2020八年级数学上册期末综合练习题及答案
人教版八年级上册数学期末常考题型复习卷--含答案
2020年人教版八年级上册数学期末常考题型复习卷一.选择题1.下列长度的三条线段能组成三角形的是()A.1,1,2 B.4,4,9 C.3,4,5 D.6,16,8 2.下列图形中对称轴的条数小于3的是()A. B. C. D.3.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中1nm=10﹣9m),用科学记数法表示这个最小刻度(单位:m),结果是()A.2×10﹣8m B.2×10﹣9m C.2×10﹣10m D.2×10﹣11m 4.下列计算错误的是()A.a2•a=a3B.(ab)2=a2b2C.(a2)3=a6D.﹣a+2a=﹣2a25.已知△ABC≌△A1B1C1,若∠C=60°,则∠C1的度数为()A.50°B.60°C.70°D.120°6.一副三角板如图方式摆放,BM平分∠ABD,DM平分∠BDC,则∠BMD 的度数为()A.102°B.107.5°C.112.5°D.115°7.如图,在△ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm,则BC的长度等于()A.5cm B.10cm C.15cm D.20cm8.如图,△ABC的三边AB、BC、CA长分别是10、15、20.其三条角平分线交于点O,将△ABC分为三个三角形,S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5 9.要使(6x﹣m)(3x+1)的结果不含x的一次项,则m的值等于()A.2 B.3 C.0 D.110.若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于()A.﹣2 B.0 C.1 D.211.为了疫情防控需要,某防护用品厂计划生产130000个口罩,但是在实际生产时,……,求实际每天生产口罩的个数,在这个题目中,若设实际每天生产口罩x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产500个,结果延期10天完成B.每天比原计划少生产500个,结果提前10天完成C.每天比原计划少生产500个,结果延期10天完成D.每天比原计划多生产500个,结果提前10天完成12.如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题13.如图,为了安全,建筑工地上的塔吊上部设计成三角形结构,这是利用了三角形的性.14.因式分解:7a2﹣7b2=.15.当x时,分式有意义.16.如图,点D,E分别在线段AB,AC上,CD与BE相交于点P,已知AD=AE.若△ABE≌△ACD,则可添加的条件为.17.在平面直角坐标系中,点A(﹣3,﹣2)关于y轴的对称点为.18.已知25x2+kxy+4y2是一个完全平方式,那么k的值是.19.如图,在△ABC中,BD,CE是角平分线,它们交于点O,∠BOC =140°,则∠A=.20.如图,△ABC中,AB=AC,BC=4,△ABC的面积为20,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为.三.解答题21.计算:(1)3x3y•(2xy2﹣3xy)(2)(a﹣2b)(a2+2ab+4b2).22.因式分解:(1)a2﹣1+b2﹣2ab (2)(p4+q4)2﹣(2p2q2)2.23.解分式方程:(1)(2).24.先化简,再求值:,其中x=2020.25.如图,∠B=30°,∠C=50°,AD平分∠BAC,求∠DAC与∠ADB 的度数.26.如图:已知AD=BE,BC=EF,且BC∥EF,请说明线段AC和DF 的关系.27.如图,点A,B,C都在网格的格点上,每小方格是边长为1个单位长度的正方形.利用格点和直尺画图并填空:(1)画出格点△ABC关于直线MN轴对称的△A'B'C′;(2)画出△ABC中BC边上的高线AD.28.在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?29.在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D =180°,则∠AOB+∠COD=(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.30.若x满足(5﹣x)(x﹣2)=2,求(x﹣5)2+(2﹣x)2的值.解:设5﹣x=a,x﹣2=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,所以(x﹣5)2+(2﹣x)2=(5﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=32﹣2×2=5.请运用上面的方法求解下面的问题:(1)若x满足(8﹣x)(x﹣2)=5,求(8﹣x)2+(x﹣2)2的值;(2)已知正方形ABCD的边长为x,E、F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,求长方形EMFD的周长.31.如图,已知△ABC中,AB=AC=9cm,∠B=∠C,BC=6cm,点D 为AB的中点.(1)如果点P在边BC上以1.5cm/s的速度由点B向点C运动,同时,点Q在边CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD 与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD 与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)参考答案一.选择题1.解:A、1+1=2,不能组成三角形,不符合题意;B、4+4<9,不能组成三角形,不符合题意;C、3+4>5,能组成三角形,符合题意;D、6+8<16,不能组成三角形,不符合题意;故选:C.2.解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.3.解:0.2nm=0.2×10﹣9m=2×10﹣10m.故选:C.4.解:A、a2•a=a3,故本选项不合题意;B、(ab)2=a2b2,故本选项不合题意;C、(a2)3=a6,故本选项不合题意;D、﹣a+2a=a,故本选项符合题意;故选:D.5.解:∵△ABC≌△A1B1C1,∴∠C1=∠C=60°,故选:B.6.解:∵BM平分∠ABD,DM平分∠BDC,∴∠MBD=,∠BDM=,∴∠BMD=180°﹣∠MBD﹣∠BDM=180°﹣30°﹣37.5°=112.5°,故选:C.7.解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长=BC+BE+EC=BC+AE+EC=BC+AC,∴BC+AC=25cm,∴BC=25﹣AC=25﹣15=10(cm),故选:B.8.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,故选:C.9.解:(6x﹣m)(3x+1)=18x2+6x﹣3mx﹣m=18x2+(6﹣3m)x﹣m∵不含x的一次项,∴6﹣3m=0,∴m=2.故选:A.10.解:∵x+y=1,xy=﹣2,∴(1﹣x)(1﹣y)=1﹣y﹣x+xy=1﹣(x+y)+xy=1﹣1+(﹣2)=﹣2,故选:A.11.解:根据方程可得:为了疫情防控需要,某防护用品厂计划生产130000个口罩,但是在实际生产时,每天比原计划多生产500个,结果提前10天完成,求实际每天生产口罩的个数.故选:D.12.解:∵Rt△ABC≌Rt△AB'C',∴AB=AB',AC=AC',∠ABC=∠AB'C',∠ACB=∠AC'B'=90°,∵∠ABC=∠CAB',∴∠CAB'=∠AB'C',∴AC∥B'C',∴∠CAC'+∠AC'B'=90°,∴∠CAC'=90°=∠ACB,∴AC'∥BC,故①正确;∵AC=AC',∠CAC'=90°,∴△CAC'是等腰直角三角形,故②正确;若AB=AC'时,∵点D是BC'中点,∴AD⊥C'B,∠BAD=∠C'AD,∴∠CAD=∠B'AD,即AD平分∠CAB',∵AB≠AC',∴③,④错误;故选:B.二.填空题13.解:为了安全,建筑工地上的塔吊上部设计成三角形结构,这是利用了三角形的稳定性,故答案为:稳定.14.解:7a2﹣7b2=7(a2﹣b2)=7(a+b)(a﹣b).故答案为:7(a+b)(a﹣b).15.解:根据题意,得2x+1≠0.解得x.故答案是:.16.解:添加条件:AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);添加条件:∠B=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS);添加条件:∠AEB=∠ADC,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA);故答案为:AB=AC或∠B=∠C或∠AEB=∠ADC(答案不唯一).17.解:点A(﹣3,﹣2)关于y轴的对称点为(3,﹣2),故答案为:(3,﹣2).18.解:∵25x2+kxy+4y2是一个完全平方式,∴kxy=±2•5x•2y,解得:k=±20,故答案为:±20.19.解:在△BOC中,∠BOC=140°,∴∠OBC+∠OCB=180°﹣140°=40°.∵BD平分∠ABC,CE平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=80°,∴∠A=180°﹣(∠ABC+∠ACB)=100°.故答案为:100°.20.解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=20,解得AD=10,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=10+×4=12.故答案为:12.三.解答题21.解:(1)3x3y•(2xy2﹣3xy)=6x4y3﹣9x4y2;(2)(a﹣2b)(a2+2ab+4b2)=a3+2a2b+4ab2﹣2a2b﹣4ab2﹣8b3=a3﹣8b3.22.解:(1)原式=(a2﹣2ab+b2)﹣1=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1);(2)原式=(p4+q4+2p2q2)(p4+q4﹣2p2q2)=(p2+q2)2(p2﹣q2)2=(p2+q2)2(p+q)2(p﹣q)2.23.解:(1)两边同时乘以最简公分母(x﹣2),可得2x=x﹣2+1,解得x=﹣1,检验:当x=﹣1时,x﹣2≠0,所以x=﹣1是原分式方程的解;(2)两边同时乘以最简公分母(x+1)(x﹣1),可得x2+x﹣3x+1=x2﹣1,解得x=1;检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是原方程的增根,原方程无解.24.解:=•=•=,当x=2020时,原式===.25.解:∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AD平分∠BAC,∴∠DAC=∠BAC=50°,∴∠ADB=∠DAC+∠C=80°.26.解:AC与DF的关系是相等且平行,理由:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,∵BC∥EF,∴∠ABC=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DE,∠A=∠EDF,∴AC∥DF,即AC与DF的关系是相等且平行.27.解:(1)如图所示,△A'B'C′即为所求.(2)如图所示,AD即为所求.28.解:(1)设A型口罩的单价为x元,则B型口罩的单价为(x﹣1.5)元,根据题意,得:=.解方程,得:x=4.经检验:x=4是原方程的根,且符合题意.所以x﹣1.5=2.5.答:A型口罩的单价为4元,则B型口罩的单价为2.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:2.5×2m+4m≤3800.解不等式,得:m≤422.因为m为正整数,所以正整数m的最大值为422.答:增加购买A型口罩的数量最多是422个.29.解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180°;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠OAB=DAB,CBA,∠OCD=BCD,∠ODC=ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,CBA,,,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,∴=90°,∴∠DAB+∠ADC=180°,∴AB∥CD.30.解:(1)设8﹣x=a,x﹣2=b,则ab=5,a+b=6,∴(8﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=36﹣10=26.(2)∵AE=1,CF=3∴DE=x﹣1,DF=x﹣3,∵长方形EMFD的面积是35,∴DE•DF=(x﹣1)(x﹣3)=35,设x﹣1=a,x﹣3=b,则ab=35,a﹣b=2,∴(a+b)2=(a﹣b)2+4ab=4+140=144,又∵a+b>0,∴a+b=12,∴长方形EMFD的周长=2DE+2DF=2(a+b)=24.31.解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1.5=1.5(厘米),∵AB=9cm,点D为AB的中点,∴BD=4.5cm.又∵PC=BC﹣BP,BC=6cm,∴PC=6﹣1.5=4.5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中,,∴△BPD≌△CQP(SAS);②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=3,BD=CQ=4.5,∴点P,点Q运动的时间t=BP÷1.5=3÷1.5=2(秒),∴v Q=CQ÷t=4.5÷2=2.25(cm/s);(2)设经过x秒后点P与点Q第一次相遇,由题意,得 2.2.5x=1.5x+2×9+6,解得x=32,∴点P共运动了32×1.5=48(cm).∵32×2.25=72,∴点P、点Q在AC边上相遇,∴经过32秒点P与点Q第一次在边AC上相遇.故答案为:32;AC.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
2020人教版八年级上册数学试题及答案
2020人教版八年级上期期末考试数学试题(总分:120分 考试时间:120分钟)一、选择题(每小题3分,共30分) 1. 分式2xx -有意义则x 的范围是( ) A .x ≠ 2B .x ≠ – 2C .x ≠ 0且x ≠ – 2D .2x ≠±2. 以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( )A .1个B .2个C .3个D .4个3. 内角和与外角和相等的多边形是( )A .三角形B .四边形C .五边形D .六边形4. 下列命题中的真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边和一组对角分别相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5. 若点M (a ,b )在第四象限,则点N (– a ,–b + 2)在( )A .第一象限B .第二象限C .第三象限D .第四象限.6. 如图,已知E 、F 、G 分别是△ABC 各边的中点,△EBF 的面积为2,则△ABC 的面积为( ) A .2B .4C .6D .8G EC BA(6题图) (7题图)7. 如图,在矩形ABCD 中,O 是BC 的中点,∠AOD = 90°,若矩形ABCD 的周长为30cm ,则AB的长为()A.5 cm B.10 cm C.15 cm D.7.5 cm8.函数myx=与(0)y mx m m=-≠在同一平面直角坐标系中的图像可能是()9.如图,E为矩形ABCD的边CD上的一点, AB=AE=4,BC=2,则∠BEC是()A.15° B.30° C.60° D.75°(9题图)(10题图)10.如图所示,等腰直角三角形ABC位于第一象限,AB = AC = 2,直角顶点A在直线y = x 上,其中A点的横坐标为1,且两条直角边AB,AC分别平行于x轴,y轴,•若双曲线(0)ky kx=≠与△ABC有交点,则k的取值范围是()A.1 < k < 2 B.1 ≤k≤ 3 C.1 ≤k≤ 4 D.1 ≤k < 4二、填空题(每小题3分,共30分)11.P(3,– 4)关于原点对称的点的坐标是___________.12.菱形的周长是8 cm,则菱形的一边长是___________.13.用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是___________(只填序号).14.如图,正方形A的面积是___________.15.已知直线6y x=+与x轴、y轴围成一个三角形,则这个三角形面积为___________.(14题图)E16. 如图,梯形ABCD 中,DC //AB ,∠D = 90︒,AD = 4 cm ,AC = 5 cm ,218cm ABCD S =梯形,那么AB = ___________.D CBA(16题图) (17题图) (18题图) 17. 如图,已知函数y = x + b 和y = ax + 3的图像交点为P ,•则不等式x + b > ax + 3的解集为___________.18. 如图,将边长为1的正方形ABCD 绕A 点按逆时针方向旋转30°,至正方形AB ′C ′D ′,则旋转前后正方形重叠部分的面积是___________.19. 如图,梯形ABCD 中,△ABP 的面积为20平方厘米,△CDQ 的面积为35平方厘米,则阴影四边形的面积等于___________平方厘米.20. 下图表示甲、乙两名选手在一次自行车越野赛中,路程y (千 米)随时间x (分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇. ②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇. 正确的结论为 .三、解答题(21~24每题4分,25题8分,共24分)(19题图)x 分(20题图)21.22x y yy x x⎛⎫⎛⎫-⋅-÷⎪ ⎪⎝⎭⎝⎭22.222244(4)2x xy yx yx y-+÷--23.21221x-=-24.11322xx x-+=--25.已知直线y kx b=+与直线23y x=-交于y轴上同一点,且过直线3y x=-上的点(m,6),求其解析式.四、解答题(第26——27题,每题6分;第28——30题每题8分。
北京市朝阳区2020-2021学年八年级上学期期末数学试题(含答案解析)
北京市朝阳区2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.新版《北京市生活垃圾管理条例》于2020年5月1日实施,条例规定生活垃圾应按照厨余垃圾、可回收物、有害垃圾、其他垃圾的分类,分别投入相应标识的收集容器.下图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有( )A .1个B .2个C .3个D .4个 2.下列计算正确的是( )A .235a a a ⋅=B .325()a a =C .2336(2)6ab a b =D .223344a a a ÷= 3.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )A .三边形B .四边形C .五边形D .六边形 4.下列因式分解变形正确的是( )A .22242(2)a a a a -=-B .2221(1)a a a -+=-C .24(2)(2)a a a -+=+-D .256(2)(3)a a a a --=-- 5.把分式方程11122x x x--=--化为整式方程正确的是( ) A .1(1)1x --= B .1(1)1x +-=C .1(1)2x x --=-D .1(1)2x x +-=- 6.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上,可得△ABC ≌△EDC ,这时测得DE 的长就是AB 的长.判定△ABC ≌△EDC 最直接的依据是( )A .HLB .SASC .ASAD .SSS7.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中最多能画出( )个格点三角形与△ABC 成轴对称.A .6个B .5个C .4个D .3个8.n m ,1m n +,1n 都有意义,下列等式①22n n m m=;②111m n m n =++;③22n n m m =;④22n n m m +=+中一定不成立.....的是( ) A .②④B .①④C .①②③④D .②二、填空题9.分解因式:328x x -=______.10.若分式21x +有意义,则x 的取值范围是_________. 11.若20a b -=,且0b ≠,则分式a b a b +-的值为______. 12.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________14.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.15.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.16.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.三、解答题17.计算:3232()a a a a ⋅+-÷.18.解分式方程:22111x x x =--. 19.解分式方程:31(1)(2)1x x x x +=-+-. 20.已知2277x x -=,求代数式2(23)(3)(21)x x x ---+的值.21.如图,在△ABC 中,AB >AC >BC ,P 为BC 上一点(不与B ,C 重合).在AB 上找一点M ,在AC 上找一点N ,使得△AMN 与△PMN 全等,以下是甲、乙两位同学的作法.甲:连接AP ,作线段AP 的垂直平分线,分别交AB ,AC 于M ,N 两点,则M ,N 两点即为所求;乙:过点P 作PM ∥AC ,交AB 于点M ,过点P 作PN ∥AB ,交AC 于点N ,则M ,N 两点即为所求.(1)对于甲、乙两人的作法,下列判断正确的是 ;A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,补全图形并证明.22.如图,在△ABC 中,AD 平分∠BAC ,BD ⊥AD 于点D ,过点D 作DE ∥AC 交AB 于点E .求证:E 为AB 的中点.23.2020年12月17日,中国研制的嫦娥五号返回器成功携带月球样品着陆地球,在接近大气层时,它的飞行速度接近第二宇宙速度,约为某列高铁全速行驶速度的112倍.如果以第二宇宙速度飞行560千米所用时间比该列高铁全速行驶10千米所用时间少50秒,那么第二宇宙速度是每秒多少千米?24.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.25.在△ABC 中,∠C =90°,AC =BC =2,直线BC 上有一点P ,M ,N 分别为点P 关于直线AB ,AC 的对称点,连接AM ,AN ,BM .(1)如图1,当点P 在线段BC 上时,求∠MAN 和∠MBC 的度数;(2)如图2,当点P 在线段BC 的延长线上时,①依题意补全图2;②探究是否存在点P ,使得3BM BN=,若存在,直接写出满足条件时CP 的长度;若不26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当AB>AC时,∠C >∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°-∠B,∠CAD=90°-∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:参考答案1.B【分析】根据轴对称图形的概念判断即可.【详解】解:厨余垃圾是轴对称图形;可回收物不是轴对称图形,注意箭头;有害垃圾是轴对称图形;其他垃圾不是轴对称图形,注意箭头.所以是轴对称图形的有2个.故选:B .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.A【分析】根据幂的运算法则和整式的除法法则对各选项进行计算,即可作出判断.【详解】A 、232+35=a a a a ⋅=,故本选项正确;B 、32236=()a a a ⨯=,故本选项错误;C 、23336368()2=2ab a b a b =,故本选项错误;D 、223344a a ÷=,故本选项错误; 故选:A【点睛】本题主要考查了同底数幂的乘法,幂的乘方,积的乘方,整式的除法,正确掌握相关运算法则是解题关键.3.D【分析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x ,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n ﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n 边形的内角的和等于: (n - 2)×180°(n 大于等于3且n 为整数);多边形的外角和为360°.4.B【分析】根据提公因式分解因式可得出A 错误;根据完全平方公式可得B 正确;根据平方差公式可得C 错误;根据十字相乘法可判断D 错误.【详解】A 、2242(2)a a a a -=-,故此选项错误;B 、2221(1)a a a -+=-,故此选项正确;C 、24(2)(2)a a a -+=+-,故此选项错误;D 、256(6)(+1)a a a a --=-,故此选项错误.故选:B【点睛】本题主要考查了因式分解,要灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要提取公因式,再考虑运用公式法分解.5.D【分析】两边同时乘以最简公分母2x -即可化为整式方程,再依次判断即可.【详解】解:两边同时乘以2x -得1(1)2+-=-,x x故选:D.【点睛】本题考查解分式方程.注意去分母两边同时乘以最简公分母时两边都要乘,每一项都要乘.6.C【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,再根据已知选择判断方法.【详解】解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,∴能证明△ABC≌△EDC最直接的依据是ASA.故选:C.【点睛】本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.A【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.【详解】解:如图,可以画6个.【点睛】本题考查了轴对称变换,能确定对称轴的位置是解题关键.8.D【分析】根据题意,判断出0m ≠,0n ≠,+0m n ≠,根据分式的性质逐个判断即可.【详解】解:∵ n m ,1m n +,1n都有意义, ∴ 0m ≠,0n ≠,+0m n ≠, ①222=n n n m mm ⎛⎫= ⎪⎝⎭,仅需10n n m m ⎛⎫-= ⎪⎝⎭,即=1n m 时成立; ②111=m n m n++,不成立; ③22n n m m=,(右侧分子分母同时除以2),因此成立; ④22n n m m +=+,()()2=2n m m n ++即2=2n m ,当=n m 时成立; 故仅有②一定不成立,故选D【点睛】本题综合考查了分式的基本性质,解题关键是根据题意得出m 、n 和+m n 的范围. 9.()()222+-x x x【分析】原式提取2x ,再利用平方差公式分解即可.【详解】解:328x x -22(4)x x =-2(2)(2)x x x =+-,故答案为:()()222+-x x x .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【解析】 ∵分式21x +有意义, ∴10x +≠,解得1x ≠-.故答案为1x ≠-.11.3-【分析】由已知2a−b =0,可知b =2a ;将所得结果代入所求的式子中,经过约分、化简即可得到所求的值.【详解】解:∵2a−b =0,∴b =2a ; ∴23=32a b a a a a b a a a++==----. 故答案为−3.【点睛】正确对式子进行变形,化简求值是解决本题的关键.在解题过程中要注意思考已知条件的作用.12.(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.13.80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.14.1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB∴112122OC OB ==⨯= 故答案为:1.【点睛】此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键.15.④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.16.5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.17.0.【分析】原式先计算积的乘方,再计算同底数幂的乘除法即可.【详解】解:3232()a a a a ⋅+-÷=462a a a -÷=44a a -=0.【点睛】此题主要考查了积的乘方和同底数幂的乘除法,熟练掌握运算法则是解答此题的关键. 18.方程无解.【分析】先两边同乘以(1)(1)x x +-将分式方程化为整式方程,再按照移项、合并同类项、系数化为1的步骤解方程即可得.【详解】 22111x x x =--,即211(1)(1)x x x x =-+-, 方程两边同乘以(1)(1)x x +-化成整式方程,得12x x +=,移项,得21x x -=-,合并同类项,得1x -=-,系数化为1,得1x =,经检验,1x =时,原分式方程的分母等于0,即1x =不是原方程的解,故方程无解.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解题关键.19.方程无解【分析】去分母将分式方程化为整式方程,求解并验证根即可.【详解】解:去分母得:3(1)(2)(2)x x x x +-+=+,去括号得:22322x x x x ++-=+,移项合并得:1x -=-,解得:1x =.经检验1x =是该方程的增根,即方程无解.【点睛】本题考查解分式方程.解分式方程的思路就是去分母两边乘以最简公分母,将分式方程化为整式方程求解.解分式方程一定不要忘了验根.20.19【分析】先通过整式的运算法则将代数式化简成22712x x -+,再整体代入求值.【详解】解:原式()()224129263x x x x x =-+-+-- 224129253x x x x =-+-++22712x x =-+∵2277x x -=,∴2277x x -=,∴原式71219=+=.【点睛】本题考查整式的化简求值,解题的关键是掌握整体代入的思想求值.21.A .【分析】(1)如图1,根据线段垂直平分线的性质得到MA=MP,NA=NP,则根据“SSS”可判断△AMN≌△PMN,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形AMPN为平行四边形,则根据平行四边形的性质得到MA=PN,MP=AN,则根据“SSS”可判断△AMN≌△PNM,则可对乙进行判断.(2)根据(1)即可得出证明过程【详解】(1)解:如图1,∵MN垂直平分AP,∴MA=MP,NA=NP,而MN=MN,∴△AMN≌△PMN(SSS),所以甲正确;如图2,∵MN∥AN,PN∥AM,∴四边形AMPN为平行四边形,∴MA=PN,MP=AN,而MN=MN,∴△AMN≌△PNM(SSS),所以乙正确.故选:A.(2)正确做法的证明同(1)【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.22.见解析【分析】证明AE=DE,EB=DE即可解决问题【详解】证明:∵AD平分∠BAC∴∠CAD=∠EAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠EAD=∠ADE,∴DE=AE,∵BD⊥AD,∴∠ADB=90°,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∵∠EAD=∠ADE,∴∠BDE=∠ABD,∴BE=DE,∴AE=BE,∴E是AB的中点.【点睛】本题考查等腰三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.第二宇宙速度是每秒11.2千米.【分析】设第二宇宙速度是每秒xkm,则高铁全速行驶的速度是每秒1112x km,根据第二宇宙速度飞行560千米所用时间+50=该列高铁全速行驶10千米所用时间,列出方程求解即可.【详解】解:设第二宇宙速度是每秒xkm ,则高铁全速行驶的速度是每秒1112x km , 根据题意, 11125601050x x+=, 解得11.2x =,经检验11.2x =是该方程的解.所以,第二宇宙速度是每秒11.2千米.【点睛】本题考查分式方程的应用.能结合题意找出等量关系列出方程是解题关键.不要忘记验根哦. 24.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在. 25.(1)∠MAN =90°,∠MBC =90°;(2)补全图形见解析;(3)存在,CP=1.【分析】(1)连接CN ,AP ,MP ,根据轴对称的性质和等腰三角形三线合一可得∠NAC=∠CAP ,∠PAB=∠MAB ,∠ABC=∠ABM ,再根据等腰直角三角形的性质即可求得∠MAN 和∠MBC ;(2)①依据轴对称图形对应点的连线被对称轴垂直平分补全图即可;②根据垂直平分线的性质可得PB=BM ,PC=CN ,再设BN 长为x ,利用3BM BN和线段的和差列出方程求解即可.【详解】解:(1)如图,连接CN ,AP ,MP ,∵N 、P 关于AC 对称,∴C 为PN 的中点,且AC 为NP 的中垂线,∴AN=AP ,∴△ANP 为等腰三角形,∴∠NAC=∠CAP (三线合一),同理可证∠PAB=∠MAB ,∠ABC=∠ABM ,∵AC=BC=2,∠ACB=90°,∴∠CAB=∠ABC=45°,∴∠MAN=∠NAC+∠CAP+∠PAB+∠BAM=2∠CAB=90°,∠MBC=∠ABC+∠ABM=2∠ABC=90°;(2)①补全图2如下,②由(1)知B 在PM 的中垂线上,A 在PN 的中垂线上,∴PB=BM ,PC=CN ,设BN 长为x ,则BM 的长为3x ,CN 长为2-x ,∴PC=CN=2-x ,∵PB=BM=PC+BC,∴322x x =-+,解得x=1,∴满足条件的P 点存在,且CP=2-1=1.【点睛】本题考查轴对称的性质,作轴对称图形,等腰三角形三线合一,垂直平分线的性质等.理解轴对称图形对应点连线被对称轴垂直平分是解题关键.26.(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C . ∵AB >AC ,∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)
北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)一、单选题1.某班9名同学的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( ).A .59,63B .59,61C .59,59D .57,612.已知一次函数y =(a -1)x -1+3a ,当x ≤2时,y ≥0,则a 的取值范围为( ) A .a ≤35 B .a <1 C .35≤a <1 D .35≤a ≤1 3.如图所示,14∠=∠,再从①//AB CD ;②12∠=∠;③34∠=∠;④BAD CDA ∠=∠中选取一个条件就可以得出23∠∠=,这个条件可以是( )A .仅①B .仅④C .仅①④D .①②③④ 4.估计48的立方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 5.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3% ,96.1% , 94.3% ,91.7% ,93.5%.关于这组数据,下列说法正确的是( )A .平均数是93.96%B .方差是0C .中位数是93.5%D .众数是94.3%6.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的( )A .众数B .方差C .平均数D .频数7.如图,3,11在数轴上的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )8.如果23x y -+和()22310x y +-互为相反数,那么,x y 的值是( ) A .117167x y ⎧=⎪⎪⎨⎪=⎪⎩ B .167117x y ⎧=⎪⎪⎨⎪=⎪⎩ C .167117x y ⎧=-⎪⎪⎨⎪=-⎪⎩ D .117167x y ⎧=-⎪⎪⎨⎪=-⎪⎩9.64的值是( )A .4B .±4C .8D .±810.初二年级在小学段期间外出游学,同学们所乘的客车先在公路上匀速行驶,在服务区休息一段时间后,进入高速路继续匀速行驶,已知客车行驶的路程s(千米)与行驶的时间r(小时)的函数关系的图象如图所示,则客车在高速路上行驶的速度为( )A .60千米/小时B .75千米/小时C .80千米/小时D .90千米/小时 11.函数y 11x -+中,自变量x 的取值范围是( ) A .x ≥–1B .x >2C .x ≥–1且x ≠2D .x >–1且x ≠2二、填空题12123_____. 13.冷冻一个25℃的物体,如果它每小时下降2℃,则物体的温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是__________.14.己知点P 1与P 2,P 2与P 3分别关于y 轴和x 轴对称,若点P 1在第一象限,则点P 3在第____象限.15.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为________.16.将正比例函数y=﹣2x 的图象向上平移3个单位,则平移后所得图象的解析式是_____.17.在ABC △中,若A B C ∠=∠-∠,则ABC △是____三角形.18.如果021=-++b a ,那么ab = .19.若实数x 与y 满足320x y -++=,则点P (x ,y )在第______ 象限.20.已知|2x +y ﹣6|+(x ﹣y +3)2=0,则x =_____,y =_____.21.计算:()26-8=______.22.若25x y =⎧⎨=⎩是方程kx -2y =2的一个解,则k 的值为____. 23.若一组数据7,3,5,x ,2,9的众数为7,则这组数据的中位数是__________.三、解答题24.在某城市中,市民中心在火车站以西8 000 m 再往北4 000 m 处,盛华公司在火车站以西6 000 m 再往南4 000 m 处,传媒大楼在火车站以南6 000 m 再往东4 000 m 处.请建立适当的平面直角坐标系,分别写出各地点的坐标.25.已知338y x x =-+-+,求32x y + 的平方根.(5分)26.如图,在下列解答中,填写适当的理由或数学式:(1)∵EB ∥DC , (已知)∴∠DAE =∠__. ( ___________________________________)(2)∵∠BCF +∠AFC =180°,(已知)∴ ____∥___. ( ___________________________________)(3)∵ ____∥___, (已知)∴∠EF A =∠ECB . ( ___________________________________)27.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)28.如图是某市部分地区的示意图,请你建立适当的直角坐标系,并写出图中各地点相应的坐标(图中小正方形的边长均为1).29.计算:(1)(3+2)﹣2(2)5(5+5)+364-﹣|﹣81|30.如图是学校的平面示意图,已知旗杆的位置是()2,3-,实验室的位置是()1,4.(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、宿舍楼和大门的位置;(2)已知办公楼的位置是()2,1-,教学楼的位置是()2,2,在图中标出办公楼和教学楼的位置.(2)1 (83)642+⨯-32.(1)27-26-18⨯(2)()223-24+33.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.34x y-x y2xyx y+++( x y≠)35.水资源越来越缺乏,全球提倡节约用水,水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,有关数据如下表:月用水量(m3)10 13 14 17 18户数 2 2 3 2 1如果该小区有500户家庭,根据上面的统计结果,估计该小区居民每月需要用水多少立方米?(写出解答过程).参考答案1.B【解析】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.试题解析:从小到大排列此数据为:57、59、59、59、61、63、65、67、70,数据59出现了三次最多为众数,61处在第5位为中位数.所以本题这组数据的中位数是61,众数是59.故选B .考点:1.众数;2.中位数.2.C【解析】【分析】由x ≤2时,y ≥0,知y 随x 的增大而减小,则a -1<0,取x =2时,y ≥0,求解不等式组即可解决问题.【详解】∵当x ≤2时,0y ≥,∴y 随x 的增大而减小,∴10a -<,即1a <,当2x =时,()21130y a a =--+≥,解得:35a ≥, ∴a 的取值范围为315a ≤<. 故选:C .【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.3.C【解析】【分析】根据平行线的判定和性质进行分析即可.【详解】解:①∵//AB CD ,∴∠CDA=∠BAD ,∵∠1=∠4,∴∠2=∠3;②∵12∠=∠,14∠=∠,则24∠∠=,不能得出23∠∠=;③∵34∠=∠,14∠=∠,则13∠=∠,不能得出23∠∠=;④∵BAD CDA ∠=∠,14∠=∠,∴23∠∠=.故选C.【点睛】本题考查了平行线的判定和性质,解题的关键是结合条件进行论证,难度不大.4.B【解析】【分析】即可得出答案.【详解】∴34,即48的立方根的大小在3与4之间,故选:B .【点睛】5.D【解析】【分析】根据中位数、平均数、众数、方差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:91.7% ,93.5%,94.3%,94.3% ,96.1% . 则中位数为:94.3%,故选项C 错误; 平均数是:91.7%93.5%94.3%94.3%96.1%398%9.5=++++,故选项A 错误;方差是反映一组数据的波动大小的一个量,因为数据有波动,所以方差不可能为0,故选项B错误;94.3%出现两次,出现次数最多,故众数是94.3%,选项D正确;故选:D.【点睛】本题考查了平均数、众数、中位数以及方差,掌握计算方法是解题的关键.6.B【解析】分析:根据众数、平均数、频数、方差的概念分析.详解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:B.点睛:此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.D【解析】【分析】点C是AB的中点,设A表示的数是a,根据AC=CB,求出a的值即可.【详解】设A表示的数是a,∵点C是AB的中点,∴AC=CB,∴33-=-,a解得:6a=-故选D.【点睛】此题主要考查了实数与数轴的特征,以及两点间的距离的求法,要熟练掌握.8.A【解析】【分析】利用互为相反数的两数之和为0列出关系式,再根据非负数的性质求出x 与y 的值即可.【详解】 ∵23x y -+和()22310x y +-互为相反数, ∴()22323100-+++-=x y x y , 又∵230-+≥x y ,()223100+-≥x y , ∴230-+=x y 且()223100+-=x y , 即232310x y x y -=-⎧⎨+=⎩①② 由②−①×2得:716=y , 解得:167y =, 将167y =代入①得:16237-⨯=-x , 解得:117x =, ∴方程组的解为117167x y ⎧=⎪⎪⎨⎪=⎪⎩, 故选:A .【点睛】此题主要考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键. 9.C【解析】【分析】根据算术平方根的定义解答即可.【详解】8,故选:C .【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.10.C【解析】【分析】根据函数图象中的数据用路程除以时间可以求得客车在高速路上行驶的速度.【详解】解:由题意可得,客车在高速路上行驶的速度为:(300−60)÷(5−2)=80(千米/小时),故选:C .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.C【解析】分析:根据分式及二次根式有意义的条件进行求解即可.详解:由题意得,1020x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠2,故选C .点睛:此题考查了分式及二次根式有意义的条件.注意:分式有意义的条件是分母不等于零,分式无意义的条件是分母等于零.二次根式有意义的条件是被开方数大于或等于零.12.6【解析】试题分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.试题解析:原式.【考点】二次根式的乘除法.13.252T t =-【解析】直接利用原温度减去降下的温度进而列式,即可得出答案.【详解】由题可得物体温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是252T t =-. 故答案为:252T t =-.【点睛】本题考查了函数关系式,解决本题的关键是根据题意列出函数关系式.14.第三象限.【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点得到点P 3在第三象限.【详解】若P 1在第一象限,则根据P 1与P 2关于y 轴对称,P 2在第二象限;再根据P 2与P 3关于x 轴对称,则P 3在第三象限.故答案为:第三象限.【点睛】此题考查轴对称的概念,解题关键在于依次分析它们的位置.15.70S a= 【解析】【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为70S a =故答案为:70S a=. 【点睛】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.16.y=-2x+3【分析】根据一次函数图象平移的规律即可得出结论.【详解】解:正比例函数y=-2x 的图象向上平移3个单位,则平移后所得图象的解析式是:y=-2x+3, 故答案为y=-2x+3.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键. 17.直角.【解析】【分析】根据三角形内角和定理求解即可.【详解】解:根据三角形内角和定理知°+180A B C ∠+∠∠=A B C ∠=∠-∠∴°2180B ∠=°90B ∴∠=故ABC △是直角三角形故答案为:直角.【点睛】主要考查了三角形的内角和定理,注意运用等量代换的方法求得∠B 的值.18.-2【解析】根据题意,可得1+a =0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2. 试题分析:因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即1+a =0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.考点:几个非负数的和为零,要求每一项都为零.【解析】试题解析:∵(x-3)2+|y+2|=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴A 点的坐标为(3,-2),∴点A 在第四象限.20.1 4【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+=,∴263x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.2【解析】【分析】将根号下化成()()22236-8=8=2=2,即可得出答案.【详解】=,故答案为2.【点睛】开根号运算,可先将根号下的式子先化简,再根据情况灵活计算.22.6【解析】【分析】根据二元一次方程解的定义,将x,y的值代入方程即可得到关于k的一元一次方程再解答即可.【详解】解:∵25xy=⎧⎨=⎩是方程kx-2y=2的一个解,∴2k-2×5=2解得:k=6故答案为:6.【点睛】本题考查了已知二元一次方程的解求方程中的参数,解题的关键是熟知二元一次方程解的概念.23.6【解析】【分析】根据众数为7可得x=7,然后根据中位数的概念求解.【详解】解:∵这组数据众数为7,∴x=7,这组数据按照从小到大的顺序排列为:2,3,5,7,7,9,则中位数为:5762+=,故答案为:6.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.24.火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).【解析】试题分析:由题意知,每个地点的位置都是以火车站为中心;由此,可以以火车站为坐标原点,分别以正东,正北方向为x 轴、y 轴的正方向建立平面直角坐标系;然后根据火车站的坐标确定其它地方的坐标.解:以火车站为原点,以正东方向为x 轴正方向,以正北方向为y 轴正方向,以2 000 m 为单位长度,建立平面直角坐标系,图略.各地点的坐标分别为:火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).25.±5【解析】试题分析:由二次根式的意义知被开方数大于等于0,可求得x 与y ,再代入求值. 试题解析:由题意可知:x=3 y=8则32x y +=3×3+2×8=25所以32x y +的平方根为±5考点:二次根式的意义26.(1)D ,两直线平行,内错角相等;(2)AD ,BC ,同旁内角互补,两直线平行;(3)AD , BC ,两直线平行,同位角相等.【解析】【分析】根据平行线的判定,以及证明题的书写规则解题即可【详解】解:(1)∵EB∥DC,(已知)∴∠DAE=∠D .(两直线平行,内错角相等)(2)∵∠BCF+∠AFC=180°,(已知)∴AD∥BC . (同旁内角互补,两直线平行);(3)∵AD∥BC(已知)∴∠EF A=∠ECB .(两直线平行,同位角相等)【点睛】此题考查平行线的判定,注意熟练区分内错角、同位角和同旁内角27.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.28.见解析(答案不唯一).【解析】分析:首先选择合适的位置作为坐标原点建立平面直角坐标系,然后根据点的位置得出坐标.详解:答案不唯一,如建立如图所示的直角坐标系,则各地点相应的坐标为:教育局(-2,3),苏果超市(-1,1),怡景湾酒店(-4,-2),同仁医院(2,-3).点睛:本题主要考查的是平面直角坐标系的实际应用,属于基础题型.选择坐标原点是解决这个问题的关键.原点的位置可以自由进行选择.29.(13;(2)﹣7.【解析】【分析】(1)先去括号,然后合并同类二次根式即可得出答案;(2)直接利用二次根式的乘法运算法则、立方根的性质分别化简得出答案.【详解】(1)(+)﹣=+﹣=;(2)(+)+﹣|﹣|=5+1﹣4﹣9=﹣7.【点睛】此题主要考查了二次根式的混合运算及立方根的化简,熟练掌握二次根式的运算法则是解题关键.30.(1)坐标系见解析,食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)见解析.【解析】【分析】(1)直接利用旗杆的位置是(-2,3),得出原点的位置进而得出答案;(2)利用(1)中原点位置即可得出答案.【详解】解:(1)如图所示:食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)如图所示:办公楼和教学楼的位置即为所求.【点睛】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.31.(1)1(2)432【解析】【分析】(1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.【详解】(1)=3-2=1(2)==【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.32.(1(2)5【解析】【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)根据完全平方公式和二次根式的减法法则运算.【详解】解:(1)原式===+-=.(2)原式235【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.33.(1) AP=13cm,OA=5cm (2) OP=12cm【解析】【分析】(1)、设AP=a,OA=b,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt△OAP的勾股定理得出答案.【详解】(1)设AP=a,OA=b,由题意818a ba b-=⎛+=⎝,解得135ab=⎛=⎝,∴AP=13cm,OA=5cm.(2)当OA⊥OP时,在Rt△PAO中,,∴OP=12cm.点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.34.0【解析】【分析】把22x-y=-,22x+y=+,不难发现分子上可用公式因式分解,再约分化简即可. 【详解】解:2222-++2+=-=0【点睛】此题考查的是二次根式的化简,要学会把平方差公式和完全平方公式用在此题是解决此题的关键.35.7000.【解析】试题分析:先根据样本求出10户家庭的平均用水量,再乘以该小区的总户数即可.试题解析:根据题意得:(立方米),14×500=7000(立方米),答:该小区居民每月需要用水7000立方米.考点:1.用样本估计总体;2.加权平均数.。
人教版八年级上册数学 期末常考题型复习卷 含答案
2020年人教版八年级上册数学期末常考题型复习卷
一.选择题
1.下列长度的三条线段能组成三角形的是()
A.1,1,2B.4,4,9C.3,4,5D.6,16,8
2.下列图形中对称轴的条数小于3的是()
A.B.C.D.
3.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm(其中1nm=10﹣9m),用科学记数法表示这个最小刻度(单位:m),结果是()
A.2×10﹣8m B.2×10﹣9m C.2×10﹣10m D.2×10﹣11m
4.下列计算错误的是()
A.a2•a=a3B.(ab)2=a2b2C.(a2)3=a6D.﹣a+2a=﹣2a2 5.已知△ABC≌△A1B1C1,若∠C=60°,则∠C1的度数为()
A.50°B.60°C.70°D.120°
6.一副三角板如图方式摆放,BM平分∠ABD,DM平分∠BDC,则∠BMD的度数为()
A.102°B.107.5°C.112.5°D.115°
7.如图,在△ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm,则BC的长度等于()
A.5cm B.10cm C.15cm D.20cm
8.如图,△ABC的三边AB、BC、CA长分别是10、15、20.其三条角平分线交于点O,将△ABC分为三个三角形,S△ABO:S△BCO:S△CAO等于()。
期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)期末检测卷02一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·大庆市万宝学校八年级期中)下列哪组数据能构成三角形的三边( )A .1cm 、2cm 、3cmB .2cm 、3cm 、4cmC .14cm 、4cm 、9cmD .7cm 、2cm 、4cm【答案】B2.(2020·营山县化育初级中学校八年级期中)下列图形中一定是轴对称图形的是( )A .B .C .D .【答案】A3.(2020·河北唐山市·八年级月考)下列计算错误的是( )A .32a b ⋅=5abB .2a a -⋅=3a -C .()()936-x -x =x÷ D .()2362a 4a -=【答案】A4.(2020·浙江杭州市·七年级其他模拟)若24(1)9xm x --+是完全平方式,则m 的值为( )A .13B .12±C .11或13-D .11-或13.【答案】D5.(2020·营山县化育初级中学校八年级期中)如图所示,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线,交BC 于点D .若DC ∶DB =3∶5,则点D 到AB 的距离是( )A .40B .15C .25D .20【答案】B6.(2020·广东广州市·执信中学八年级期中)如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使BPE 与CQP 全等.A .1B .1或4C .1或2D .2或4【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海市建平中学西校七年级期中)分解因式:32327-=xxy ______.【答案】()()333+-xx y x y8.(2019·江西赣州市·八年级期末)为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.【答案】12000120001001.2x x=+ 9.(2020·昌乐县白塔镇第一中学八年级期中)若关于x 的分式方程4333x ax x --=--有增根,则a 的值是______. 【答案】-110.(2020·重庆市南川道南中学校八年级期中)如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.【答案】611.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.【答案】612.(2020·南昌市心远中学八年级期中)如图:一条船从A 处出发向正北航行,从A 望灯塔C 测得30NAC ∠=︒,当点B在射线AN 上,且BAC 为等腰三角形,则NBC ∠的度数是__________.【答案】105°或60°或150°三、(本题共计5小题,每小题6分,共计30分)13.(2020·福建泉州市·泉州七中八年级期中)分解因式:(1)2x x 30--(2)222ax8axy 8ay -+【答案】解:(1)230x x --()()65x x =-+(2)22288axaxy ay -+()22244a x xy y =-+()222a x y =-【点睛】本题考查的是利用十字乘法,提公因式,完全平方公式分解因式,掌握以上因式分解的方法是解题的关键.14.(2020·剑阁县公兴初级中学校九年级月考)先化简(21x x +-x +1)÷22121x x x -++,再从-1,0,1中选择合适的x 值代入求值.【答案】2221(21)11x x x x x x -+÷++-+ 222121(1)1111x x x x x x x x x x ⎡⎤++=-+⨯⎢⎥++++⎣⎦-+ 222(1)1(1)(1)1x x x x x x x x ⎡⎤-+=⨯⎢⎥+-⎣+++-⎦2(1)()1(1)(1)1x x x x +=⨯+-+ 11x =- 11x x x ≠-≠∴=,0当0x=时,原式11==1101x =--- 【点睛】本题考查分式的化简求值,其中涉及分式有意义的条件、完全平方公式、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(2020·马鞍山二中实验学校八年级期中)如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 【答案】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB , 在△PBC 中,∠P =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB )=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.16.(2020·江苏淮安市·八年级期中)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(请用直尺保留作图痕迹).(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)△ABC的面积是;(3)在DE上画出点Q,使△QAB的周长最小.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=2×3−12×1×3−12×1×2−12×1×2=52.故答案为:5 2.(3)如图所示,点Q即为所求;【点睛】本题主要考查了利用轴对称作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(2020·武威第十九中学八年级月考)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式B.平方差公式C.完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.【答案】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,故选:C;(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 ,故答案为:不彻底,(x-2)4 ;(3)设x2-2x=y,则:原式=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2=(x﹣1)4.【点睛】本题考查利用换元法和公式法进行因式分解,熟记完全平方公式,熟练掌握因式分解的各种方法是解答的关键.四、(本题共计3小题,每小题8分,共计24分)18.(2020·全国八年级期中)如图所示,△ABC中,AB=BC.DE⊥AB于点E.DF⊥BC于点D,交AC于F..若∠AFD=155°,求∠EDF的度数;.若点F是AC的中点,求证:∠CFD=12∠B.【答案】. ∵∠AFD=155°.∴∠DFC=25°.∵DF⊥BC.DE⊥AB.∴∠FDC =∠AED =90°.在Rt △EDC 中,∴∠C =90°.25°=65°.∵AB =BC .∴∠C =∠A =65°.∴∠EDF =360°.65°.155°.90°=50°.. 连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC .12ABFCBF ABC ∠=∠=∠.∴∠CFD +∠BFD =90°.∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴12CFDABC ∠=∠. 19.(2020·重庆西南大学银翔实验中学八年级月考)西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?【答案】解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元,根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元),设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.【点睛】本题考查分式方程的应用、不等式的实际应用,理解题意并列出方程和不等式是解题的关键.20.(2020·昌乐县白塔镇第一中学八年级期中)如图1,在△ABC 中,90ACB ∠=︒,AC =BC ,直线MN 经过点C ,AD MN ⊥,垂足为点D ,BE MN ⊥,垂足为点E .(1)请说明:①ADC CEB △≌△,②DE AD BE =+;(2)当直线MN 绕着点C 旋转到如图2所示的位置时,猜想线段DE ,AD ,BE 之间有怎样的数量关系?并说明理由.【答案】解:(1)①AD MN ⊥,BE MN ⊥,∴∠=∠=︒,ADC CEB90∴∠+∠=︒,DAC ACD90∠=︒,ACB90∴∠+∠=︒-︒=︒,ACD BCE1809090∴∠=∠;DAC ECB△中,在ADC和CEB=,∠=∠,AC CBADC CEB∠=∠,DAC ECB()∴△≌△;ADC CEBAAS△≌△,②由①得ADC CEB=,DC EB∴=,AD CE=+,DE CD CE∴=+;DE AD BE=-,(2)DE AD BE△≌△,由(1)同理可得:ADC CEB∴=,CD BE=,AD CEDE CE CD,∴=-.DE AD BE【点睛】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.五、(本题共计2小题,每小题9分,共计18分)21.(2020·张家口市宣化区教学研究中心八年级期末)阅读理解 (发现)如果记22()1x f x x =+,并且f (1)表示当x =1时的值,则f (1)=______;()2f 表示当2x =时的值,则()2f =______;12f ⎛⎫ ⎪⎝⎭表示当12x =时的值,则12f ⎛⎫ ⎪⎝⎭=______; ()3f 表示当3x =时的值,则()3f =______;13f ⎛⎫ ⎪⎝⎭表示当13x =时的值,则13f ⎛⎫= ⎪⎝⎭______; (拓展)试计算111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【答案】解:【发现】2211(1)=211=+f ; 2224(2)=512=+f ;221112()=25112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f ; 2239(3)=1013=+f ;221113()=310113⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f 【拓展】∵22()1x f x x =+ ∴2221()11(),111()x f x x x∴1()()1,f x f x += ∴111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111=2012+=201222=2012+f 【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f 的方法并确定出1()()1f x f x+=是解题的关键. 22.(2020·广州市白云区明德中学七年级期中)如图1是一个长为2a ,宽为2b 的长方形()a b >,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a 、b 代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式.2()a b -,2()a b +,4ab 之间的等量关系.(3)利用(2)中得出的结论解决下面的问题.已知7a b +=,6ab =,求代数式()a b -的值.【答案】解:(1)图2中大正方形的边长为(a +b );小正方形(阴影部分)的边长为(a −b ),故填:()a b +,()a b -;(2)三个代数式之间的等量关系是:(a +b )2=(a −b )2+4ab ;(3)(a −b )2=(a +b )2−4ab =72-4×6=25,∴a −b =5.【点睛】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.六、(本题共计1小题,每小题12分,共计12分)23.(2020·阳泉市第三中学校八年级期中)问题情境:在自习课上,小雪拿来了如下一道题目(原问题)和合作学习小组的同学们交流,如图①,△ACB 和△∠CDE 均为等腰三角形.CA =CB ,CD =CE ,∠ACB =∠DCE .点A 、D 、E 在同一条直线上,连接BE .求证:∠CDE =∠BCE +∠CBE . 问题发现:小华说:我做过一道类似的题目:如图②,△ACB 和△CDE 均为等边三角形,其他条件不变,求∠AEB 的度数. (1)请聪明的你完成小雪的题目要求并直接写出小华的题目要求.拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)小雪的题目:证明:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE ∴∠=∠又ACD BCE ∠=∠,CDE CAD ACD ∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC ∠∠∴= CDE 为等边三角形60CDE CED ∴∠=∠=︒ 又点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB =90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB ∴∠-∠=∠-∠即ACD BCE ∠=∠在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上∴∠=︒-︒=︒ADC18045135∴∠=︒BEC135∴∠=∠-∠=︒-︒=︒AEB BEC CED1354590,∠=︒=⊥DCE CD CE CF DE90,∴==CF DF EF∴=+=DE DF EF CF2∴=+=+.AE AD DE BE CF2【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.。
八年级上册数学期末考试试题含答案
八年级上册数学期末考试试卷一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下列英文字母中,是轴对称图形的是()A.B.C.D.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2 4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2 5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1096.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.411.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③二、填空题(每题3分,共12分)13.分解因式:x2y﹣9y=.14.﹣=.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.参考答案一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021解:﹣2021的相反数是:2021.故选:D.2.下列英文字母中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2解:A、a3•a5=a8,故本选项不合题意;B、(﹣a3)2=a6,故本选项符合题意;C、(2y)3=8y3,故本选项不合题意;D、a6÷a3=a3,故本选项不合题意;故选:B.5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.解:,由不等式①,得x<2,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<2,故选:A.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定解:由题意得:=,无法确定,故选:D.8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形解:A、一组对边平行,另一组对边相等的四边形不一定是平行四边形,原命题是假命题;B、有一个角是60°的等腰三角形是等边三角形,是真命题;C、有一组邻边相等的平行四边形是菱形,原命题是假命题;D、对角线相等的平行四边形是矩形.原命题是假命题;故选:B.9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°解:∵∠B=90°,∠A=30°,∴∠ACB=60°.∵∠EDF=90°,∠F=45°,∴∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.11.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③解:①∵∠BAC=90°,FA⊥AE,∠DAE=45°,∴∠CAE=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∠FAB=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∴∠FAB=∠EAC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵FB⊥BC,∴∠FBA=45°,∴△AFB≌△AEC,∴CE=BF,故①正确,②:由①中证明△AFB≌△AEC,∴AF=AE,∵∠DAE=45°,FA⊥AE,∴∠FAD=∠DAE=45°,∴△AFD≌△AED,连接FD,∵FB=CE,∴FB2+BD2=FD2=DE2,故②正确,③:如图,设AD与EF的交点为G,∵∠FAD=∠EAD=45°,AF=AE,∴AD⊥EF,EF=2EG,∴S△ADE=•AD•EG==,故③正确,④:∵FB2+BE2=EF2,CE=BF,∴CE2+BE2=EF2,在RT△AEF中,AF=AE,AF2+AE2=EF2,∴EF2=2AE2,∴CE2+BE2=2AE2,故④正确.故选:A.二、填空题(每小题3分,共12分)13.分解因式:x2y﹣9y=y(x+3)(x﹣3).解:原式=y(x2﹣9)=y(x+3)(x﹣3).故答案为:y(x+3)(x﹣3).14.﹣=.解:原式=3﹣2=,故答案为:.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是15cm.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=22020.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理:a3=4a1=4=22,a4=8a1=8=23,a5=16a1=16=24,…,以此类推:所以a2021=22020.故答案是:22020.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..解:原式=2+2﹣+4﹣1=7﹣.18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.解:原式=÷=•=,当a=﹣1时,原式==﹣6﹣3.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.解:(1)∵a2+b2=13,ab=6,∴(a﹣b)2=a2+b2﹣2ab=13﹣2×6=1,∵a>b,∴a﹣b=1;(2)∵a2+b2+25=6a+8b,∴a2﹣6a+9+b2﹣8b+16=0,∴(a﹣3)2+(b﹣4)2=0,∴a=3,b=4,当4是直角边时,斜边长==5,则Rt△ABC的周长=3+4+5=12,当4是斜边时,另一条直角边长==,则Rt△ABC的周长=3+4+=7+,综上所述,Rt△ABC的周长为12或7+.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了50名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为36°;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?解:(1)这次共抽取了15÷30%=50名学生进行调查统计,故答案为:50;(2)D类有学生:50﹣15﹣22﹣8=5(人),扇形统计图中D类所对应的扇形圆心角的度数是:360°×=36°,故答案为:36°;(3)补全条形统计图如下:(4)估计该校B类学生约有3000×=1320(人).21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.解:(1)CH是从旅游地C到河的最近的路线,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2∴△HBC是直角三角形且∠CHB=90°,∴CH⊥AB,所以CH是从旅游地C到河的最近的路线;(2)设AC=AB=x千米,则AH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=2;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)解:(1)Q[A,B]==2,故答案为:2.(2)如图,由题意,点N在直线y=x﹣3上运动,根据垂线段最短可知,当MN⊥直线y=x﹣3时,MN的值最小,此时N(3,0),∵M(1,2),∴Q[M,N]的最小值==2.(3)如图1中,∵m>0,A(0,5m),∴B(8m,﹣m)在第四象限,A在y轴的正半轴上,∴当A,C,B共线时,Q[A.C]+Q[C,B]的值最小,最小值==10m.如图2中,作点B关于x轴的对称点B′,当点C在AB′的延长线上时,Q[A,C]﹣Q[B,C]的值最大,最大值=Q[A,B′]==4m.25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.解:(1)如图1,在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8﹣x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴(8﹣x)2+42=x2,∴x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,S=S矩形OABC﹣S△PAE﹣S△BEC﹣S△OPC,=8×4﹣×5(4﹣2t)﹣×3×4﹣×8×2t,=﹣3t+16,②当P在AE上时,2<t≤4.5,如图3,S=PE•BC=×4×(8﹣2t)=﹣4t+16.综上所述,S=;(3)存在,由PA=PE可知:P在AE上,如图4,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=x,则FG=x,FC=8﹣x,由折叠得:∠CGF=∠AOF=90°,由勾股定理得:FC2=FG2+CG2,∴(8﹣x)2=x2+42,解得x=3,∴FG=3,FC=8﹣3=5,FC•GH=FG•CG,×5×GH=×3×4,GH=2.4,由勾股定理得:FH==1.8,∴OH=3+1.8=4.8,∴G(4.8,﹣2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(6.8,﹣2.4)或(2.8,﹣2.4).。
北师大新版2020-2021学年八年级上册数学期末复习试题(有答案)
北师大新版2020-2021学年八年级上册数学期末复习试题一.选择题(共12小题,满分48分,每小题4分)1.点P(a﹣2,a+1)在x轴上,则a的值为()A.2B.0C.1D.﹣12.有一组数据:2,5,3,4,5,3,4,5,则这组数据的众数是()A.5B.4C.3D.23.在数轴上表示不等式组﹣1<x≤3,正确的是()A.B.C.D.4.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x5.直线a∥b,A、B分别在直线a、b上,△ABC为等边三角形,点C在直线a、b之间,∠1=10〫,则∠2=()A.30〫B.40〫C.50〫D.70〫6.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64B.48C.32D.427.如图,正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面四个结论:①a <0;②b<0;③不等式ax>x+b的解集是x<﹣2;④当x>0时,y1y2>0.其中正确的是()A.①②B.②③C.①④D.①③8.如图,在△ABC中,AB=AC=2,点D在BC边上,过点D作DE∥AB交AC于点E,连结AD,DE,若∠ADE=∠B=30°,则线段CE的长为()A.B.C.D.9.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x﹣k的图象大致是()A.B.C.D.10.如图,∠AOB=90°,∠AOC是∠BOC的2倍,设∠AOC、∠BOC的度数分别为x、y,则可列方程组()A .B .C .D .11.将6×6的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上,若直线y =kx (k ≠0)与正方形ABCD 有公共点,则k 的值不可能是( )A .B .1C .D .12.如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且在直线AB 的下方,满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2二.填空题(共6小题,满分24分,每小题4分)13.不等式3﹣2x>7的解集为.14.甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是.15.在△ABC中,∠C=35°,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.16.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为.17.甲乙两人同解方程组时,甲正确解得,乙因抄错c而得,则a+c=.18.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA 上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.三.解答题(共9小题,满分78分)19.解方程组(1)(2)20.解不等式组:,并求出所有整数解之和.21.如图,一条直线分别与直线AF、直线DF、直线AE、直线CE相交于点B,H,G,D 且∠1=∠2,∠A=∠D.求证:∠B=∠C.22.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.23.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.24.世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机.为了倡导“节约用水,从我做起”,某县政府决定对县直属机关500户家庭一年的月平均用水量进行调查,调查小组随机抽查了部分家庭的月平均用水量(单位:吨),并将调查结果绘制成如图所示的条形统计图和扇形统计图根据以上提供的信息,解答下列问题:(1)将条形统计图补充完整;(2)求被调查家庭的月平均用水量的中位数和众数;(3)估计该县直属机关500户家庭的月平均用水量不少于12吨的约有多少户?25.如图,直线l1:y=kx+b经过点Q(2,﹣2),与x轴交于点A(6,0),直线l2:y=﹣2x+8与x轴相交于点B,与直线l1相交于点C.(1)求直线l1的表达式;(2)M的坐标为(a,2),当MA+MB取最小时.①求M点坐标;②横,纵坐标都是整数的点叫做整点.直接写出线段AM、BM、BC、AC围成区域内(不包括边界)整点的坐标.26.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.27.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y 轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D 时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵点P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1,故选:D.2.解:这组数据中出现次数最多的是5,所以众数为5,故选:A.3.解:∵﹣1<x≤3,∴在数轴上表示为:故选:C.4.解:把点(1,﹣2)代入y=kx得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:B.5.解:作CE∥a.∵a∥b,∴CE∥b,∴∠2=∠ACE,∠1=∠ECB,∵△ACB是等边三角形,∴∠ACB=60°,∴∠1+∠2=60°,∵∠1=10°,∴∠2=50°, 故选:C .6.解:连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM ==×AC ×4++=2(AC +BC +AB ) =2×16=32, 故选:C .7.解:因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确; 一次函数y 2=x +b 经过一、二、三象限,所以b >0,②错误; 由图象可得:不等式ax >x +b 的解集是x <﹣2,③正确; 当x >0时,y 1y 2<0,④错误; 故选:D . 8.解:∵AB =AC , ∴∠B =∠C =30°, ∵DE ∥AB ,∴∠CDE =∠B =30°, ∴∠AED =∠CDE +∠C =60°,∵∠ADE =30°, ∴∠DAE =90°, ∴AD =AC •tan30°=2×=,∴AE =AD •tan30°=, ∴CE =AC ﹣AE =2﹣=. 故选:D .9.解:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小, ∴k <0,∵一次函数y =x ﹣k 的一次项系数大于0,常数项大于0,∴一次函数y =x +k 的图象经过第一、三象限,且与y 轴的正半轴相交. 故选:A .10.解:设∠AOC 、∠BOC 的度数分别为x 、y , 根据题意得:故选:C .11.解:由图象可知A (1,2),C (2,1), 把A 的坐标代入y =kx 中,求得k =2, 把C 的坐标代入y =kx 中,求得k =, 根据图象,当时,直线y =kx (k ≠0)与正方形ABCD 有公共点, 所以,k 的值不可能是D , 故选:D .12.解:过P 点作PD ⊥x 轴,垂足为D , 由A (﹣,0)、B (0,1),得OA =,OB =1,∵△ABC 为等边三角形, 由勾股定理,得AB ==2,∴S △ABC =×2×=,又∵S △ABP =S △AOB +S 梯形BODP ﹣S △ADP=××1+×(1+a)×3﹣×(+3)×a,=,由2S△ABP =S△ABC,得=,∴a=.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:3﹣2x>7移项得:﹣2x>7﹣3,合并同类项:﹣2x>4,解得:x<﹣2.故答案为:x<﹣2.14.解:∵2.3<3.8<5.2<6.2,∴甲发挥最稳定,故答案为:甲.15.解:在△ABC中,∠A=180°﹣∠C﹣∠ABC=35°,∵DE是线段AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=35°,故答案为:35.16.解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∴∠B=60°,BC=AB=8,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故答案为:4.17.解:把代入②得:3c+14=8,解得:c=﹣2,把和代入①得:,解得:,所以a+c=4+(﹣2)=2,故答案为:2.18.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.三.解答题(共9小题,满分78分)19.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.20.解:,解不等式①得x>﹣3,解不等式②得x≤1,∴原不等式组的解集是﹣3<x≤1,∴原不等式组的整数解是﹣2,﹣1,0,1,∴所有整数解的和﹣2﹣1+0+1=﹣2.21.证明:∵∠1=∠2,∴AE∥DF,∴∠AEC=∠D.又∵∠A=∠D,∴∠AEC=∠A,∴AB∥CD,∴∠B=∠C.22.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.23.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.24.解:(1)本次调查的户数为:10÷20%=50,用水11吨的住户有:50×40%=20(户),补全的条形统计图如右图所示;(2)由统计图中的数据可知,中位数是11吨、众数是11吨;(3)500×(10%+20%+10%)=500×40%=200(户)答:该县直属机关500户家庭的月平均用水量不少于12吨的约有200户.25.解:(1)将Q(2,﹣2)和A(6,0)代入y=kx+b,有解得所以,直线l1的表达式为y=x﹣3;(2)①如图,作点B关于直线y=2的对称点B′,连接AB′交直线y=2于M点,∵点B和点B′关于直线y=2的对称,点B坐标为(4,0),∴B′(4,4),设AB′的解析式为y=mx+n,则有:,解得,∴AB′的解析式为y=﹣2x+12,∵当y=2时,x=5,∴点M的坐标为(5,2);②连接AM、BM、B C、AC,如图可知整点为(5,0),(5,1).26.解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.27.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、B、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是BD的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,而∠MOQ为外角,故这种情况不存在;综上,t=或.。
2020—2021年人教版八年级数学上册期末考试(带答案)
2020—2021年人教版八年级数学上册期末考试(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.估计(130246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间D .4和5之间7.下列图形中,是轴对称图形的是( )A .B .C .D .8.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -________. 2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是________.4.如图,平行四边形ABCD 中,CE AD ⊥于E ,点F 为边AB 中点,12AD CD =,40CEF ∠=︒,则AFE ∠=_________。
2020—2021年部编人教版八年级数学上册期末考试卷【参考答案】
2020—2021年部编人教版八年级数学上册期末考试卷【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )A .2%B .4.4%C .20%D .44%7.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.因式分解:22ab ab a -+=__________.3.若m+1m =3,则m 2+21m=________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
人教版2020-2021学年八年级数学上册期末试卷及答案
2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。
2020-2021学年上海金山区八年级上学期期末数学试题及答案
八年级第一学期期末测试卷(考试时间90分钟,满分100分)一、选择题(本大题共6题,每题3分,共18分)1.是同类二次根式的是()A. B. C.D.2.下列关于x 的方程中一定没有实数根的是()A.220x x -=;B.2210x x -+=;C.2220x x +=-;D.2220x x --=.3.下列函数中,函数值y 随x 的增大而增大的是()A.3x y =-; B.3x y =; C.1y x =; D.1y x=-.4.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是()A. B. C. D.5.下列四组数据为三角形的三边,其中能构成直角三角形的是()A.2223,4,5;B.111,,345; C. D.()3450k k k k ≠,,.6.下列命题中,是假命题的是()A.两条直角边对应相等的两个直角三角形全等;B.每个命题都有逆命题;C.每个定理都有逆定理;D.在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.二、填空题:(本大题共12题,每题2分,共24分)7.=________.8.方程()2116x +=的根是__________.9.在实数范围内因式分解:231x x --=_______.10.函数y =的定义域是__________.11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第四象限,那么k 的取值范围是__________.12.某工厂前年的产值为500万元,去年比前年的产值增加了10%,如果今年的产值估计比去年也增加了10%,那么该工厂今年的产值将是__________万元.13.已知两点A 、B ,到这两点距离相等的点的轨迹是____________.14.小明从家步行到学校,图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图像提供的信息,线段OA 表示的函数解析式是_________.15.如果点A 的坐标为()3,5,点B 的坐标为()0,4,那么,A B 两点的距离等于_________.16.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.17.《九章算术》中有一道题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”大致意思是:有一根长为10尺的竹子,中间折断后竹梢触底,如图,离开根部为3尺(3BC =),那么折断后的竹子(AB )的高度为___________.18.已知,如图,在ABC ∆中,90106C AB AC CD ∠=︒==,,,是AB 上的中线,如果将BCD ∆沿CD 翻折后,点B 的对应点'B ,那么'BB 的长为__________.三、简答题:(本大题共5题,第19-22题,每题6分,第23题8分,共32分)19.+20.解方程:210x --=.21.已知:12y y y =+,1y 与1x +成正比例,2y 与x 成反比例.当1x =时,7y =;当3x =时,4y =.求y 与x 的函数解析式.22.如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB CD =,AC CE =,求证:ACE ∆是直角三角形.23.已知:如图,45MON ∠=︒,点A 在ON 上,6OA =.(1)求作线段AO 的垂直平分线,交OM 于点B ;(2)联结BA ,求作MBA ∠的角平分线BD ;(3)根据(1)(2)的条件,求OB 的长.(第(1)、(2)题保留作图痕迹,不需要写出作图步骤)四、解答题:(本大题共3题,第24、25每题8分,第26题10分,共26分)24.已知:如图,ABC ∆中,,,AB AC BD CE =分别是,AC AB 上的中线,,BD CE 相交于点O ,联结OA DE ,.求证:(1)OB OC =;(2)OA 垂直平分DE .25.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0k y k x =≠的图像经过点A 和点()8,B n .(1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标;(3)在(2)的条件下,求ACB ∆的面积.26.如图1,在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点P 是射线CD 上一个动点,联结PB ,过点B 作PB 的垂线,交射线CD 于Q .(1)如图2,如果点P 与点D 重合,求证:2PQ PC =;(2)如图3,如果BP BQ =,求PQ 的长;(3)设CP x BP y ==,,求y 关于x 的函数关系式,并写出x 的取值范围.八年级第一学期期末测试卷(考试时间90分钟,满分100分)一、选择题(本大题共6题,每题3分,共18分)1.是同类二次根式的是()A. B. C. D.【答案】D【解析】【分析】现将选项中的二次根式化为最简二次根式,之后看哪个选项中根号下是2,即为正确答案【详解】解:A.=2不是同类二次根式,A 错误;B.不是同类二次根式,B 错误;C.=,所以与不是同类二次根式,C 错误;D.=是同类二次根式,D 正确;故答案选D【点睛】本题考查同类二次根式,先把根式化成最简二次根式是解题关键2.下列关于x 的方程中一定没有实数根的是()A.220x x -=;B.2210x x -+=;C.2220x x +=-;D.2220x x --=.【答案】C【解析】【分析】根据根的判别式解答即可.【详解】解:A .∵ =4-0=4>0,∴方程有2个不相等的实数根,故不符合题意;B .∵ =4-4=4=0,∴方程有2个相等的实数根,故不符合题意;C .∵ =4-8=-4<0,∴方程没有实数根,故符合题意;D.∵ =4+8=12>0,∴方程有2个不相等的实数根,故不符合题意;故选C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式24b ac =-△与根的关系,熟练掌握根3.下列函数中,函数值y 随x 的增大而增大的是的判别式与根的关系式解答本题的关键.当 >0时,一元二次方程有两个不相等的实数根;当 =0时,一元二次方程有两个相等的实数根;当 <0时,一元二次方程没有实数根.()A.3x y =-; B.3x y =; C.1y x =; D.1y x=-.【答案】B【解析】【分析】根据函数增减性判断即可.【详解】A.3x y =-,比例系数小于0,y 随x 的增大而减小;B.3x y =,比例系数大于0,y 随x 的增大而增大;C.1y x =,不在同一象限,不能判断增减性;D.1y x=-,不在同一象限,不能判断增减性;故选:B .【点睛】本题考查了函数的增减性,解题关键是熟悉函数的增减性,准确进行判断.4.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】先写出三角形底边a 上的高h 与底边a 之间的函数关系,再根据反比例函数的图象特点得出.【详解】解:已知三角形的面积s 一定,则它底边a 上的高h 与底边a 之间的函数关系为S=12ah ,即2s h a =;该函数是反比例函数,且2s >0,h >0;故其图象只在第一象限.故选D .【点睛】本题考查反比例函数的图象特点:反比例函数k y x=的图象是双曲线,与坐标轴无交点,当k >05.下列四组数据为三角形的三边,其中能构成直角三角形的是时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.()A.2223,4,5; B.111,,345;C. D.()3450k k k k ≠,,.【答案】D【解析】【分析】根据勾股定理逆定理判断即可.【详解】解:22(3)9k k =,22(4)16k k =,22(5)25k k =,∵22291625k k k +=,且0k ≠,∴()3450k k k k ≠,,为三角形的三边可以构成直角三角形,故选:D .【点睛】本题考查了勾股定理的逆定理,解题关键是准确进行计算,熟练运用勾股定理逆定理进行判断.6.下列命题中,是假命题的是()A.两条直角边对应相等的两个直角三角形全等;B.每个命题都有逆命题;C.每个定理都有逆定理;D.在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.【答案】C【解析】【分析】根据全等三角形的判定,命题与定理及角平分线的判定等知识一一判断即可.【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是正确;B 、每个命题都有逆命题,所以B 选项正确;C 、每个定理不一定有逆定理,所以C 选项错误;D 、在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,正确.故选C .【点睛】本题考查了全等三角形的判定,命题与定理以及角平分线的判定方法,熟练利用这些判定定理是解题关键.二、填空题:(本大题共12题,每题2分,共24分)7.=________.【答案】【解析】【分析】0,0)a b =≥≥可知:=故答案为:考点:二次根式的化简8.方程()2116x +=的根是__________.【答案】3x =或5x =-.【解析】【分析】根据平方根的定义求解即可.【详解】解:()2116x +=,两边开方得,14x +=或14x +=-,解得,3x =或5x =-.【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.9.在实数范围内因式分解:231x x --=_______.【答案】313313(22+--x x 【解析】【分析】令x 2-3x-1=0,求出方程的两个根,即可把多项式x 2-3x-1因式分解.【详解】解:令x 2-3x-1=0,∵a=1,b=-3,c=-1,∴b 2-4ac=(-3)2-4×1×(-1)=13>0,∴x 313,2±=∴231331331(2x 2+-----=x x x 故答案为:313313(22+---x x 【点睛】此题主要考查了实数范围内分解因式,熟练掌握利用公式法解一元二次方程是解答本题的关键.10.函数y =的定义域是__________.【答案】1x >【解析】【分析】根据二次根式和分式有意义的条件列不等式即可.【详解】解:根据题意可得,1x ->0,解得,1x >,故答案为:1x >.【点睛】本题考查了二次根式和分式有意义的条件,解题关键是熟练运用相关性质列不等式,确定自变量的取值范围.11.已知反比例函数1k y x -=(k 是常数,1k ≠)的图像有一支在第四象限,那么k 的取值范围是__________.【答案】1k <【解析】【分析】根据反比例函数所在象限,可以判断比例系数小于0,列不等式求解即可.【详解】解:∵反比例函数1k y x -=(k 是常数,1k ≠)的图像有一支在第四象限,∴1k -<0,解得1k <,故答案为:1k <.【点睛】本题考查了反比例函数图象的性质,解题关键是熟知反比例函数图象的性质.12.某工厂前年的产值为500万元,去年比前年的产值增加了10%,如果今年的产值估计比去年也增加了10%,那么该工厂今年的产值将是__________万元.【答案】605.【解析】【分析】先求出去年的产值=前年的产值×(1+增长率),再用公式今年的产值=去年的产值×(1+增长率),求出今年的产值.【详解】解:去年比前年的产值增加了10%,去年的产值为:500×(1+10%)=550万元,今年的产值估计比去年也增加了10%,今年的产值为:550×(1+10%)=605万元.故答案为:605.【点睛】本题考查增长率问题,掌握增长率的解题方法,抓住第二年的产值=第一年的产值×(1+增长率)是解题关键.13.已知两点A 、B ,到这两点距离相等的点的轨迹是____________.【答案】线段AB 的垂直平分线【解析】【分析】根据线段垂直平分线的性质可得结论.【详解】解:因为线段垂直平分线上的点到线段两端的距离相等,所以到这两点距离相等的点的轨迹是线段AB 的垂直平分线.故答案为:线段AB 的垂直平分线.【点睛】本题考查了线段的垂直平分线,熟练掌握线段垂直平分线的性质是解题的关键.14.小明从家步行到学校,图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图像提供的信息,线段OA 表示的函数解析式是_________.【答案】120y x =.【解析】【分析】由OA 是过原点的一次函数,设设线段OA 表示的函数解析式为:y kx =过点A (8,960)代入求出k 即可.【详解】解:设线段OA 表示的函数解析式为:y kx =过点A (8,960),则8k=960,∴k=120,线段OA 表示的函数解析式为120y x =.故答案为:120y x =.【点睛】本题考查正比例函数解析式,掌握待定系数法求正比例函数解析式,关键是找到函数图像上的一点A .15.如果点A 的坐标为()3,5,点B 的坐标为()0,4,那么,A B 两点的距离等于_________.【答案】.【解析】【分析】根据两点间的距离公式计算即可.【详解】解:∵A 的坐标为()3,5,点B 的坐标为()0,4,∴AB ==.【点睛】本题考查了两点间的距离公式,解题关键是熟练运用勾股定理进行计算.16.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.【答案】112.5°【解析】【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩,∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC ,∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.17.《九章算术》中有一道题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”大致意思是:有一根长为10尺的竹子,中间折断后竹梢触底,如图,离开根部为3尺(3BC =),那么折断后的竹子(AB )的高度为___________.【答案】4.55尺.【解析】【分析】设AB=x ,则BC=10-x ,在直角三角形ABC 中,利用勾股定理列方程求解即可.【详解】∵∠ABC=90°,AB+AC=10,设AB=x ,则BC=10-x ,在直角三角形ABC 中,根据勾股定理,得222AC AB BC =+,∴222(10)3x x -=+,解得x=4.55∴折断后的竹子(AB )的高度为4.55尺,故答案为:4.55尺.【点睛】本题考查了直角三角形的勾股定理,熟练掌握定理,并灵活列式求解是解题的关键.18.已知,如图,在ABC ∆中,90106C AB AC CD ∠=︒==,,,是AB 上的中线,如果将BCD ∆沿CD 翻折后,点B 的对应点'B ,那么'BB 的长为__________.【答案】485.【解析】【分析】先用勾股定理求得BC ,利用斜边上的中线性质,求得CD ,BD 的长,再利用折叠的性质,引进未知数,用勾股定理列出两个等式,联立方程组求解即可.【详解】如图所示,∵90,10,6ACB AB AC ∠=︒==,∴,∵CD 是AB 上的中线,∴CD=BD=AD=5,设DE=x ,BE=y ,根据题意,得2225x y +=,22(5)64x y ++=,解得x=75,y=245,∴4825BB y '==,故答案为:485.【点睛】本题考查了勾股定理,斜边上中线的性质,方程组的解法,折叠的性质,熟练掌握折叠的性质,正确构造方程组计算是解题的关键.三、简答题:(本大题共5题,第19-22题,每题6分,第23题8分,共32分)19.+【答案】2+【解析】【分析】将二次根式最简化,分式带有二次根式的分母有理化,再根据二次根式的加减运算法则进行计算即可.【详解】解:原式=+=5254+--=2++2+【点睛】本题考查了二次根式最简化,带有二次根式的分式有理化,二次根式的加减运算;本题关键在于要会利用平方差公式有理化分式分母,在计算时最好先将二次根式最简化;注意最后答案也应转化成二次根式的最简形式.20.解方程:210x --=.【答案】123,3x x =-=+.【解析】【分析】利用公式法解一元二次方程,注意解题规范.【详解】解:1,1a b c ==-=- ,224(41(1)360b ac ∴∆=-=--⨯⨯-=>,则6322b x a -±===±,∴123,3x x =-=+.【点睛】本题考查公式法解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.21.已知:12y y y =+,1y 与1x +成正比例,2y 与x 成反比例.当1x =时,7y =;当3x =时,4y =.求y 与x 的函数解析式.【答案】y =12(x +1)+6x 【解析】【分析】根据正比例与反比例的定义设出y 与x 之间的函数关系式,然后利用待定系数法求函数解析式计算即可得解【详解】解:(1)设y 1=k 1(x +1)(k 1≠0),y 2=2k x(k 2≠0),∴y =k 1(x +1)+2k x .∵当x =1时,y =7.当x =3时,y =4,∴122127433k k k k +=⎧⎪⎨+=⎪⎩,∴12126k k ⎧=⎪⎨⎪=⎩,∴y 关于x 的函数解析式是:y =12(x +1)+6x;【点睛】此题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求函数解析式的方法,熟练准确计算.22.如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB CD =,AC CE =,求证:ACE ∆是直角三角形.【答案】见解析【解析】【分析】利用HL 证出Rt △ABC ≌Rt △CDE ,从而得出∠ACB=∠CED ,然后根据直角三角形的性质和等量代换可得∠ACB +∠ECD=90°,从而求出∠ACE ,最后根据直角三角形的定义即可证明.【详解】证明:∵AB 、ED 分别垂直于BD∴∠ABC=∠CDE=90°在Rt △ABC 和Rt △CDE 中AB CD AC CE=⎧⎨=⎩∴Rt △ABC ≌Rt △CDE∴∠ACB=∠CED∵∠CED +∠ECD=90°∴∠ACB +∠ECD=90°∴∠ACE=180°-(∠ACB +∠ECD )=90°∴△ACE 为直角三角形【点睛】此题考查的是全等三角形的判定及性质和直角三角形的判定,掌握利用HL 判定两个三角形全等、全等三角形的对应角相等和直角三角形的定义是解决此题的关键.23.已知:如图,45MON ∠=︒,点A 在ON 上,6OA =.(1)求作线段AO 的垂直平分线,交OM 于点B ;(2)联结BA ,求作MBA ∠的角平分线BD ;(3)根据(1)(2)的条件,求OB 的长.(第(1)、(2)题保留作图痕迹,不需要写出作图步骤)【答案】(1)见解析,(2)见解析,(3)【解析】【分析】(1)按照垂直平分线的作法作图即可;(2)按照角平分线的作法作图即可;(3)根据勾股定理求解即可.【详解】(1)线段AO 的垂直平分线如图所示;(2)MBA ∠的角平分线如图所示;(3)由线段垂直平分线的性质得,OB=BA,∴45MON BAO ∠=∠=︒,∴90∠=︒ABO ,6OA ==,OB =【点睛】本题考查了尺规作图和勾股定理,解题关键是明确尺规作图的方法,熟练应用勾股定理进行计算.四、解答题:(本大题共3题,第24、25每题8分,第26题10分,共26分)24.已知:如图,ABC ∆中,,,AB AC BD CE =分别是,AC AB 上的中线,,BD CE 相交于点O ,联结OA DE ,.求证:(1)OB OC =;(2)OA 垂直平分DE .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)利用三角形的全等,得到一对对应角,后利用等角对等边证明即可;(2)逆用线段垂直平分线的判定证明即可.【详解】(1)∵,,AB AC BD CE =分别是,AC AB 上的中线,∴BE=CD ,∠EBC=∠DCB ,∵BC=CB ,∴△EBC ≌△DCB ,∴∠ECB=∠DBC ,∴OB=OC ;(2)设AO 与DE 的交点为F ,∵△EBC ≌△DCB ,∴EC=DB ,∵OB=OC ;∴OD=OE ,∴点O 在线段DE 的垂直平分线上,∵AE=AD ,∴点A 在线段DE 的垂直平分线上,∴直线AO 是线段DE 的垂直平分线,∴OA 垂直平分DE .【点睛】本题考查了等腰三角形的性质,三角形的全等,中线的定义,垂直平分线的判定和性质,同一个三角形中,等角对等边,熟练掌握线段垂直平分线的逆定理是解题的关键.25.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0k y k x =≠的图像经过点A 和点()8,B n .(1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标;(3)在(2)的条件下,求ACB ∆的面积.【答案】(1)8y x =;(2)C (458,0);(3)5116【解析】【分析】(1)先把(),2A m 代入12y x =求出m ,再把(),2A m 代入k y x=求出k 即可;(2)先求出点B 的坐标,设C (x ,0),根据两点间的距离公式求出x 即可;(3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,根据S △ABC =S 梯形ABFE -S △ACE -S △BCF 求解即可;【详解】解:(1)把(),2A m 代入12y x =,得122m =,∴m =4,把()4,2A 代入k y x=,得24k =,∴k =8,∴8y x =;(2)把()8,B n 代入8y x=,得818n ==,∴()8,1B ,设C (x ,0),∵AC BC =,=∴458x =,经检验45x 8=是原方程的根,∴C (458,0);(3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,∵()4,2A ,()8,1B ,C (458,0),∴AE =2,BF =1,EF =8-4=4,CE =458-4=138,CF =8-458=198,∴S △ABC =S 梯形ABFE -S △ACE -S △BCF=()11131191242122828⨯+⨯-⨯⨯-⨯⨯=5116.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图像上点的坐标特征,坐标与图形的性质,两点间的距离公式,以及割补法求图形的面积等知识,求出反比例函数解析式是解答本题的关键.26.如图1,在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点P 是射线CD 上一个动点,联结PB ,过点B 作PB 的垂线,交射线CD 于Q .(1)如图2,如果点P 与点D 重合,求证:2PQ PC =;(2)如图3,如果BP BQ =,求PQ 的长;(3)设CP x BP y ==,,求y 关于x 的函数关系式,并写出x 的取值范围.【答案】(1)证明见详解;(2)PQ=;(3))09y x =<≤,)9y x =>,【解析】【分析】(1)在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点可得DC=AD=BD ,可求∠DCB=∠DBC=30°,由外角性质∠QDB=∠DCB+∠DBC=60°,由QB ⊥DB ,可求∠DQB=90°-∠QDB=30°,可得DQ=2DB=2DC ,由D 与P 重合,可证PQ=2PC ;(2)过B 作BH ⊥PQ 于H ,由AC=6,∠ACB=90°,∠ABC=30°,可求AB=2AC=12,在Rt △ACB 中由勾股定理BC==,由∠HCB=30°,∠CHB=90°,可求CB=2BH=可得BH=PBQ=90°,BP=BQ ,可求PQ=2BH=;(3)由(2)得BH=在Rt △CBH 中,由勾股定理求出CH=9=,当CP≤9时PH=9-PC=9-x ,当CP 9>时PH=PC-9=x-9,分两种情况,在RtRt △PBH 中由勾股定理得:PB 2=PH 2+BH 2即可求出。
2020—2021年人教版八年级数学上册期末试卷(含答案)
2020—2021年人教版八年级数学上册期末试卷(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.已知点A(1,-3)关于x轴的对称点A'在反比例函数ky=x的图像上,则实数k的值为()A.3 B.13C.-3 D.1-33.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a ,小数部分是b ,则3a b -=______.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm . 3.因式分解:24x -=__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
2020—2021年人教版八年级数学上册期末考试卷及答案【精品】
2020—2021年人教版八年级数学上册期末考试卷及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90∠=,E∠+∠等于()D∠=,则12∠=,30AC90∠=,45A.150B.180C.210D.2709.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)13=,则x=__________x x2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.若a、b、c为三角形的三边,且a、b22a b--=,则第三边c9(2)0的取值范围是_____________.4.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,在一次测绘活动中,某同学站在点A 的位置观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向900米处,船C 在点A 南偏东15°方向1200米处,则船B 与船C 之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、C6、A7、A8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、1或5.3、1<c <5.4、55.5、46、1500三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =.2、11x +,13.3、3p =,1q =.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)2400个, 10天;(2)480人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 一.选择题(共 12 小题,每题 4 分)1.若 3x ﹣2y=0,则 等于()A .B .C .2.(2009•上海)用换元法解分式方程﹣﹣ D . 或无意义+1=0 时,如果设 =y ,将原方程化为关于 y 的整式方程,那么这个整式方程是()A .y 2+y ﹣3=0D .B .3y 2﹣y ﹣1=0y 2﹣3y+1=0 C . 3y 2﹣y+1=03.(2010•聊城)使分式无意义的 x 的值是( )A .x=﹣B .x= C . x≠﹣ D .x≠4 (2011•连云港)小华在电话中问小明:“已知一个三角形三边长分别是 4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高 来求解.”小华根据小明的提示作出的图形正确的是()A .B .D .5.(2014•永州)下列运算正确的是()C .A .a 2•a 3=a 62x 2+3x 2=5x 4B .D . ﹣2(a ﹣b )=﹣2a ﹣2b C .(﹣ )﹣2=46.(2014•海南)下列式子从左到右变形是因式分解的是()A .a 2+4a ﹣21=a (a+4)﹣21B . a 2+4a ﹣21=(a ﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣25 7.(2014•龙东地区)已知关于x的分式方程m的取值范围是()+=1的解是非负数,则A.m>2m≠3B.D.m≥2C.m≥2且m>2且m≠38.(2014•来宾)将分式方程=()去分母后得到的整式方程,正确的是A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣49.(2014•安徽)x2•x3=()A.x5B.x6C.x8D.x9 10.(2006•绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对6对B.3对C.4对D.11.(2013•黑龙江)已知关于x的分式方程值范围是()=1的解是非正数,则a的取A.a≤﹣1D.B.a≤1a≤﹣1且a≠﹣2C.a≤1且a≠﹣212.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,A B的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm二.填空题(共6小题,每题4分)13.(2003•宜昌)三角形按边的相等关系分类如下:三角形()内可填入的是_________.14.(2013•株洲)多项式x2+mx+5因式分解得(x+5)(x+n),则m=_________,n=_________.15.(2014•西宁)计算:a2•a3=_________.16.(2014•成都)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是_________.17.(2014•南充)分式方程=0的解是_________ 18.(2014•沙湾区模拟)如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是_________..三.解答题(共 8 小题。
19-20 每题 7 分。
21-24 每题 10 分。
25-26,每题12 分)19.(2013•无锡)计算:(1) ﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x ﹣2).20.(2008•安顺)若关于 x 的分式方程围.的解是正数,求 a 的取值范21 (2010•佛山)新知识一般有两类:第一类是不依赖于其它知识的新知识,如“数”,“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础 上进行联系,拓广等方式产生的知识,大多数知识是这样的知识. (1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条 即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项 式的法则是如何或得的?(用(a+b )(c+d )来说明)22.(2014•镇江)(1)解方程: ﹣ =0;. (2)解不等式:2+≤x ,并将它的解集在数轴上表示出来.23 (2014•梅州)某校为美化校园,计划对面积为 1800m 2 的区域进行绿化, 安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能 完成绿化的面积的 2 倍,并且在独立完成面积为 400m 2 区域的绿化时,甲 队比乙队少用 4 天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少 m 2?(2)若学校每天需付给甲队的绿化费用为 0.4 万元,乙队为 0.25 万元,要 使这次的绿化总费用不超过 8 万元,至少应安排甲队工作多少天?24.(2007•泉州)已知正 n 边形的周长为 60,边长为 a (1)当 n=3 时,请直接写出 a 的值;(2)把正 n 边形的周长与边数同时增加 7 后,假设得到的仍是正多边形, 它的边数为 n+7,周长为 67,边长为 b .有人分别取 n 等于 3,20,120, 再求出相应的 a 与 b ,然后断言:“无论 n 取任何大于 2 的正整数,a 与 b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的 n 的值.25.(2013•张家界)阅读材料:求 1+2+22+23+24+…+22013 的值.解:设 S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以 2 得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得 2S ﹣S=22014﹣1即 S=22014﹣1. 即 1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中 n 为正整数).26 (2011•连云港)某课题研究小组就图形面积问题进行专题研究,他们发 现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比; (2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之 比; …现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示 面积)问题 1:如图 1,现有一块三角形纸板 ABC ,P 1,P 2 三等分边 AB ,R 1,R 2三等分边 AC .经探究知 = S △ABC ,请证明.问题 2:若有另一块三角形纸板,可将其与问题 1 中的拼合成四边形 ABCD ,如图 2,Q 1,Q 2 三等分边 DC .请探究与 S 四边形 ABCD 之间的数量关系.问题 3:如图 3,P 1,P 2,P 3,P 4 五等分边 AB ,Q 1,Q 2,Q 3,Q 4 五等分边 DC .若 S 四边形 ABCD =1,求.问题 4:如图 4,P 1,P 2,P 3 四等分边 AB ,Q 1,Q 2,Q 3 四等分边 DC ,P 1Q 1,P 2Q 2,P 3Q 3 将四边形 ABCD 分成四个部分,面积分别为 S 1,S 2,S 3,S 4.请直接写出含有 S 1,S 2,S 3,S 4 的一个等式.参考答案一.选择题(共12小题)1.解:∵3x﹣2y=0,∴3x=2y,∴=,若x=y=0,则分式无意义,故选D.2解:把=y代入方程+1=0,得:y﹣+1=0.方程两边同乘以y得:y2+y﹣3=0.故选:A3.解:根据题意2x﹣1=0,解得x=.故选B.4.解:∵42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选:C5.解:A、结果是a5,故本选项错误;B、结果是﹣2a+2b,故本选项错误;C、结果是5x2,故本选项错误;D、结果是4,故本选项正确;故选:D.6.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B7.解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选:C8.(解:去分母得:x﹣2=2x,故选:A.9.解:x2•x3=x2+3=x5.故选:A.10.解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故选B11.解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2..(故选:B.12.解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.二.填空题(共6小题)13.(2003•宜昌)三角形按边的相等关系分类如下:三角形()内可填入的是等边三角形.14(2013•株洲)多项式x2+mx+5因式分解得(x+5)x+n),则m=6,n=1.15.(2014•西宁)计算:a2•a3=a5.16.(2014•成都)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.17.(2014•南充)分式方程=0的解是x=﹣3.18.(2014•沙湾区模拟)如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是①②③.解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE.故①正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE;故②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴BE2=BD2+DE2.∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2.∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2).故④错误.故答案为:①②③.三.解答题(共8小题)19.解:(1)原式=3﹣4+1=0;(2)原式=x2+2x+1﹣x2+4=2x+5. . ( ( 20.(2008•安顺)若关于 x 的分式方程围.解:去分母,得 2x+a=2﹣x的解是正数,求 a 的取值范解得:x= ,∴ >0∴2﹣a >0,∴a <2,且 x≠2, ∴a≠﹣4∴a <2 且 a≠﹣4.21 (2010•佛山)新知识一般有两类:第一类是不依赖于其它知识的新知识, 如“数”,“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础 上进行联系,拓广等方式产生的知识,大多数知识是这样的知识. (1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条 即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项 式的法则是如何或得的?(用(a+b )(c+d )来说明)解:(1)因为不是初始性的,所以是第二类知识. (1 分)(2)单项式乘以多项式(分配律) 字母表示数,数可以表示线段的长或图 形的面积,等等. (1 分)(3)用数来说明: a+b ) c+d )=(a+b )c+(a+b )d=ac+bc+ad+db . (7分). 用形来说明,如图所示,边长为 a+b 和 c+d 的矩形,分割前后的面积相等.(9分)即(a+b )(c+d )=ac+bc+ad+db . (10 分)22.(2014•镇江)(1)解方程: ﹣ =0;(2)解不等式:2+≤x ,并将它的解集在数轴上表示出来.解:(1)去分母得:3x+6﹣2x=0,移项合并得:x=﹣6,经检验 x=﹣6 是分式方程的解; (2)去分母得:6+2x ﹣1≤3x , 解得:x≥5,解集在数轴上表示出来为:23 (2014•梅州)某校为美化校园,计划对面积为 1800m 2 的区域进行绿化, 安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能 完成绿化的面积的 2 倍,并且在独立完成面积为 400m 2 区域的绿化时,甲 队比乙队少用 4 天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少 m 2?(2)若学校每天需付给甲队的绿化费用为 0.4 万元,乙队为 0.25 万元,要使这次的绿化总费用不超过 8 万元,至少应安排甲队工作多少天?. 解:(1)设乙工程队每天能完成绿化的面积是 x (m 2),根据题意得:﹣=4,解得:x=50,经检验 x=50 是原方程的解,则甲工程队每天能完成绿化的面积是 50×2=100(m 2),答:甲、乙两工程队每天能完成绿化的面积分别是 100m 2、50m 2;(2)设至少应安排甲队工作 y 天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作 10 天 4 (2007•泉州)已知正 n 边形的周长为 60, 边长为 a(1)当 n=3 时,请直接写出 a 的值;(2)把正 n 边形的周长与边数同时增加 7 后,假设得到的仍是正多边形, 它的边数为 n+7,周长为 67,边长为 b .有人分别取 n 等于 3,20,120, 再求出相应的 a 与 b ,然后断言:“无论 n 取任何大于 2 的正整数,a 与 b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的 n 的值.解:(1)a=20;(2)此说法不正确.理由如下:尽管当 n=3,20,120 时,a >b 或 a <b ,但可令 a=b ,得,即.. ∴60n+420=67n ,解得 n=60,(7 分)经检验 n=60 是方程的根.∴当 n=60 时,a=b ,即不符合这一说法的 n 的值为 6025.(2013•张家界)阅读材料:求 1+2+22+23+24+…+22013 的值.解:设 S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以 2 得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得 2S ﹣S=22014﹣1 即 S=22014﹣1即 1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+...+3n (其中 n 为正整数). 解:(1)设 S=1+2+22+23+24+ (210)将等式两边同时乘以 2 得:2S=2+22+23+24+…+210+211, 将下式减去上式得:2S ﹣S=211﹣1,即 S=211﹣1, 则 1+2+22+23+24+…+210=211﹣1;(2)设 S=1+3+32+33+34+…+3n ①,两边同时乘以 3 得:3S=3+32+33+34+…+3n +3n+1②,②﹣①得:3S ﹣S=3n+1﹣1,即 S= (3n+1﹣1),则 1+3+32+33+34+…+3n = (3n+1﹣1).26 (2011•连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:= (1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之 比; …现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示 面积)问题 1:如图 1,现有一块三角形纸板 ABC ,P 1,P 2 三等分边 AB ,R 1,R 2三等分边 AC .经探究知= S △ABC ,请证明.问题 2:若有另一块三角形纸板,可将其与问题 1 中的拼合成四边形 ABCD ,如图 2,Q 1,Q 2 三等分边 DC .请探究与 S 四边形 ABCD 之间的数量关系.问题 3:如图 3,P 1,P 2,P 3,P 4 五等分边 AB ,Q 1,Q 2,Q 3,Q 4 五等分边 DC .若 S 四边形 ABCD =1,求.问题 4:如图 4,P 1,P 2,P 3 四等分边 AB ,Q 1,Q 2,Q 3 四等分边 DC ,P 1Q 1,P 2Q 2,P 3Q 3 将四边形 ABCD 分成四个部分,面积分别为 S 1,S 2,S 3,S 4.请直接写出含有 S 1,S 2,S 3,S 4 的一个等式.解:问题 1,证明:如图 1,连接 P 1R 2,R 2B ,在△AP 1R 2 中,∵P 1R 1 为中线,∴S AP1R1△=S P1R1R2,同理 S P1R2P2△=S P2R2B △,∴S P1R1R2△+S P1R2P2 S ABR2△=S 四边形 P1P2R2R1,△= 2= △= △= △= 由 R 1,R 2 为 AC 的三等分点可知,S BCR2 S ABR2△,∴S ABC △=S BCR2△+S ABR =S 四边形 P1P2R2R1+2S 四边形 P1P2R2R1=3S 四边形 P1P2R2R1,∴S 四边形 P1P2R2R1= S ABC △;问题 2,S 四边形 ABCD =3S 四边形 P1Q1Q2P2.理由:如图 2,连接 AQ 1,Q 1P 2,P 2△C ,在 AQ 1P 2 中,∵Q 1P 1 为中线,∴S AQ1P1△=S △P1Q1P2,同理 S P2Q1Q2△=S P2Q2C △,∴S P1Q1P2△+S P2Q1Q2S 四边形 AQ1CP2=S 四边形 P1Q1Q2P2,由 Q 1,P 2 为 CD ,AB 的三等分点可知,S ADQ1 S AQ1C △,S BCP2 S AP2C △,∴S ADQ1△+S BCP2 (S AQ1C △+S AP2C )= S 四边形 AQ1CP2,∴S 四边形 ABCD =S ADC △+S ABC △=S 四边形 AQ1CP2+S ADQ1△+S BCP2=3S 四边形 P1Q1Q2P2,即 S 四边形 ABCD =3S 四边形 P1Q1Q2P2;问题 3,解:如图 3,由问题 2 的结论可知,3S 2=S 1+S 2+S 3,即 2S 2=S 1+S 3,同理得2S 3=S 2+S 4,2S 4=S 3+S 5,三式相加得,S 2+S 4=S 1+S 5,∴S 1+S 2+S 3+S 4+S 5=2(S 2+S 4)+S 3=2×2S 3+S 3=5S 3,即 S 四边形 P2Q2Q3P3= S 四边形 ABCD = ;问题 4,如图 4,关系式为:S 2+S 3=S 1+S 4.。