则aD.零既不是正数也不是负数5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 6.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x﹣1)2+4C.y=(x+1)2+2 D.y=(x﹣1)2+27.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.x=1是关于x 的方程2x ﹣a=0的解,则a 的值是( )A .﹣2B .2C .﹣1D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若102.0110.1=,则± 1.0201=_________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x yx y⎧+=⎪⎨⎪+-=⎩2.整式的化简求值先化简再求值:2222332232a b a ab a b ab a⎡⎤⎛⎫---++⎪⎢⎥⎝⎭⎣⎦,其中a,b满足()2120a b++-=.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、C6、D7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、752、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3、30°4、-15、±1.016、160°三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、2a ab+,1-.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)20%;(2)6006、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

湘教版七年级下册数学期末考试试卷及答案

湘教版七年级下册数学期末考试试卷及答案

湘教版七年级下册数学期末考试试题一、单选题1.若12x y =-⎧⎨=⎩是方程3x +ay =1的一个解,则a 的值是( )A .1B .﹣1C .2D .﹣22.下列各式计算正确的是( ) A .(a 2)3=a 5B .a 4⋅a 2=a 8C .a 6÷a 3=a 2D .(ab)3=a 3b 33.二元一次方程组{x +y =2x −y =−2的解是( )A .{x =0y =2B .{x =2y =0C .{x =1y =4D .{x =1y =14.下图是我国几家银行的标志,其中是轴对称图形的是( )A .B .C .D .5.如果35×9=3n ,则n 的值为( ) A .6B .7C .8D .96.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠37.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4环,方差分别是s2甲=0.5,s2乙=0.7,s2丙=0.9,s2丁=1.5.在这次射击测试中,成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如果二次三项式x 2+ax +2可分解为(x −1)(x +b),则a +b 的值为( ) A .−2B .−5C .3D .59.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm二、填空题10.计算:232a a a ⋅-=____________. 11.因式分解:2xy 2xy x ++=______.12.已知方程210x y +-=,用含x 的代数式表示y 的形式为____________. 13.一组数据:2,2,1,4,4,4的中位数是____________. 14.若32x y -=且36x y -=,则y x -的值为____________.15.如图,三角形ABC 绕点A 逆时针旋转90︒到三角形AB C ''的位置.已知35BAC ︒∠=,则B AC '∠=____________度.16.如图,直线a b ∥,三角板的直角顶点A 落在直线a 上,两条边分别交直线b 于B ,C 两点.若125︒∠=,则2∠=____________度.17.如图,AD BC ∥,4AD BC ==,且三角形ABC 的面积为6,则点C 到AD 的距离是____________.18.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.三、解答题 19.解方程组:237,3 1.x y x y -=⎧⎨+=-⎩①②20.先化简,再求值: (x +2)(x -2)+x(4-x),其中x =14.21.如图,三角形ABC 和直线MN ,且三角形ABC 的顶点在网格的交点上.(1)画出三角形ABC 向上平移4小格后的三角形111A B C ; (2)画出三角形ABC 关于直线MN 对称的三角形222A B C (以上作图不要求...写作法)22.推理填空:如图,DE BC ∥,ADE EFC ∠=∠,将说明12∠=∠成立的理由填写完整.解:因为DE BC ∥(已知),所以ADE ABC =∠∠(________________) 又因为ADE EFC ∠=∠(已知), 所以ABC EFC ∠=∠(等量代换),所以________________(同位角相等,两直线平行), 所以12∠=∠(________________________________)23.小欣打算购买气球装扮好朋友小岩的生日派对现场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于布置的需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为多少元24.为准备参加某市2019年度中小学生机器人竞赛,学校对甲、乙两支机器人制作小队所创作的机器人分别从创意、设计、编程与制作三方面进行量化,各项量化满分100分,根据量化结果择优推荐.它们三项量化得分如下表:(1)如果根据三项量化的平均分择优推荐,哪队将被推荐参赛?(2)根据本次中小学生机器人竞赛的主题要求,如果学校根据创意、设计、编程与制作三项量化得分按532::的比例确定每队最后得分的平均分择优推荐,哪队将被推荐参赛?并对另外一队提出合理化的建议.25.如图,BF ,DE 分别是ABD ∠,BDC ∠的平分线,且BF DE ⊥,垂足为点E ,BF 交DC 于点F.(1)试说明AB CD ∥;(2)若55DBF ︒∠=,试求EFD ∠的度数.26.阅读某同学对多项式()()2242464x x xx -+-++进行因式分解的过程,并解决问题:解:设24x x y -=,原式(2)(6)4y y =+++(第一步)2816y y =++(第二步) 2(4)y =+(第三步)()2244x x =-+(第四步)(1)该同学第二步到第三步的变形运用了________(填序号); A .提公因式法 B .平方差公式C .两数和的平方公式D .两数差的平方公式(2)该同学在第三步..用所设的的代数式进行了代换,得到第四步的结果,这个结果能否进一步因式分解?________(填“能”或“不能”).如果能,直接写出最后结果________. (3)请你模仿以上方法尝试对多项式()()22661881x x xx ++++进行因式分行解.27.如图,点O 为直线AB 上一点,过点O 作射线OC ,使135BOC ︒∠=.将一个含45︒角的直角三角板OMN 的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边ON ,MN 都在直线AB 的下方.(1)将图1中的三角板OMN 绕着点O 逆时针旋转90︒,如图2所示,请问OM 是否平分CON ∠请说明理由;(2)将图2中的三角板OMN 绕点O 逆时针继续旋转到图3的位置所示,使得ON 在AOC ∠的内部,请探究AOM ∠与CON ∠之间的数量关系,并说明理由;(3)将图1中的三角板OMN 绕点O 按每秒2.5︒的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直角边ON 所在直线恰好平分锐角AOC ∠,则t 的值为________(直接写出结果).参考答案1.C 【解析】 【详解】解:由题意得321y -+=,解得2y =,故选C. 2.D 【解析】 【分析】根据幂的乘方与积的乘方,同底数幂的除法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】解:A. (a 2)3=a 6,故A 错误; B. a 4⋅a 2=a 6,故B 错误; C. a 6÷a 3=a 3,故C 错误;D. (ab)3=a 3b 3,故D 正确. 故选D. 【点睛】此题主要考查了幂的乘方与积的乘方,同底数幂的除法的运算方法,以及合并同类项的方法,要熟练掌握. 3.A 【解析】 【分析】方程组利用加减消元法求出解即可. 【详解】解: {x +y =2①x −y =−2②①+②得:2x=0, 解得:x=0, ①-②得:2y=4, 解得:y=2,则方程组的解为{x =0y =2,故选:A . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4.C 【解析】 【分析】根据轴对称图形的定义判断即可. 【详解】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项正确; D 、不是轴对称图形,故本选项错误.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:∵35×9=35×32=37=3n,∴n=7.故选B.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.6.D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.A【解析】【分析】根据方差越大,波动性越大,越不稳定进行判断.【详解】解:∵s2甲<s2乙<s2丙<s2丁,∴在本次测试中,成绩最稳定的是甲.【点睛】[(x1−x̅)2+(x2−本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为x̅,则方差S2=1nx̅)2+⋯+(x n−x̅)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.B【解析】【分析】利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:(x−1)(x+b)=x2+(b-1)x-b,∵二次三项式x2+ax+2可分解为(x−1)(x+b),∴a=b-1,-b=2,∴a=-3,b=-2.∴a+b=-5.故选B.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,根据对应项系数相等列式是解题的关键.9.C【解析】分析:分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.详解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4-1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a 与c 的距离=4+1=5(cm ),综上所述,a 与c 的距离为3cm 或5cm .故选:C .点睛:本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.平行线间的距离处处相等.注意分类讨论. 10.3a【解析】【分析】先算乘法,再合并即可.【详解】解:232a a a ⋅-=32a -3 a =3a .故答案为:3a .【点睛】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.2(1)x y +【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】xy 2+2xy+x ,=x (y 2+2y+1),=x (y+1)2.故答案为:x (y+1)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.21y x =-+【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程2x+y-1=0,解得:y=-2x+1,故答案为:-2x+1.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13.3【解析】【分析】根据中位数的定义解答.需将这组数据从小到大重新排列.【详解】解:将这组数据从小到大重新排列后为1,2,2,4,4,4.最中间的那两个数是2,4,所以中位数是3.故答案为:3.【点睛】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.2-【解析】【分析】将两方程相加可得4x-4y=8,再两边都除以4得出x-y 的值,继而由相反数定义或等式的性质即可得出答案.【详解】解:由题意知:3236x y x y -=⎧⎨-=⎩①②, ①+②,得:4x-4y=8,则x-y=2,-=-2,∴y x故答案为:-2.【点睛】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.15.55【解析】【分析】根据旋转的性质,可得∠BAB’=90°,再利用角的和差关系即可【详解】解:∵三角形ABC绕点A逆时针旋转90︒到三角形AB C''的位置.∴∠BAB’=90°,∵35∠=,BAC︒∴B AC∠=90°-35°=55°.'∠=∠BAB’-BAC故答案为55.【点睛】本题考查了旋转的性质,熟练运用旋转的性质解决问题是本题的关键.16.65【解析】【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠BAC=90°,∠1=25°,∴∠3=90°-∠1=90°-25°=65°.∵直线a∥b,∴∠2=∠3=65°.故答案为:65.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.3【解析】【分析】过A作AE⊥BC于D,则AE的长就是C与AD之间的距离,根据三角形的面积公式求出AE 即可.【详解】解:过点A作AE⊥BC于点E,过点C作CF⊥AD于点F,则1⨯⨯=6BC AE2∵BC=4,∴14AE⨯⨯=62解得:AE=3.∵AE⊥BC,CF⊥AD,∴AE CF.∥,∵AD BC∴四边形AECF为平行四边形,∴CF=AE=3.即点C到AD的距离是3.故答案为3.【点睛】本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出AD的长.18.65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可;【详解】解:①+②得:36x =,解得:2x =,把2x =代入②得:1y =-,因此,原方程组的解为21x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.-3.【解析】【分析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=14代入化简后的式子,即可求得原式的值.【详解】解:原式=x2-4+4x-x2=4x-4.当x=14时,原式=4×14-4=-3.故答案为:-3.【点睛】本题考查整式的混合运算—化简求值.21.(1)见解析;(2)见解析【解析】【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△A2B2C2即可.【详解】【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.22.两直线平行,同位角相等DB EF∥两直线平行,内错角相等.【解析】【分析】根据平行线的性质得出∠ADE=∠ABC,求出∠ABC=∠EFC,根据平行线的判定得出DB∥EF,根据平行线的性质得出即可;解:(1)∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等),∵∠ADE=∠EFC (已知),∴∠ABC=∠EFC,∴DB∥EF(同位角相等,两直线平行),∴∠1=∠2 (两直线平行,内错角相等),故答案为:(1). 两直线平行,同位角相等(2). DB EF∥(3). 两直线平行,内错角相等.【点睛】本题考查了角平分线定义和平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.23.18元【解析】【分析】要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.【详解】解设一个笑脸气球x元,一个爱心气球y元.根据题意,得316320 x yx y+=⎧⎨+=⎩①②解得:72112xy⎧=⎪⎪⎨⎪=⎪⎩,因此711 22221822x y+=⨯+⨯=.答:第三束气球的价格为18元.【点睛】此题考查二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.24.(1)乙队;(2)甲队【分析】(1)根据平均数的求法,分别求出即可;(2)根据加权平均数的求法,分别求出即可.【详解】解:(1)因为1(857064)733x =⨯++=甲队,1(726684)743x =⨯++=乙队,所以乙队将被推荐参赛;(2)因为850.5700.3640.276.3x =⨯+⨯+⨯=甲队,720.5660.3840.272.6x =⨯+⨯+⨯=乙队.所以甲队将被推荐参赛.建议:加强机器人创意方面的开发(答案不唯一)【点睛】本题主要考查了平均数和加权平均数的求法,掌握其计算公式是解题的关键.25.(1)见解析;(2)55︒【解析】【分析】(1)利用同旁内角互补可求得AB CD ∥;(2)利用平行线的性质和角平分线的性质可求出结果.【详解】解:(1)因为BF DE ⊥(已知),所以90BED ︒∠=(垂直的定义),又因为180BED DBE BDE ︒∠+∠+∠=,所以90DBE BDE ︒∠+∠=,又因为BF ,DE 分别是ABD ∠,BDC ∠的平分线,所以22180ABD CDB DBE BDE ︒∠+∠=∠+∠=,所以AB CD ∥(同旁内角互补,两直线平行).(2)因为BF 是ABD ∠的角平分线,所以55ABF DBF ︒∠=∠=,又因为AB CD ∥,所以55EFD ABF ︒∠=∠=(两直线平行,内错角相等).【点睛】本题考查了平行线的判定及其性质,角平分线的性质,掌握相关知识是解题的关键. 26.(1)C ;(2)能,4(2)x -;(3)4(3)x +【解析】【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x 2+6x )看作整体进而分解因式即可.【详解】解:(1)C ;(2)能,4(2)x -;(3)设26x x y +=原式(18)81y y =++21881y y =++2(9)y =+()2269x x =++ 4(3)x =+【点睛】此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.27.(1)OM 平分CON ∠,理由见解析;(2)AOM CON ∠=∠,理由见解析;(3)9秒或81秒【解析】【分析】(1)利用旋转的性质可得∠BOM 的度数,然后计算∠MOC 的度数判断OM 是否平分∠CON ; (2)利用∠AOM=45°-∠AON 和∠NOC=45°-∠AON 可判断∠AOM 与∠CON 之间的数量关系; (3)ON 旋转22.5度和202.5度时,ON 平分∠AOC ,然后利用速度公式计算t 的值.【详解】解:(1)OM 平分CON ∠,理由如下:已知135BOC ︒∠=,因为OM 旋转90︒,所以OM BO ⊥,所以1359045COM BOC BOM ︒︒︒∠=∠-∠=-=,即45COM NOM ︒∠=∠=,所以OM 平分CON ∠.(2)AOM CON ∠=∠理由如下:因为45NOM ︒∠=,所以45AOM AON ︒∠=-∠,因为18013545AOC ︒︒︒∠=-=,所以45CON AON ︒∠=-∠,所以AOM CON ∠=∠.(3)9秒或81秒. 理由如下: T=12×45°÷2.5°=9(秒)或t=(180°+22.5°)÷2.5°=81(秒).故答案为9秒或81秒..【点睛】本题考查了角的计算:熟练掌握角平分线的定义和旋转的性质.。

湘教版初中七年级下学期数学期末试题及答案

湘教版初中七年级下学期数学期末试题及答案

下列式子由左到右的变形是因式分解的是
4.

(
)
(
如图,下列条件中,不能判定直线a∥b 的是
7.

期末综合检测卷
10.
如果多项式 x2-mx+9(
14.
m 为常数)可以用完全平方公式进行
因式分解,那么 m = .
如图,将一张长方形纸条 ABCD 沿EF 折叠,点 B ,
15.
A 分别落在
点 B′,
若 ∠DGF =110
A′的位置上,
FB′与 AD 的 交 点 为 G .
°,
则 ∠A′EF 的度数为 .
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
{
A
C

3x+3y=100
x+y=100,
3x+y=100
x+y=100,
(
{
B

x+3y=100
ìïx+y=1
00,
ï
D
í

ï3
00
ï x+3y=1
î
)
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
A
{
B

3x+3y=100
x+3y=100
ìïx+y=1
00,
ï
D
í

ï3
00
ï x+3y=1
î
x+y=100,
{
C

湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试题一、单选题1.下列图形中是轴对称图形的有( )A .1个B .2个C .3个D .4个2.方程组{3x +4y =52x −4y =10的解是( ) A .{x =3y =−1 B .{x =2y =−1 C .{x =−1y =2 D .{x =2y =13.下列计算中,正确的是( )A .2a +3b =5abB .(−ab )2=a 2b 2C .a 6−b 5=aD .a •a 3=a 3 4.下列多项式中,能用平方差公式分解因式的是( )A .()22a b +-B .25m -20mnC .22x y --D .225x -+ 5.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,46.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°7.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为( )A.30°B.60°C.120°D.180°8.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个9.(x−2)(x+3)=x2+px+q,那么p,q的值为()A.p=5,q=6 B.p=l,q=-6 C.p=-l,q=6 D.p=5,q=-610.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b,如图左),将余下的部分剪开后拼成一个梯形(如图右),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为()A.(a−b)2=a2−2ab+b2B.(a+b)2=a2+2ab+b2C.a2−b2=(a+b)(a−b)D.a(a+b)=a2+ab11.已知下列算式:①(a3)3=a6;②a2∙a3=a6;③2m∙3n=6m+n;④−a2∙(−a)3=a5;⑤(a−b)3∙(b−a)2=(a−b)5.其中计算结果错误的有()A.1个B.2个C.3个D.4个12.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二、填空题13.若2++是一个完全平方式,则m的值是____________.425x mx14.如图,请添加一个条件,使得AB//CD.你所添加的条件是_____.15.()202020192 1.53⎛⎫⨯-= ⎪⎝⎭_____. 16.若2216a b -=,13a b -=,则+a b 的值为 ________ . 17.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.18.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b )n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,222a b a 2ab b +=++()展开式中的系数1、2、1恰好对应图中第三行的数字;再如,33223a b a 3a b 3ab b +=+++()展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b )4的展开式,(a+b )4=_______.三、解答题19.如图,在正方形网格上的一个三角形ABC .(其中点A ,B ,C 均在网格上)(1)作出把三角形ABC 向右平移4个单位,再向下平移3个单位后所得到的三角形A 1B 1C 1; (2)作三角形ABC 关于直线MN 对称的三角形A 2B 2C 220.(1)解方程组:235431x y x y +=⎧⎨-=⎩;(2)分解因式:()()229x a b y b a -+-.21.先化简,再求值:()()()2a 2b b a b a +++-,其中a=-l ,b=2.22.如图,已知∠ADE=∠B ,FG ⊥AB ,∠EDC=∠GFB.试说明:CD ⊥AB .23.某校七年级2班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(l)甲队成绩的中位数是____分,乙队成绩的众数是____分;(2)计算乙队的平均成绩和方差;(3)已知甲队的平均成绩是9分,方差是1.4分,则成绩较为整齐的是哪个队?24.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°.求∠AOM 和∠NOC的度数.25.一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?26.O为直线AB上的一点,OC⊥OD,射线OE平分∠AOD.(1)如图①,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图②的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图③的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.参考答案1.C【解析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【详解】解:根据对称轴的定义可知,是轴对称图形的有第2个、第3个和第4个.故选C.【点睛】本题考查了利用轴对称图形的定义,注意对基础知识的理解.2.A【解析】方程组利用加减消元法求出解即可.【详解】解:{3x+4y=5①2x−4y=10②,①+②得5x=15,解得x=3,把x=3代入①得9+4y=5,解得y=-1,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.B【解析】【分析】分别根据合并同类项的法则、幂的乘方法则、同底数幂的乘法对各选项进行逐一判断即可. 【详解】解:A、2a+3b无法继续合并同类项,故本选项错误;B、(−ab)2=a2b2,故本选项正确;C、a6−b5无法继续合并同类项,故本选项错误;D、a•a3=a4,故本选项错误,故选:B.【点睛】本题考查的是合并同类项的法则、幂的乘方法则、同底数幂的乘法是解答此题的关键. 4.D【解析】【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.【详解】A.a2+(-b)2=a2+b2,不能使用;B.5m2-20mn=5m(m-4n),不能使用;C.-x2-y2=-(x2+y2),不能使用;D.-x2+25=(5-x)(5+x),可以使用平方差公式.故选:D.【点睛】本题主要考查平方差公式,熟练掌握平方差公式:a2-b2=(a+b)(a-b)是解答本题的关键. 5.A【解析】在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70;在这一组数据中1.65是出现次数最多的,所以众数是1.65.∴这些运动员跳高成绩的中位数和众数分别是1.70,1.65.故选A.6.D【解析】【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【详解】如图,,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选D.【点睛】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.7.B【解析】试题分析:正六边形被平分成六部分,因而每部分被分成的圆心角是60°,因而旋转60度的整数倍,就可以与自身重合,则旋转角最小值为60度.故选B.考点:旋转对称图形.8.A【解析】【分析】根据平行线的性质,垂线的性质和平行公理对各个说法分析判断后即可求解.【详解】解:①如图,直线AB、CD被直线GH所截,∠AGH与∠CHF是同位角,但它们不相等,故说法错误;②同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③应为过直线外一点有且只有一条直线与已知直线平行,故说法错误;④平行于同一直线的两条直线平行,是平行公理的推论,故说法正确.综上所述,正确的说法是④共1个.故选A.【点睛】本题考查了平行线的性质,垂线的性质和平行公理,是基础知识,熟练掌握各定理或推论成立的条件是解决此题的关键.9.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-6,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-6,∴p=1,q=-6,故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.10.C【解析】【分析】分别计算这两个图形阴影部分面积,根据面积相等即可得到.【详解】解:第一个图形的阴影部分的面积=a2−b2;第二个图形是梯形,则面积是1(2a+2b)•(a−b)=(a+b)(a−b).2则a2−b2=(a+b)(a−b).故选:C.【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.11.C【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】解:①(a 3)3=a 9,错误;②a 2•a 3=a 5 ,错误;③2m ×3n 不能合并,错误;④−a 2•(−a )3=a 5,正确;⑤(a −b )3(b −a )2=(a −b )5,正确,则其中计算错误的有3个,故选:C.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.C【解析】试题分析:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .13.±20【解析】分析:由完全平方式的定义进行分析解答即可.详解:∵225x mx ++是完全平方式,∴22225(5)1025x mx x x x ++=±=±+,∴10m =±.故答案为10±.点睛:熟记“完全平方式”的定义:“形如222a ab b ±+的式子叫做完全平方式”是解答本题的关键.14.42∠=∠或180ABC BCD ︒∠+∠=或 180BAD ADC ︒∠+∠=【解析】【分析】根据内错角相等,两直线平行和同旁内角互补,两直线平行来添加即可.【详解】解:根据内错角相等,两直线平行可得出添加条件42∠=∠,根据同旁内角互补,两直线平行可得出添加添加条件180ABC BCD ︒∠+∠=和180BAD ADC ︒∠+∠=,所以答案为:42∠=∠或180ABC BCD ︒∠+∠=或 180BAD ADC ︒∠+∠=.【点睛】此题考查平行线的判定,解答此类要判定两直线平行的题,可围绕图形找同位角、内错角和同旁内角.15.23- 【解析】【分析】 首先把202023⎛⎫ ⎪⎝⎭化为20193322⎛⎫ ⎪⨯⎝⎭ ,再利用积的乘方计算201920192332⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭ ,进而可得答案.【详解】 解:原式=20192019232332⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭⨯ =2019322-233⎛⎫⨯⨯ ⎪⎝⎭ =221=33-⨯- . 【点睛】 此题主要考查了积的乘方,关键是掌握(ab )n =a n b n (n 是正整数).16.-12. 【解析】分析:已知第一个等式左边利用平方差公式化简,将a ﹣b 的值代入即可求出a +b 的值.详解:∵a2﹣b2=(a+b)(a﹣b)=16,a﹣b=13,∴a+b=12.故答案为12.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.17.30()400 80()400x yy x+=⎧⎨-=⎩【解析】【分析】此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组30()400 80()400x yy x+=⎧⎨-=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组18.a4+4a3b+6a2b2+4ab3+b4.【解析】【详解】根据题意得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为a4+4a3b+6a2b2+4ab3+b4点睛:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)先向右平移,再向下平移即可.(2)对称要注意点和对称点到对称轴的距离相等.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求.【点睛】轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形. 在轴对称图形中,对称轴两侧的对应点被对称轴垂直平分,成轴对称的两个图形是全等的.20.(1)11x y =⎧⎨=⎩;(2)()(3)(3)a b x y x y -+-. 【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】解:(1)解方程组:235431x y x y +=⎧⎨-=⎩①②, ②+①得x=1,将x=1代入②得y=1,则11x y =⎧⎨=⎩ ; (2)分解因式:229()()x a b y b a -+- ,原始=229()()x a b y b a -+-=229()()x a b y a b ---=()(3)(3)a b x y x y -+-.【点睛】此题考查了加减消元法、提公因式、平方差公式的综合运用,熟练掌握因式分解的方法是解本题的关键.21.12.【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:原始=222224445a ab b b a ab b +++-=+ ,当12a b =-=, 时,原式=24(1)25282012⨯-⨯+⨯=-+=.【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.22.见解析.【解析】【分析】易证DE ∥BC ,根据平行线的性质,可得∠EDC=∠BCD ,又∠EDC=∠GFB ,则∠BCD=∠GFB ,所以,GF ∥CD ,根据平行线的性质可证.【详解】解:证明 ADE B ∠=∠∵,//DE BC ∴,EDC DCB ∴∠=∠,EDC GFB ∠=∠,DCB GFB ∴∠=∠,//FG CD ∴,FG AB ⊥,CD AB ∴⊥.【点睛】本题主要考查了平行线的判定与性质,解答过程中,注意平行线的性质和判定定理的综合运用.23.(1)9.5,10;(2)29z x=,21s z =;(3)乙对成绩较为整齐. 【解析】【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解::(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)21(10879810109109)910z x =⨯+++++++++= , 222221(109)(89)(109)(99)110s z ⎡⎤=⨯-+-++-+-=⎣⎦ , (3)因为甲、乙两队的平均分相同,22S S >甲乙 ,所以乙对成绩较为整齐.【点睛】此题主要考查了众数、中位数的定义以及方差的定义和性质,正确记忆方差公式是解题关键.24.50AOM ︒∠=,140NOC ︒∠=.【解析】【分析】要求∠AOM 的度数,可先求它的余角.由已知∠EON=20°,结合角平分线的概念,即可求得∠BON .再根据对顶角相等即可求得;要求∠NOC 的度数,根据邻补角的定义即可.【详解】解:∵OE 平分∠BON ,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°,∵AO ⊥BC ,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,所以∠NOC=140°,∠AOM=50°.【点睛】结合图形找出各角之间的关系,利用角平分线的概念,邻补角的定义以及对顶角相等的性质进行计算.25.(1)需甲车型8辆,需车型10辆;(2)有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆;②甲车型4辆,乙车型10辆,丙车型2辆;方案②运费最省,最少运费是7800元.【解析】【分析】(1)设需甲车x 辆,乙车y 辆,根据运费8200元,总吨数是120,列出方程组,再进行求解即可;(2)设甲车有x 辆,乙车有y 辆,则丙车有z 辆,列出等式,再根据x 、y 、z 均为正整数,求出x ,y 的值,从而得出方案,再根据根据三种方案得出运费解答即可;【详解】解::(1)设需甲车型x 辆,乙车型y 辆,得:581204005008200x y x y +=⎧⎨+=⎩解得810x y =⎧⎨=⎩, 答:需甲车型8辆,需车型10辆;(2)设需甲车型x 辆,乙车型y 辆,丙车型z 辆,得:165810120x y z x y z ++=⎧⎨++=⎩ , 消去z 得5240x y +=,285x y =- 因x ,y 是非负整数,且不大于16,得y=0,5,10,15,由z 是非负整数,解得808x y z =⎧⎪=⎨⎪=⎩ ,655x y z =⎧⎪=⎨⎪=⎩,4102x y z =⎧⎪=⎨⎪=⎩ , 有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆,运费为:400×6+500×5+600×5=7900,②甲车型4辆,乙车型10辆,丙车型2辆,运费为:400×4+500×10+600×2=7800,78007900<所以方案②运费最省,最少运费是7800元.【点睛】本题考查了三元一次方程组和三元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.26.(1)BOD 2COE ∠=∠,见解析;(2)不发生变化,见解析;(3)2360BOD COE ∠+∠=,见解析.【解析】【分析】(1)根据垂直定义可得∠COD=90°,再根据角的和差关系可得90BOD AOC ︒∠=-∠,9090222AOD AOC AOC COE AOE AOC AOC AOC ︒︒∠∠-∠∠=∠-∠=-∠=-∠=+,进而得BOD 2COE ∠=∠;(2)由∠COD 是直角,OE 平分∠AOD 可得出90COE DOE ︒∠=-∠,1802BOD DOE ︒∠=-∠,从而得出∠COE 和∠DOB 的度数之间的关系;(3)根据(2)的解题思路,即可解答.【详解】解:(1)BOD 2COE ∠=∠,理由如下:OC OD ⊥,090COD ∴∠=,90BOD AOC ︒∴∠=-∠,90902222AOD AOC AOC BOD COE AOE AOC AOC AOC ︒︒∠∠-∠∠∠=∠-∠=-∠=∠==+-2BOD COE ∴∠=∠;(2)不发生变化,证明如下:OC OD ⊥,90COD ︒∴∠=,()90,1802290COE DOE BOD DOE DOE ︒︒︒∠=-∠∠=-∠=-∠,2BOD COE ∴∠=∠;(3)2360BOD COE ∠+∠= ,证明如下:OC OD ⊥,90COD ︒∴∠=,90+COE DOE ︒∴∠=∠,90BOD BOC︒∠+∠=180********=3602DOE COE COE ︒︒=-∠=∠∠+---(),2360BOD COE ∴∠+∠=.【点睛】此题考查的知识点是角平分线的性质、旋转性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

湘教版七年级下册数学期末测试卷及含答案(适用考试)

湘教版七年级下册数学期末测试卷及含答案(适用考试)

湘教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、下列计算正确的是()A.a 2+a 3=a 5B.a 8÷a 4=a 4C.(-2ab)2=-4a 2b 2D.(a+b)2=a 2+b 23、如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个4、如图,在中,,点、分别是、的中点,在上找一点,使最小,则这个最小值是().A. B. C. D.5、如图,将矩形ABCO放在直角坐标系中,其中顶点B的坐标为(10,8),E 是BC边上一点,将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y= 的图象与边AB交于点F,则线段AF的长为()A. B.2 C. D.6、计算等于()A. B. C. D.7、下列运算正确的是()A.﹣a•a 3=a 3B.﹣(a 2)2=a 4C.x﹣x=D.(﹣2)(+2)=﹣18、对于二元一次方程,下列结论正确是()A.任何一对有理数都是它的解B.只有一个解C.只有两个解D.有无数个解9、如图,在新型俄罗斯方块游戏中(出现的图案可进行顺时针、逆时针旋转;向左、向右平移),已拼好的图案如图3所示,现又出现-一个形如“”的方块正向下运动,你必须进行以下哪项操作,才能拼成一个完整的图形( ).A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向左平移D.逆时针旋转90°,向左平移10、若a、b、c的平均数为7,则a+1、b+2、c+3的平均数为()A.7B.8C.9D.1011、如图,折叠菱形纸片ABCD,使得AD的对应边A1D1过点C,EF为折痕,若∠B=60°,当A1E⊥AB时,的值等于()A. B. C. D.12、已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60°B.45°C.40°D.30°13、如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°14、下列各对x,y的值中,不是方程3x+4y=5的解的是()A. B. C. D.15、下列四组数值中,为方程组的解是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将四边形纸片ABCD的右下角向内折出△PC′R,其中∠B=120°,∠D=40°,恰使C′P∥AB,RC′∥AD,则∠C=________.17、为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的6名同学捐书册数分别是:5,7,x,8,4,6.已知他们平均每人捐6本,则这组数据的中位数是________.18、如图,AC是正方形ABCD的对角线,将△ACD绕着点A顺时针旋转后得到△AC′D′,点D′落在AC上,C′D′交BC于点E,若AB=1,则图中阴影部分图形的面积是________.19、计算:(﹣xy2)3=________.20、下图为甲、乙10次射击训练成绩的折线统计图。

湘教版七年级下册数学期末试题试卷及答案

湘教版七年级下册数学期末试题试卷及答案

湘教版七年级下册数学期末考试试卷一、选择题(每小题3分,满分24分)1.方程组⎩⎨⎧=+=-y x x 101的解是()A .⎩⎨⎧==21y x B .⎩⎨⎧-==21y x C .⎩⎨⎧==12y x D .⎩⎨⎧-==10y x 2.分解因式1)1(2)1(2+---x x 的结果是()A .)2)(1(--x x B .2x C .2)1(+x D .2)2(-x 3.某班七个合作小组人数如下:4、5、5、x 、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A .5B .5.5C .6D .74.已知⎩⎨⎧==11y x 是方程32=+my x 的一个解,那么m 的值是()A .1 B.-1C .3D .-35.下列各式计算正确的是()A .24)2)(2(a a a -=-+B .22242)2(b ab a b a ++=+C .2222)(y xy x y x --=--D .116)14)(14(22-=-+b a ab ab 6.如图,直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3的度数是()A .90°B .120°C .180°D .360°2ACEDB第8题图第7题图第6题图B 1C 1A BC13A CE FDBO7.如图,AB ∥CD ,BC ∥DE ,若∠B =40°,则∠CDE 的度数是()A .40°B .60°C .140°D .160°8.如图,在三角形ABC 中,∠C =90°,∠B =35°,将三角形ABC 绕点A 按顺时针方向旋转到三角形AB 1C 1的位置,使得点C 、A 、B 1在一条直线上,那么旋转角等于()A .145°B .125°C .70°D .55°二、填空题(每小题3分,满分24分)9.计算=-⨯-20142016)31()3(.10.如图,直线AB 左边是计算器上的数字是5,若以AB 为对称轴,那么它的对称图形是数字.11.已知3,822=-=+y x y x ,则xy 的值为.12.老李去年的收入为x 元,支出y 元,而今年收入比去年多15%,支出比去年少10%,结果今年结余30000元,根据题意可列出方程为.13.如图,AB ∥CD ,若∠C =80°,∠CAD =60°,则∠BAD 的度数是.14.如图,l ∥m ,∠1=120°∠A =50°,∠ACB 的度数是.1ADB lmCAB第13题图第14题图ACDB15.某校为了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图,据此可以估计出该校所有学生平均每人每天的课外阅读时间为.16.若y x ,满足方程01243)832(2=-++-+y x y x ,则=+y x .三、解答题(解答应写出文字说明、证明过程或演算步骤,满分72分)17.(本小题6分)解方程组⎩⎨⎧-=+=-2202y x x 18.(本小题6分)已知2,3==y x a a ,求y x a 2+的值.0.51.01.52.0时间(小时)人数(人)5101520019.(本小题6分)因式分解234xy x .20.(本小题6分)如图,在∠AOB 内有一点P .(1)过P 分别作1l ∥OA,2l ∥OB ;(2)1l 与2l 相交所成锐角与∠AOB 的大小有怎样关系(直接说出结果)?21.(本小题6分)如图,直线AB ,CD 相交于O ,射线OM 平分∠AOC ,若∠BOD =80°,求∠BOM 的度数.22.(本小题6分)王老师家买了一套新房,其结构如图所示,(单位:米)他AO•PBA CMODB打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?23.(本小题8分)如图所示,图1是一个长为x 2,宽为y 2的长方形,沿图中虚线剪成四个完全相同的小长方形,再按图2围成一个正方形.(1)请用两种方法计算图2中中间小正方形的面积;(2)比较(1)的两种结果,你能得到怎样的等量关系?24.(本小题8分)刘老师把九年级(1)班全班50名学生的一次数学测验的结果整理成下表和扇形统计图卫生间客厅卧室厨房bb 2a4b4a2a y2x2图1图2x y分数人数A 956ABEAECDB (1)求y x ,的值;(2)计算九年级(1)班这次测验的平均分.25.(本小题10分)如图,已知AB =AC =5,BC =3,将BC 沿BD 所在的直线折叠,使点C 落在AB 边上的E 点处,求三角形AED 的周长.26.(本小题10分)某公司计划2016年在甲、乙两个电视台播放总长为300分钟的广告,已知甲、乙两个电视台的广告收费标准分别为500元/分钟和200元/分,该公司的广告总费用为9万元,预计甲、乙两个电视台播放该公司的广告分别能给该公司带来0.3万元/分钟和0.2万元/分钟的收益,问该公司在甲、乙两个电视台播放广告的时长为多少分钟?预计甲、乙两个电视台2016年为该公司所播放的广告将给该公司带来多少万元的收益?参考答案一.选择题:(每小题3分,满分24分)1.A2.D3.C4.A5.D6.C7.C8.B二.填空题:(每小题3分,满分24分)9.910.211.21-12.300009.015.1=-y x 13.40°14.70°15.1小时16.4三、解答题17.(6分)解:由(1)得2=x 代入(2)得2-=y ,所以原方程组的解为⎩⎨⎧-==22y x 18.(6分)解:y x a 2+=122322=⨯=⨯y x a a 19.(6分)解:234xy x -)2)(2()4(22y x y x x y x x -+=-=.20.(6分)(1)图略(2)相等21.(6分)解:∠BOC =100°,∠MOC =40°∴∠BOM =∠BOC +∠MOC =140.°22.(6分)解:(1)厨房+卫生间+客厅的面积为ab ab ab ab 1182=++(平方米)(2)卧室面积为ab 4,总价为abx x ab x ab 233411=⨯+⨯(元)23.(8分)解:(1)法1:大正方形的面积减去四个小矩形的面积:xy y x 4)(2-+.法2:小正方形的边长为y x -,面积为:2)(y x -.(2)xy y x 4)(2-+=2)(y x -.24.(8分)解:(1)因为D 占40%,所以y =50⨯40%=20,因而x =14;(2)(95⨯6+85⨯4+75⨯14+65⨯20+55⨯6)÷50=71.8所以,九年级(1)班这次测验的平均分为71.8分.25.(10分)解:由已知得,BC =BE ,CD =ED .又因为AB =AC =5,BC =3,所以AE =AB -BE =5-3=2.因为三角形AED 的周长为AD +DE +AE ,所以三角形AED 的周长为AD +CD +A E =AC +AE =5+2=7.26.(10分)解:设该公司在甲、乙两个电视台播放做广告的时间分别为x 分钟和y 分钟,由题意得⎩⎨⎧=+=+90000200500300y x y x 解得⎩⎨⎧==200100y x 此时公司收入为702.02003.0100=⨯+⨯(万元)即该公司播放广告后能带来70万元的收益。

湘教版七年级下册数学期末试题试卷含答案

湘教版七年级下册数学期末试题试卷含答案

湘教版七年级下册数学期末考试试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元.设大圆珠笔为x元/枝,小圆珠笔为y元/枝,根据题意,列方程组正确的是()A.B.C.D.2.(3分)下列等式中,正确的是()A.3a﹣2a=1B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2 2﹣b3.(3分)一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.(3分)下面各图中∠1和∠2是对顶角的是()A.B.C.D.5.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.6.(3分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4环,方差分别是s 2甲=0.5,s2乙=0.7,s2丙=0.9,s2丁=1.5,射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)三元一次方程组的解是()A.B.C.D.8.(3分)把代数式xy2﹣9x分解因式,结果正确的是()A.x(y2﹣9)B.x(y+3)2C.x(y+3)(y﹣3)D.x(y+9)(y﹣9)9.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角10.(3分)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠3=180°B.∠1+∠2=∠3C.∠2+∠3+∠1=180°D.∠2+∠3﹣∠1=180°二、填空题(本大题共有8小题,每小题3分,共24分)11.(3分)方程组的解是.12.(3分)已知a x=2,a y=3,求a x+2y=.13.(3分)若m2+n2=6,且m﹣n=3,则mn=.14.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=45°,则∠2的度数是.15.(3分)一张长方形纸条,折成如图所示的形状,若∠1=110°,则∠2=.16.(3分)一组数据2,2,1,4,4,4的中位数是.17.(3分)如图,将三角形AOB绕点O逆时针旋转到三角形COD的位置,若旋转角是20°,则∠AOC的度数为.18.(3分)如图,下列推理是否正确,请写出你认为是正确推理的编号.①因为AB∥DC,所以∠ABC+∠C=180°②因为∠1=∠2,所以AD∥BC③因为AD∥BC,所以∠3=∠4④因为∠A+∠ADC=180°,所以AB∥DC.三、解答题(本大题共有4小题,共24分)19.(6分)先化简,再求值(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a),其中a=1,b=2.20.(6分)已知a+b=2,ab=2,求a2b+ab2的值.21.(6分)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠DOB是∠EOD 的两倍,即∠DOB=2∠EOD,求∠AOC,∠COB的度数.22.(6分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB∥()∴∠BAC+=180°()∵∠BAC=70°()∴∠AGD=()四、图形操作题(本大题共有2小题,共12分)23.(6分)在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.24.(6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴∥(同位角相等,两直线平行).∴∠C=∠ABD().又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF().五、实践与应用题(本大题共有2小题,共18分)25.(9分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?26.(9分)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了笔试和面试,他们的成绩如表所示:候选人测试成绩(百分制)笔试面试甲9585乙8395根据需要,笔试与面试的成绩按4:6的比例确定个人成绩(成绩高者被录用),那么谁将被录用?六、探究题(本大题共有2小题,共12分)27.(4分)小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.28.(8分)先阅读下列知识,然后回答后面的问题:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有解.当=≠时,方程组有解.当≠时,方程组有解.(2)判断二元一次方程组的解的情况:.判断二元一次方程组的解的情况:.判断二元一次方程组的解的情况:.(3)小明在解下面的二元一次方程组时,碰到了一个非常“严重”的问题,发现“10=8”,他知道这是不可能的,但是又找不到错误的原因,请你解释一下:解方程组:.解:由①得y=5﹣2x,代入②得4x+2(5﹣2x)=8,得10=8.请指出出现这种错误的原因.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016春•冷水江市期末)有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元.设大圆珠笔为x元/枝,小圆珠笔为y元/枝,根据题意,列方程组正确的是()A.B.C.D.【分析】设1枝大圆球笔售价为x元,1枝小圆珠笔的售价为y元.等量关系为:3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元,依此列出方程组即可.【解答】解:设1枝大圆球笔售价为x元,1枝小圆珠笔的售价为y元,根据题意得,故选B【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.2.(3分)(2016春•冷水江市期末)下列等式中,正确的是()A.3a﹣2a=1B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2﹣b2【分析】结合选项根据幂的乘方与积的乘方、完全平方公式的运算法则进行求解即可.【解答】解:A、3a﹣2a=a≠1,本选项错误;B、(a2)3=a6≠a5,本选项错误;C、(﹣2a3)2=4a6,本选项正确;D、(a﹣b)2=a2+b2﹣2ab≠a2﹣b2,本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、完全平方公式的知识,解答本题的关键在于熟练掌握各知识点的运算法则.3.(3分)(2006•嘉兴)一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)【分析】要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3﹣x=x(x2﹣1)没有分解完.3﹣x=x(x2﹣1)=x(x+1)(x﹣1),【解答】解:A、分解不彻底还可以继续分解:xB、C、D正确.故选A.【点评】因式分解要彻底,直至分解到不能再分解为止.4.(3分)(2016春•冷水江市期末)下面各图中∠1和∠2是对顶角的是()A.B.C.D.【分析】利用对顶角的定义(首先看是不是有共同的顶点,然后看两边是不是反向延长线)直接判断即可;【解答】解:∵有公共顶点且两条边都互为反向延长线的两个角称为对顶角,∴A,C没有共同的顶点,A,C错误,D、一边不是反向延长线上,D错误,B、满足对顶角的定义,B正确,故选B.【点评】此题是对顶角,邻补角题,主要考查了对顶角的意义,熟练掌握对顶角的意义是解本题的关键,判断一对角是不是对顶角,首先看是不是有共同的顶点,然后看两边是不是反向延长线.5.(3分)(2014•成都)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(3分)(2016春•冷水江市期末)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4环,方差分别是s 2甲=0.5,s2乙=0.7,s2丙=0.9,s2丁=1.5,射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差越大,波动性越大,越不稳定进行判断.【解答】解:∵s 2甲<s2乙<s2丙<s2丁,∴在本次测试中,成绩最稳定的是甲.故选A.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.(3分)(2016春•冷水江市期末)三元一次方程组的解是()A.B.C.D.【分析】把其中一个未知数当已知对待,可用此未知数表示出令外两个未知数,从而解出方程组.【解答】解:由②,得y=5﹣z,由③,得x=6﹣z,将y和x代入①,得11﹣2z=1,∴z=5,x=1,y=0∴方程组的解为.故选A.【点评】主要考查三元一次方程组的解法.8.(3分)(2006•北京)把代数式xy2﹣9x分解因式,结果正确的是()A.x(y2﹣9)B.x(y+3)2C.x(y+3)(y﹣3)D.x(y+9)(y﹣9)【分析】先提取公因式x,再根据平方差公式分解即可.2﹣9x,【解答】解:xy=x(y2﹣9),=x(y+3)(y﹣3).故选C.【点评】本题要用到二次分解因式,分解因式时一定要分解彻底.9.(3分)(2016春•冷水江市期末)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角【分析】根据旋转的性质、对顶角的概念、垂线和平行线的性质分别对每一项进行分析即可.【解答】解:A、旋转不改变图形的形状和大小,故本选项错误;B、两条平行直线被第三条直线所截,同位角相等,故本选项错误;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;D、对顶角相等,但相等的角不一定是对顶角,故本选项错误;故选C.【点评】此题考查了旋转的性质、对顶角的概念、垂线和平行线的性质,比较简答,注意熟记定理是解此题的关键.10.(3分)(2016春•冷水江市期末)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠3=180°B.∠1+∠2=∠3C.∠2+∠3+∠1=180°D.∠2+∠3﹣∠1=180°【分析】根据平行线的性质可得到∠2+∠BDC=180°,∠BDC+∠1=∠3,从而可找到∠1、∠2、∠3之间的关系.【解答】解:∵AB∥CD,∴∠2+∠BDC=180°,即∠BDC=180°﹣∠2,∵EF∥CD,∴∠BDC+∠1=∠3,即∠BDC=∠3﹣∠1,∴180°﹣∠2=∠3﹣∠1,即∠2+∠3﹣∠1=180°,故选D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.二、填空题(本大题共有8小题,每小题3分,共24分)11.(3分)(2016春•冷水江市期末)方程组的解是.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(3分)(2016春•冷水江市期末)已知a x=2,a y=3,求a x+2y=18.x+2y根据同底数幂的乘法的逆运算进行变形,对于a2y要化成(a y)2,再把【分析】把a已知代入.x+2y=a x•a2y=a x•(a y)2=2×32=18,【解答】解:a故答案为:18.【点评】本题考查了同底数幂的乘法和幂的乘方的性质,熟练掌握运算性质和法则是解题的关键,要注意法则的逆用.13.(3分)(2016春•冷水江市期末)若m2+n2=6,且m﹣n=3,则mn=﹣.2﹣(m2+n2),结合m2+n2=6,且m﹣n=3,即可得【分析】根据﹣2mn=(m﹣n)出mn的值.2﹣(m2+n2),且m2+n2=6,m﹣n=3,【解答】解:∵﹣2mn=(m﹣n)∴mn=﹣=﹣.故答案为:﹣.【点评】本题考查了完全平方公式,解题的关键是利用完全平方公式将mn变形为只含m2+n2与m﹣n的形式.本题属于基础题,难度不大,解决该题型题目时,能够熟练运用完全平方公式解决问题是关键.14.(3分)(2016春•冷水江市期末)如图,直线l与直线a,b相交,且a∥b,∠1=45°,则∠2的度数是45°.【分析】先求出∠3,再根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=45°,∴∠3=∠1=45°,∵a∥b,∴∠2=∠3=45°,故答案为:45°.【点评】本题考查了平行线的性质的应用,能根据平行线的得出∠2=∠3是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.15.(3分)(2016春•冷水江市期末)一张长方形纸条,折成如图所示的形状,若∠1=110°,则∠2=55°.【分析】先根据图形折叠的性质得出∠2=∠3,再根据平行线的性质即可得出∠1+∠4=180°,根据平角的定义即可得出∠2的度数.【解答】解:由图形折叠的性质可知∠2=∠3,∵AB∥CD,∴∠1+∠4=180°,∵∠1=110°,∴∠4=180﹣110°=70°,∴∠2===55°.故答案为:55°.【点评】本题考查的是图形翻折变换的性质及长方形的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”是解答此题的关键.16.(3分)(2016春•冷水江市期末)一组数据2,2,1,4,4,4的中位数是3.【分析】根据中位数的定义解答.需将这组数据从小到大重新排列.【解答】解:将这组数据从小到大重新排列后为1,2,2,4,4,4.最中间的那两个数是2,4,所以中位数是3.故答案为:3.【点评】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.(3分)(2016春•冷水江市期末)如图,将三角形AOB绕点O逆时针旋转到三角形COD的位置,若旋转角是20°,则∠AOC的度数为20°.【分析】根据旋转的性质,即可得出答案.【解答】解:∵旋转角是20°,∴∠AOC=20°;故答案为:20°.【点评】本题考查了旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.18.(3分)(2016春•冷水江市期末)如图,下列推理是否正确,请写出你认为是正确推理的编号①②④.①因为AB∥DC,所以∠ABC+∠C=180°②因为∠1=∠2,所以AD∥BC③因为AD∥BC,所以∠3=∠4④因为∠A+∠ADC=180°,所以AB∥DC.【分析】有图形中找到同位角,内错角,同旁内角结合平行线的性质和判定直接判断即可.【解答】解:①∵AB∥DC,∴∠ABC+∠C=180°,此结论正确;②∵∠1=∠2,∴AD∥BC,此结论正确;③∵AD∥BC,∴∠1=∠2,而∠3≠∠4,此结论错误,④∵∠A+∠ADC=180°,∴AB∥DC,此结论正确.故答案为①②④.【点评】此题是平行线的性质和判定,熟练掌握平行线的性质和判定是解本题的关键.三、解答题(本大题共有4小题,共24分)19.(6分)(2016春•冷水江市期末)先化简,再求值(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a),其中a=1,b=2.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.2﹣(b﹣a)2﹣2(b﹣a)(b+a)【解答】解:(a+b)=a2+2ab+b2﹣b2+2ab﹣a2﹣2b2+2a2=4ab+2a2﹣2b2,当a=1,b=2时,原式=2.【点评】本题考查了整式的混合运算法则和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.20.(6分)(2016春•冷水江市期末)已知a+b=2,ab=2,求a2b+ab2的值.【分析】首先提公因式ab,进而分解因式得出答案.【解答】解:∵a+b=2,ab=2,2b+ab2=ab(a+b)∴a=2×2=4.【点评】此题主要考查了提取公因式法的应用,正确分解因式是解题关键.21.(6分)(2016春•冷水江市期末)如图,直线AB、CD相交于点O,OE⊥AB,O 为垂足,如果∠DOB是∠EOD的两倍,即∠DOB=2∠EOD,求∠AOC,∠COB的度数.【分析】由垂直得∠EOB=90°,即∠EOD与∠DOB互余;再根据已知∠DOB是∠EOD 的两倍,得∠DOB=60°,由对顶角相等和邻补角性质得出结论.【解答】解:∵OE⊥AB,∴∠EOB=90°,∴∠EOD+∠DOB=90°,∵∠DOB=2∠EOD,∴∠DOB=60°,∴∠AOC=∠DOB=60°,∴∠COB=180°﹣60°=120°.【点评】本题考查了垂线的定义及对顶角和邻补角性质,要注意∠DOB是∠EOD的两倍和垂线的定义的结合运用,得方程组或比的关系,可求这两个角的度数.22.(6分)(2016春•冷水江市期末)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=∠3(两直线平行,同位角相等又∵∠1=∠2∴∠1=∠3(等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补)∵∠BAC=70°(已知)∴∠AGD=110°(补角定义)【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质求出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°(补角定义).故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠DGA,两直线平行,同旁内角互补,已知,110°,补角定义.【点评】本题考查了平行线的性质和判定的应用,能灵活运用平行线的性质和判定定理进行推理是解此题的关键,注意:平行线的性质是①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.四、图形操作题(本大题共有2小题,共12分)23.(6分)(2016春•冷水江市期末)在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【分析】(1)把A、B、C三点分别向左平移6个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可;(2)连接AO并延长,然后截取OA2=OA,则A2就是A的对应点,同样可以作出B、C的对应点,然后顺次连接即可.【解答】解:(1)所作图形如图所示;(2)所作图形如图所示.【点评】本题考查了利用平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(6分)(2016春•冷水江市期末)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴EC∥DB(同位角相等,两直线平行).∴∠C=∠ABD(两直线平行,同位角相等).又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).【分析】根据平行线的判定方法:同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行做题求解.【解答】解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换),∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴AC∥DF(内错角相等,两直线平行).【点评】本题考查平行线的判定方法.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.五、实践与应用题(本大题共有2小题,共18分)25.(9分)(2016春•冷水江市期末)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?【分析】设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得,解得.故小亮妈妈买了甲种水果4千克,乙种水果2千克.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.26.(9分)(2016春•冷水江市期末)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了笔试和面试,他们的成绩如表所示:候选人测试成绩(百分制)笔试面试甲9585乙8395根据需要,笔试与面试的成绩按4:6的比例确定个人成绩(成绩高者被录用),那么谁将被录用?【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(85×6+95×4)÷10=89(分),乙的平均成绩为:(95×6+83×4)÷10=90.2(分),因为乙的平均分数最高,所以乙将被录取.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.六、探究题(本大题共有2小题,共12分)27.(4分)(2016春•通川区期末)小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.28.(8分)(2016春•冷水江市期末)先阅读下列知识,然后回答后面的问题:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有无数解.当=≠时,方程组有无解.当≠时,方程组有唯一解.(2)判断二元一次方程组的解的情况:无数解.判断二元一次方程组的解的情况:无解.判断二元一次方程组的解的情况:唯一解.(3)小明在解下面的二元一次方程组时,碰到了一个非常“严重”的问题,发现“10=8”,他知道这是不可能的,但是又找不到错误的原因,请你解释一下:解方程组:.解:由①得y=5﹣2x,代入②得4x+2(5﹣2x)=8,得10=8.请指出出现这种错误的原因.【分析】(1)根据二元一次方程组的解与系数的关系求解即可;(2)根据(1)的结论求解即可;(3)根据(1)的结论可知,原方程组外角,所以出现错误.【解答】解:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有无数解.当=≠时,方程组有无解.当≠时,方程组有唯一解.故答案为无数;无;唯一;(2)∵==,∴二元一次方程组有无数解;∵=≠,∴二元一次方程组无解;∵≠,∴二元一次方程组有唯一解;故答案为无数解;无解;唯一解;(3)∵=≠,∴二元一次方程组无解,小明出现了10=8的这种错误.【点评】本题考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.掌握二元一次方程组的解的三种情况是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
期末测试
(时间:90分钟满分:120分)
一、选择题(每小题3分,共24分)
1.下列图形中,是轴对称图形的有( )
A.1个
B.2个
C.3个
D.4个
2.方程组
25,
21
x y
x y
-=
-=



的解是( )
A.
1
3
x
y
=
=



B.
3
1
x
y
=
=



C.
2
2
x
y
=
=



D.
2
1
x
y
=
=



3.下列运算正确的是( )
A.(-2x2)3=-6x6
B.(3a-b)2=9a2-b2
C.x2·x3=x5
D.x2+x3=x5
4.下面的多项式能因式分解的是( )
A.x2+y
B.x2-y
C.x2+x+1
D.x2-2x+1
5.在下图的四个图形中,不能由左边的图形经过旋转或平移得到的是( )
6.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )
A.50° B.45° C.35° D.30°
7.若方程组
237,
59
x y
x y
+=
-=



的解是方程3x+my=8的一个解,则m=( )
A.1
B.2
C.3
D.4
8.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A.a<13,b=13 B.a<13 ,b<13 C.a>13,b<13 D.a>13,b=13
二、填空题(每小题3分,共24分)
9.若(m-3)x+3y|m-2|+1=0是关于x,y的二元一次方程,则m=___________.
10.计算:(a3)2·a3=___________.
11.如图,边长为a、b的长方形,它的周长为14,面积为10,则a2b+ab2的值为
___________.
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过___________次旋转而得到,每一次旋转___________度
.
13.已知甲组数据的平均数x

,乙组数据的平均数x

,且x

=x

,而甲数据的方差为s2

=1.25,
乙组数据的方差为s2

=3,则___________较稳定.
14.已知方程组
4
234
ax by
x y
-=
+=





2
432
ax by
x y
+=
-=




的解相同,那么a+b=___________.
15.如图,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=___________.
16.观察下列等式:
32-12=8,52-12=24,72-12=48,92-12=80,…
由以上规律可以得出第n个等式为______________________.
三、解答题(共72分)
17.(8分)如图,在正方形网格上的一个三角形ABC.(其中点A,B,C均在网格上)
(1)作出把三角形ABC 向右平移4个单位,再向下平移3个单位后所得到的三角形A 1B 1C 1; (2)作三角形ABC 关于直线MN 对称的三角形A 2B 2C 2.
18.(8分)若4,
2x y ==⎧⎨⎩是二元一次方程ax-by=8和ax+2by=-4的公共解,求2a-b 的值.
19.(8分)先化简,再求值:(a +2b)2+(b +a)(b -a),其中a =-1,b =2.
20.(8分)已知x+1
x
=5,求下列各式的值:
(1)x 2+21
x
; (2)(x-1x )2.
21.(8分)分解因式:3a(x 2+4)2-48ax 2.
22.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分,则成绩较为整齐的是________队.
23.(10分)已知:如图,∠1=∠2,当DE与FH有什么位置关系时,CD∥FG?并说明理由.
24.(12分)穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1 957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.
(1)求甲乙两班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.2米,乙组平均每天比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?
参考答案
1.C
2.B
3.C
4.D
5.D
6.D
7.B
8.A
9.1 10.a 9 11.70 12.4 72 13.甲 14.3
2
15.70° 16.(2n+1)2-12=4n(n+1) 17.图略.
18.因为4,
2x y ==⎧⎨⎩
是二元一次方程ax-by=8和ax+2by=-4的公共解,
所以428,
44 4.
a b a b -=+=-⎧⎨⎩解得1,2.a b ==-⎧⎨⎩
所以2a-b=2×1-(-2)=4.
19.原式=a 2+4ab +4b 2+b 2-a 2=4ab +5b 2.
当a=-1,b =2时,原式=4×(-1)×2+5×22=-8+20=12.
20.(1)因为x+1x =5,所以x 2+2+21x =25,即x 2+21
x =23.
(2)由(1)知x 2+21x =23,所以(x-1x )2=x 2-2+21
x
=23-2=21.
21.原式=3a [(x 2+4)2-16x 2]=3a(x 2+4+4x)(x 2
+4-4x)=3a(x+2)2(x-2)2. 22.(1)9.5;10.
(2)x 乙=1
10×(10+8+7+9+8+10+10+9+10+9)=9,
s 2乙=1
10
×[(10-9)2+(8-9)2+…+(10-9)2+(9-9)2]=1.
(3)乙.
23.当DE ∥FH 时,CD ∥FG. 理由如下:
因为DE ∥FH ,
所以∠EDF=∠HFD (两直线平行,内错角相等).
所以∠EDF-∠1=∠HFD-∠1=∠HFD-∠2,即∠CDF=∠GFD. 所以CD ∥FG (内错角相等,两直线平行).
24.(1)设甲、乙两个班组平均每天分别掘进x 米、y 米,由题意得
(
)0.5,657.x y x y -=+=⎧⎨⎩解得5,
4.5.x y ==⎧⎨
⎩ 答:甲乙两个班组平均每天分别掘进5米、4.5米. (2)(1 957-57)÷(5+4.5)=200(天),
(1 957-57)÷(5+4.5+0.3+0.2)=190(天), 200-190=10(天).
答:能比原来少用10天完成任务.。

相关文档
最新文档