2019-2020学年上海黄浦区卢湾中学七上期末数学试卷

合集下载

上海市黄浦区2019年七年级上学期期末考试数学试题及答案

上海市黄浦区2019年七年级上学期期末考试数学试题及答案

第一学期期末考试试卷 七年级 数学学科(满分100分,考试时间90分钟)一、填空题(本题共14题,每题2分,满分28分)1. 计算:212x ⎛⎫-= ⎪⎝⎭▲ ;2. 计算:()22193x y xy ⋅-= ▲ ; 3. 当x ▲ 时,分式212x x +-有意义;4. 计算:()()22a b a b --= ▲ ;5. 因式分解:2436a -= ▲ ; 6. 计算:()()2121x x -+-= ▲ ; 7. 化简:22412xx x -=+- ▲ ;8. 实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156米,数字0.00000156用科学记数法表示为 ▲ ; 9. 将33a -写成只含有正整数指数幂的形式:33a -= ▲ ;10. 若方程2133x kx x+=--有增根,则k = ▲ ; 11. 将2厘米长的线段MN 向右平移3厘米得到线段''M N ,则线段''M N 的长度为 ▲ 厘米;12. 如图,将三角形ABC 绕点A 按逆时针方向旋转至 三角形''AB C ,点B 与点'B 、点C 与点'C 是对应点, 如果'150B AC ∠=︒,'90BAC ∠=︒, 那么BAC ∠= ▲ ;13. 已知代数式241x x +-的值为2,则2285x x ++的值为 ▲ ; 14. 如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上。

已知两个正方形的面积之差为31平方厘米,则四边 形CDGF 的面积是 ▲ 平方厘米。

GC第12题图C'ACB二、选择题(本题共4题,每题3分,满分12分) 15. 下列计算正确的是( ▲ )A .336a a a +=;B .0103⎛⎫= ⎪⎝⎭;C .21124-⎛⎫= ⎪⎝⎭; D .132a a a --÷=;16. 下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B .C .D .17. 若多项式5(2)3mxm x ---是一个二次三项式,则m 的值为( ▲ )A .2±;B .2;C .2-;D .无法确定;18. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( ▲ )三、简答题(本题共6题,每题5分,满分30分) 19.计算:()()32233322a b ab b -⋅÷- 20.计算:232(42)(2)(1)a a a a -÷---A .B .C .D .21.因式分解:()()2223638a a a a ---+ 22.因式分解:3244x x y y x -+-23.计算:222x y xy x y x y x y +-+-- 24.解方程:232121x x x x ++=++四、解答题(本题共4题,其中第25题6分,第26、27题每题7分,第28题10分,满分30分) 25. 先化简再求值:ba b a b a b b a ba +-÷⎪⎭⎫ ⎝⎛--+-22,其中30a b -=.26. 某学校图书馆有A 、B 两个书库,小明负责整理A 书库,小伟负责整理B 书库。

上海市黄浦区2019届数学七上期末教学质量检测试题

上海市黄浦区2019届数学七上期末教学质量检测试题

上海市黄浦区2019届数学七上期末教学质量检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,若延长线段AB 到点C ,使BC=AB ,D 为AC 的中点,DC=5cm ,则线段AB 的长度是( )A.10cmB.8cmC.6cmD.4cm2.下列说法正确的个数是( ).①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC ,则A 、B 、C 三点共线.A .1B .2C .3D .4 3.如图,已知是直线上一点,,平分,的度数是( )A. B. C. D.4.如果1x =是方程250x m +-=的解,那么m 的值是( )A.-4B.2C.-2D.4 5.方程x ﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+4 6.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 7.下列每组单项式中是同类项的是( )A.2xy 与﹣13yx B.3x 2y 与﹣2xy 2 C.12x -与﹣2xy D.xy 与yz 8.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为( )A .21n +B .32n -C .31n +D .4n9.下面的计算正确的是( )A.22541a a -=B.235a b ab +=C.()33a b a b +=+D.()a b a b -+=--10.已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A.b ﹣2c+aB.b ﹣2c ﹣aC.b+aD.b ﹣a 11.计算2﹣(﹣3)×4的结果是( ) A .20 B .﹣10 C .14 D .﹣2012.下列计算正确的是( ) A.330--=B.02339+=C.331÷-=-D.()1331-⨯-=-二、填空题13.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b )c =_____.14.已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF =________cm.15.当x =________时,代数式2x +3与2-5x 的值互为相反数.16.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.如果 x-y=3,m+n=2,则 ( y + m) -( x - n) 的值是_____.19.比较大小:﹣3_____﹣2.(用“>”、“=”或“<”填空)20.已知4x =,12y =,且0xy <,则x y 的值等于_________. 三、解答题21.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若AM=1,BC=4,求MN 的长度;(2)若MN=5,求AB 的长度.22.如图,已知数轴上有两点A 、B ,它们对应的数分别为a 、b ,其中a =12.(1)在点B 的左侧作线段BC =AB ,在B 的右侧作线段BD =3AB (要求尺规作图,不写作法,保留作图痕迹);(2)若点C 对应的数为c ,点D 对应的数为d ,且AB =20,求c 、d 的值;(3)在(2)的条件下,设点M 是BD 的中点,N 是数轴上一点,且CN =2DN ,请直接写出MN 的长.23.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?24.已知:关于 x 的方程 323a x bx --=的解是 x=2 (1)若 a=4,求b 的值; (2)若 a ≠0 且 b≠0 ,求代数式a b b a -的值. 25.先化简,再求值:2(a 2-ab )-3(a 2-ab ),其中,a=-2,b=3.26.先化简,再求值:223212a ab 3a ab 432⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,其中a 2=,b 1=-. 27.数学魔术:如图所示,数轴上的点A 、B 、C 、D 分别表示131042--,,,,请回答下列问题: (1)在数轴上描出A 、B 、C 、D 四个点;(2)B 、C 两点间的距离是多少?A 、D 两点间的距离是多少?(3)现在把数轴的原点取在点B 处,其余都不变,那么点A 、B 、C 、D 、分别表示什么数?28.计算:(1)12(18)(7)--+-(2)31112424⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()31162()48÷---⨯-(4)213132123482834⎛⎫⎛⎫-÷--+-⨯ ⎪ ⎪⎝⎭⎝⎭【参考答案】***一、选择题1.B2.C3.D4.B5.D6.C7.A8.B9.D10.D11.C12.D二、填空题13.14.1或515. SKIPIF 1 < 0解析:5 316.18017.118.-119.<20. SKIPIF 1 < 0 解析:8-三、解答题21.(1)MN= 3;(2)AB= 10.22.(1)见解析;(2)c=﹣28,d=52;(3)MN的长为103或110.23.(1)甲购书7本,乙购书8本(2)办会员卡比不办会员卡购书共节省14元钱24.(1)b=3(2)7 1225.﹣a2+ab,-10 26.27.(1)见解析;(2)B、C两点的距离为112,A、D两点的距离为7;(3)点A表示的数为﹣412,点B表示的数为0,点C表示的数为﹣112,点D表示的数为212.28.(1)23(2)12-(3)52-(4)10。

上海市黄浦区2019-2020学年数学七上期末教学质量检测试题

上海市黄浦区2019-2020学年数学七上期末教学质量检测试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°2.已知∠AOB=20°,∠BOC=30°,求∠AOC的度数,下列结果正确的是( )A.50° B.10° C.50°或10° D.不确定3.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.4.如果293a-与113a+是互为相反数,那么a的值是( )A.6 B.2 C.12 D.-65.规定a cad bcb d⎛⎫=-⎪⎝⎭,若2331xx⎛⎫=⎪--⎝⎭,则x=()A.0B.3C.1D.26.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2 B.4 C.﹣2 D.﹣47.下面计算正确的是()A.﹣32=9 B.﹣5+3=﹣8 C.(﹣2)3=﹣8 D.3a+2b=5ab8.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.32824x x =- B.+32824x x = C.2232626x x +-=+ D.2232626x x +-=- 9.−2014的相反数为( ) A.12016 B.−12016 C.−2016 D.201610.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A .9B .10C .11D .1211的相反数是( )B. C.2 D.﹣2 12.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( )A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯ 二、填空题13.直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,且1∠:21∠=:4,则DOF ∠的度数是______.14.如图,线段OA=1,其中点记为1A ,A 1A 的中点记为2A ,A 2A 的中点记为3A ,A 3A 的中点记为4A ,如此继续下去……,则当n 1≥时,O A n =_______.15.小明在黑板上写有若干个有理数.若他第一次擦去m 个,从第二次起,每次都比前一次多擦去2个,则5次刚好擦完;若他每次都擦去m 个,则10次刚好擦完.则小明在黑板上共写了________个有理数. 16.142.2016年元旦期间日月峡水伊方优惠开放.门票售价为:成人票每张150元,儿童票每张70元.如果某日水伊方售出门票100张,门票收入共11000元.那么当日售出成人票________张.17.定义:规定是任意一个两位及以上的自然数,将的各位数字反向排列所得自然数与相等,则称为回文数.如,则称为回文数:如,则不是回文数.根据定义可得自然数列中11是第1个出现的回文数,则自然数列中第201个出现的回文数是__________.18.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.19.计算:21()2-=______.20.如果a ,b 互为相反数,c ,d 互为倒数,x 的平方等于4,那么22x -9cd+2018a+b)x (的值是_____.三、解答题21.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2cm/秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且PA=3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;22.11°23′26″×3.23.(1) 若方程4x -1=3x +1和2m +x =1的解相同.求m 2x -的值.(2)在公式S =12(a +b)h 中,已知S =120,b =18,h =8.求a 的值. 24.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x 元(x >300).(1)请用含x 代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?25.先化简,再求值:[(x+2y )(x-2y )-(x+4y )2]÷4y,其中x 、y 满足:x 2+y 2-4x+6y+13=026.化简: ()3524b a a b +--.27.在数轴上表示下列各数,并比较它们的大小.4,-1,132-,0,1.5,-2. 比较大小: < < < < < 28.计算:【参考答案】***一、选择题1.A2.C3.C4.B5.C6.A7.C8.A9.D10.C11.B12.C二、填空题13.105°14. SKIPIF 1 < 0 解析:112n -15.4016.5017.1111118.a -b +c19. SKIPIF 1 < 0. 解析:14. 20.﹣1三、解答题21.(1)经过30秒时间P 、Q 两点相遇;(2)点Q 是速度为613cm/秒或1013cm/秒. 22.34°10′18″23.(1)m =-12;(2)a =12 24.(1) (0.8x +60)元; (0.85x +30)元(2)他应该去乙超市(3)李明购买600元的商品时,到两家超市购物所付的费用一样25.1126.37a b +27.比较大小见解析,画图见解析.28.-1。

2019-2020学年上海市黄浦区数学七年级(上)期末综合测试模拟试题

2019-2020学年上海市黄浦区数学七年级(上)期末综合测试模拟试题

2019-2020学年上海市黄浦区数学七年级(上)期末综合测试模拟试题一、选择题1.下列关于角的说法正确的是( )A.两条射线组成的图形叫做角B.角的大小与这个角的两边的长短无关C.延长一个角的两边D.角的两边是射线,所以角不可度量2.如图,点A 位于点O 的方向上.( )A .南偏东35°B .北偏西65°C .南偏东65°D .南偏西65°3.下列说法正确的个数是( ).①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC ,则A 、B 、C 三点共线.A .1B .2C .3D .44.若关于x 的一元一次方程1﹣46x a +=54x a +的解是x=2,则a 的值是( ) A.2B.﹣2C.1D.﹣1 5.解方程2x 13x 4134---=时,去分母正确的是( ) A.4(2x-1)-9x-12=1 B.8x-4-3(3x-4)=12C.4(2x-1)-9x+12=1D.8x-4+3(3x-4)=12 6.下列各组中两个单项式为同类项的是 A.23x 2y 与-xy 2 B.20.5a b 与20.5a cC.3b 与3abcD.20.1m n -与215nm 7.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2k n 为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( )A.1B.4C.2019D.201948.若a 1b 2c 30++-++=,则()()()a 1b 2c 3-+-的值是( )A.48-B.48C.0D.无法确定9.在23-、 2.5-- 、1(2)2--、2(3)-- 、3(3)- 中,负数的个数是( ) A.1 B.2 C.3 D.410.若2(1)210x y -++=,则x+y 的值为( ). A.12 B.12- C.32 D.32- 11.下列判断中正确的是( )A .3a 2bc 与bca 2不是同类项B .25m n 不是整式C .单项式-x 3y 2的系数是-1D .3x 2-y +5xy 2是二次三项式12.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A.16cm 2B.20cm 2C.80cm 2D.160cm 2二、填空题 13.一个角的余角比它的补角的13还少20°,则这个角是_____________. 14.将一个直角三角尺AOB 绕直角顶点O 旋转到如图所示的位置,若∠AOD =110°,则旋转角的角度是____°.15.设[)x 表示大于x 的最小整数,如[)34=,[)1.21-=-,则下列结论中正确的是_________。

2019学年初一黄浦区卢湾中学答案

2019学年初一黄浦区卢湾中学答案

黄浦区卢湾中学2019学年度第一学期七年级数学期末测试参考答案及评分说明(202001)一、选择题:(本大题共6题,每题3分,满分18分)1.D;2.B;3.A ;4.D ;5.C ;6.C .二、填空题:(本大题共12题,每题2分,满分24分)三、解答题(本大题共9题,19-25每题6分,26题7分,27题9分,满分58分)19.解原式2222212352x x x y xy xy =-+-+···············································(2分)222322x x y xy =-++·······························································(2分)222322xy x y x =+-.·······························································(2分)20.解原式[3(21)][3(21a b a b =--+-)]···················································(2分)22(3)(21)a b =--····································································(2分)229441a b b =-+-.······························································(2分)21.解原式6222()2y x x y-=×···········································································(2分)62244y x x y =×24y =.································································(2+2分)21.解原式22(4)24)x y x y =--+(···························································(2分)(2)(2)22)x y x y x y =+--+(··················································(2分)(2)(22)x y x y =+--.···························································(2分)23.解:设乙队平均每天筑路8x 千米,则甲队平均每天筑路5x 千米.··············(1分)根据题意得:4606032058x x ´-=.························································(3分)解得x=0.1.······················································································(1分)经检验,x=0.1是原方程的解,且符合题意,所以8x=0.8.(1分)7.1;8.()()m m n m n +-;9.32a -+;10.6x ;(只需填一个)11.78a ;12.1x ¹;13.13;14.0;15.81.610-´;16.11a a +-;17.72;18.38.答:乙队平均每天筑路0.8千米.24.(1)解原式=22(1)(1)1[(1)(1)(1)m m m m m m m m m+-+-×+--·······································(1分)=2(1)111m m m m ++---=11m m +-.·······································································(2分)当3m =时,原式31231+==-.····································································(1分)(2)如果111m m +=--,那么11m m +=-+,解得0m =.······························(1分)当0m =时,除式01m m =+,原式无意义,所以原代数式的值不能等于1-.·····(1分)25.(1)O ,顺时针,144;(或逆时针216)·················································(3分)(2)OD ,△ODC .(或OC ,△OAB )······················································(3分)26.(1)设5-x=a ,x-2=b ,·········································································(1分)则(5-x )(x-2)=ab=2,a+b=(5-x )+(x-2)=3,··············································(1分)∴(5-x )2+(x-2)2=a 2+b 2=(a+b )2-2ab=32-2×2=5.··············································(1分)(2)∵正方形ABCD 的边长为x ,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48.············································(1分)阴影部分的面积=FM 2-DF 2=(x-1)2-(x-3)2.····················································(1分)设(x-1)=a ,(x-3)=b ,则(x-1)(x-3)=ab=48.a-b=(x-1)-(x-3)=2,∴(a+b )2=(a-b )2+4ab =196,∴a+b=14.·························(1分)∴(x-1)2-(x-3)2=a 2-b 2=(a+b )(a-b )=14×2=28.··············································(1分)即阴影部分的面积是28.27.(1)按要求画出正确的图形.································································(2分)平移的距离是b .··················································································(1分)(2)按要求画出正确的图形.······································································(2分)30ABQ Ð=°.····················································································(1分)(3)按要求画出正确的图形.······································································(2分)GE 的长度是(b a -).········································································(1分)。

2020-2021学年上海市黄浦区卢湾中学七年级上学期期末数学试卷(附答案解析)

2020-2021学年上海市黄浦区卢湾中学七年级上学期期末数学试卷(附答案解析)

2020-2021学年上海市黄浦区卢湾中学七年级上学期期末数学试卷一、选择题(本大题共6小题,共18.0分)1.74÷72的值是()A. 49B. 14C. 2D. 1492.下列计算正确的是()A. −(a−b)=−a−bB. a2⋅a3=a5C. a2+a2=a4D. (ab2)3=ab63.分解因式:3x3−12x2y+12xy2=()A. 3x2(x−4y)+12xy2B. 3x(x2−4xy+4y2)C. 3x(x−2y)2D. 不能分解4.x=−1是下列哪个分式方程的解()A. 2x+1=1xB. x+1x2−1=0C. 2x+1−1x+2=0 D. 2x−1+1x+2=05.下列各图中,不是中心对称图形的是()A. B. C. D.6.下列图形中既是中心对称又是轴对称的是()①正三角形②正方形③等腰梯形④正六边形⑤圆.A. ①②③B. ②④⑤C. ①③④D. ②③⑤二、填空题(本大题共12小题,共24.0分)7.计算:[(x+y)2−(x−y)2]÷2xy=______.8.把代数式xy2−9x分解因式,结果是______ .9.若三角形的面积为14(a2−b2),一底边长为(a+b),则这底边上的高为______ .10.若多项式n4+9n2+k可化为(a+b)2的形式,则单项式k可以是______.11.某种商品的原价为a元,国庆期间商场为了促销,决定降价20%,则这种商品的现价为______元/件.12.函数y=√x+3x2−9中,自变量x的取值范围是______.13.已知2x+y=10xy,则代数式4x+xy+2y2x−4xy+y的值为______.14.化简:x2x−y −y2x−y=______.15.某种雾霾(PM2.5)含有大量的有毒有害物质,对人体健康危害很大,被称为大气元凶.雾霾的直径大约是0.00000205m,把数据0.00000205用科学记数法表示为______m.16.如图,利用图①和图②的阴影面积相等,写出一个正确的等式______.17.如图:写出∠1和∠2的度数,则∠1=,∠2=.18.阅读下文,寻找规律,并填空:已知x≠1,计算:(1−x)(1+x)=1−x2(1−x)(1+x+x2)=1−x3(1−x)(1+x+x2+x3)=1−x4(1−x)(1+x+x2+x3+x4)=1−x5观察上式,并猜想:(1−x)(1+x+x2+⋯+x n)=______.三、计算题(本大题共2小题,共13.0分)19.已知a−b=3,求a(a−2b)+b2的值.20.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,2ab=2得a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)①若(4−x)x=5,则(4−x)2+x2=______;②若(4−x)(5−x)=8则(4−x)2+(5−x)2=______;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.四、解答题(本大题共7小题,共45.0分)21.(1)计算:(x+4)(x−4)−3(x2−x+1)(2)解方程:2x+1−31−x=6x2−122.(3.14−π)0−3tan30°+|√3−2|−(12)−1.23.提出问题:你能把多项式x2+5x+6因式分解吗?探究问题:如图(1)所示,设a,b为常数,由面积相等可得:(x+a)(x+b)=x2+ax+bx+ab= x2+(a+b)x+ab,将该式从右到左使用,就可以对形如x2+(a+b)x+ab的多项式进行因式分解即x2+(a+b)x+ab=(x+a)(x+b).观察多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项为两数之和.解决问题:x 2+5x +6=x 2+(2+3)x +2×3=(x +3)(x +2)运用结论:(1)基础运用:把多项式x 2−5x −24进行因式分解.(2)知识迁移:对于多项式4x 2−4x −15进行因式分解还可以这样思考:将二次项4x 2分解成图(2)中的两个−4x 的积,再将常数项−15分解成−5与3的乘积,图中的对角线上的乘积的和为−4x ,就是4x 2−4x −15的一次项,所以有4x 2−4x −15=(2x −5)(2x +3).这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:3x 2−19x −14(3)综合运用:灵活运用知识进行因式分解:x 3−7x +624. 某工厂制作AB 两种型号的环保包装盒.已知用3米同样的材料分别制成A 型盒的个数比制成B 型盒的个数少1个,且制作一个A 型盒比制作一个B 型盒要多用20%的材料.求制作每个A ,B 型盒各用多少材料?25. 先化简,再求值:(1−2x+1)÷x 2−2x+1x+1,其中x =2sin45°+1.26. 如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB⏜,P 是半径OB 上一动点,Q 是AB⏜上的一动点,连接PQ . (1)当∠POQ =______度时,PQ 有最大值,最大值为______.(2)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ⏜的长; (3)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积.(4)如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.27.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4)(1)S△ABC=______.(2)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(3)以点O为位似中心,将△ABC缩小为原来的1,得到△A2B2C2,请在y轴右侧画出△A2B2C2.2参考答案及解析1.答案:A解析:解:74÷72=74−2=72=49.故选:A.根据同底数幂的除法法则计算即可.本题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.答案:B解析:解:A、−(a−b)=−a+b,错误;B、a2⋅a3=a5,正确;C、a2+a2=2a2,错误;D、(ab2)3=a3b6,错误;故选:B.根据幂的乘方和积的乘方,合并同类项,同底数幂的乘法解答即可.此题考查幂的乘方和积的乘方,关键是根据法则进行计算.3.答案:C解析:解:3x3−12x2y+12xy2,=3x(x2−4xy+4y2),=3x(x−2y)2.故选C.先提取公因式3x,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.4.答案:D解析:解:当x=−1时,A.2x+1=1x中,2x+1的分母等于0,分式无意义,A不合题意;B.x+1x2−1=0中,x2−1=0,分母等于0,分式无意义,B不合题意;C.2x+1−1x+2=0中,2x+1的分母等于0,分式无意义,C不合题意;D.2x−1+1x+2=0中,2−2+1−1+2=0,D符合题意.故选:D.根据方程解的意义,使方程左右两边相等的式子值叫方程的解,分别代入判断即可.本题考查了分式方程的解,解决本题的关键是正确理解分式方程解的意义,做题时要考虑分母是否为0的情况.5.答案:B解析:试题分析:根据中心对称图形的概念和各图形的结构特点求解.A、C、D都既是轴对称图形,也是中心对称图形;B、只是轴对称图形.故选B.6.答案:B解析:解:正方形、正六边形、圆既是中心对称又是轴对称,故选:B.根据轴对称图形与中心对称图形的概念解答即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.答案:2解析:解:原式=[x2+2xy+y2−(x2−2xy+y2)]÷2xy,=(x2+2xy+y2−x2+2xy−y2)÷2xy,=4xy÷2xy,=2,故答案为:2.首先计算括号里的完全平方式,然后再合并同类项,最后计算除法即可.此题主要考查了整式的混合运算,关键是掌握计算顺序和完全平方公式.8.答案:x(y+3)(y−3)解析:解:xy2−9x=x(y2−9),=x(y+3)(y−3).故答案为:x(y+3)(y−3).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.答案:a−b2解析:根据三角形的面积公式,可得出底边上的高.本题考查了整式的除法,熟悉三角形的面积公式是解题的关键.解:S=12×底边×高,∴2×14(a2−b2)=(a+b)×高,底边上的高=a 2−b22(a+b)=a−b2,故答案为a−b2.10.答案:±6n3,814解析:解:n4+9n2+k=(a+b)2,若将9n2看作尾(3n)2,即:n4+k+(3n)2=(n2±3n)2,∴k=±6n3,若将9n2看作首尾积的2倍,则:n4+2×92n2+(92)2=(n2+92)2,∴k=814,故答案为:±6n3,814.利用完全平方公式的结构特征判断即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11.答案:0.8a解析:解:由题意可得,这种商品的现价为:a(1−20%)=0.8a(元/件),故答案为:0.8a.根据题意,可以用含a的代数式表示出这种商品的价格.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.12.答案:x>−3且x≠3解析:解:函数y=√x+3x2−9中,x+3≥0,x2−9≠0,解得:x>−3且x≠3.故答案为:x>−3且x≠3.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.13.答案:72解析:解:∵2x+y=10xy,∴4x+xy+2y 2x−4xy+y =2(2x+y)+xy2x+y−4xy=21xy6xy=72,故答案为:72.把已知条件代入代数式即可得到结论.本题考查了分式的值,正确的化简分式是解题的关键.14.答案:x+y解析:解:x 2x−y −y2x−y=(x−y)(x+y)x−y=x+y.同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.本题考查了分式的加减法法则.15.答案:2.05×10−6解析:解:把数据0.00000205用科学记数法表示为2.05×10−6m.故答案为:2.05×10−6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.答案:(a+2)(a−2)=a2−4解析:解:①阴影部分的面积=(a+2)(a−2);②阴影部分的面积=a2−22=a2−4;∴(a+2)(a−2)=a2−4,故答案为(a+2)(a−2)=a2−4;①阴影部分的面积=(a+2)(a−2);②阴影部分的面积=a2−22=a2−4;即可求解.本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.17.答案:70°,110°.解析:解:∠1=180°−70°−40°=70°,∠2=40°+70°=110°,故答案为:70°,110°.18.答案:1−x n+1解析:解:(1−x)(1+x+x2+⋯+x n)=1−x n+1;故答案为:1−x n+1.根据平方差公式和所给出的式子的特点,找出规律,写出答案即可.此题考查数字的变化规律,关键是根据平方差公式找出本题的规律,是一道基础题.19.答案:解:原式=a2−2ab+b2=(a−b)2,当a−b=3时,原式=32=9.解析:直接利用单项式乘多项式计算,再把a−b的值代入计算即可.本题考查了单项式乘多项式,正确将原式变形是解题关键.20.答案:617解析:解:(1)∵x+y=8;∴(x+y)2=82;x2+2xy+y2=64;又∵x2+y2=40;∴2xy=64−(x2+y2),∴2xy=64−40=24,xy=12.(2)①∵(4−x)+x=4,∴[(4−x)+x]2=42[(4−x)+x]2=(4−x)2+2(4−x)x+x2=16;又∵(4−x)x=5,∴(4−x)2+x2=16−2(4−x)x=16−2×5=6.②由(4−x)−(5−x)=−1,∴[(4−x)−(5−x)]2=(4−x)2−2(4−x)(5−x)+(5−x)2=(−1)2;又∵(4−x)(5−x)=8,∴(4−x)2+(5−x)2=1+2(4−x)(5−x)=1+2×8=17.(3)由题意可得,AC+BC=6,AC2+BC2=18;∵(AC+BC)2=62,AC2+2AC⋅BC+BC2=36;∴2AC⋅BC=36−(AC2+BC2)=36−18=18,AC⋅BC=9;图中阴影部分面积为直角三角形面积,∵BC=CF∴S△ACF=12AC⋅CF=92.理解题目给出得例题,再根据完全平方公式的变形应用,解决问题.本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4−x)+x=4,②(4−x)−(5−x)=−1是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段AB+BC=6,再根据两个正方形面积和为18,利用完全平方公式变形应用得到AC⋅BC=9,再根据直角三角形面积公式得出答案.21.答案:解:(1)(x+4)(x−4)−3(x2−x+1)=x2−16−3x2+3x−3=−2x2+3x−19;(2)去分母得:2(x−1)+3(x+1)=6,去括号得:2x−2+3x+3=6,移项合并得:5x=5,解得:x=1,检验:当x=1时,x2−1=0,∴原分式方程无解.解析:(1)原式利用平方差公式化简,去括号合并即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及平方差公式,熟练掌握公式及法则是解本题的关键.22.答案:解:原式=1−3×√33+2−√3−2=1−√3+2−√3−2=1−2√3.解析:直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.答案:解 (1)x 2−5x −24=(x −8)(x +3)(2)3x 2−19x −14=(3x +2)(x −7)(3)解法一:x 3−7x +6=x 3−x −6x +6=(x 3−x)−(6x −6)=x(x 2−1)−6(x −1)=x(x +1)(x −1)−6(x −1)=(x −1)[x(x +1)−6]=(x −1)(x 2+x −6)=(x −1)(x −2)(x +3)解法二:x 3 −7x +6=x 3−x 2+x 2 −7x +6=x 2(x −1)+x 2 −7x +6=x 2(x −1)+(x −1)(x −6)=(x −1)(x 2+x −6)=(x −1)(x −2)(x +3)解析:(1)仿照探究,按形如x 2+(a +b)x +ab 的多项式进行因式分解即可;(2)可按“十字相乘法”对多项式进行因式分解;(3)把−7x 拆开为−6x −x 或添加上x 2−x 2,重新分组后再因式分解.本题考查了形如x 2+(a +b)x +ab 的多项式因式分解、“十字相乘法”及利用拆项法和添项法对多项式进行因式分解.看懂例题并能运用是解决本题的关键.24.答案:解:设制作每个B 型盒用x 米材料,则制作每个A 型盒用(1+20%)x 米材料,依题意,得:3x −3(1+20%)x =1,解得:x =0.5,经检验,x =0.5是所列分式方程的解,且符合题意,∴(1+20%)x =0.6.答:制作每个A 型盒用0.6米材料,制作每个B 型盒用0.5米材料.解析:设制作每个B 型盒用x 米材料,则制作每个A 型盒用(1+20%)x 米材料,根据数量=材料总数÷每个环保包装盒所需材料结合用3米同样的材料分别制成A 型盒的个数比制成B 型盒的个数少1个,即可得出关于x 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.答案:解:原式=x−1x+1⋅x+1(x−1)2 =1x−1,当x =2×√22+1=√2+1时, 原式=1√2=√22. 解析:先根据分式的运算法则化简原式,然后将x 的值代入原式即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 26.答案:(1)90;10√2;(2)如图2,连接OQ ,∵点P 是OB 的中点,∴OP =12OB =12OQ .∵QP ⊥OB ,∴∠OPQ =90°在Rt △OPQ 中,cos∠QOP =OP OQ =12,∴∠QOP =60°,∴l BQ ⏜=60π×10180=103π;(3)由折叠的性质可得,BP=B′P,AB′=AB=10√2,在Rt△B′OP中,OP2+(10√2−10)2=(10−OP)2解得OP=10√2,S阴影=S扇形AOB−2S△AOP=90360π×102−2×12×10(10√2−10)=25π−100√2+100.(4)找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,如图4,则OM=O′M,OO′⊥PQ,O′P=OP=6,点O′是B′Q⏜所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA相切于C点,∴O′C⊥AO,∴O′C//OB,∴四边形OCO′B是矩形,在Rt△O′BP中,O′B=√62−42=2√5,在Rt△OBO′K,OO′=√102+(2√5)2=2√30,∴OM=12OO′=12×2√30=√30,即O到折痕PQ的距离为√30.解析:解:(1)∵P是半径OB上一动点,Q是AB⏜上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,此时,∠POQ=90°,PQ=√OA2+OB2=10√2,故答案为:90,10√2;(2)见答案.(3)见答案.(4)见答案.(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;(2)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(3)先在Rt△B′OP中,OP2+(10√2−10)2=(10−OP)2,解得OP=10√2−10,最后用面积的和差即可得出结论.(4)先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,进而得出OM.此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.27.答案:解:(1)4;(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.解析:此题主要考查了位似变换以及平移变换,正确得出对应点位置是解题关键.(1)直接利用三角形面积求法进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用位似变换得出对应点位置进而得出答案.×2×4=4;解:(1)S△ABC=12故答案为4;(2)见答案;(3)见答案.。

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .32.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .139 3.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 4.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9 B .327- C .3-D .(3)-- 5.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣16.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠A OC +∠BOC=∠AOB7.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限 8.估算15在下列哪两个整数之间( ) A .1,2 B .2,3 C .3,4 D .4,5 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .212.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.a的正方形纸片中间挖去一个正方形的洞,成为一个边宽为15.如图甲所示,格边长为cm5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.-,10.点P以每秒2个单位长度从A出发沿数16.在数轴上,点A,B表示的数分别是8轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.+=的解为最大负整数,则a的值为______.17.若关于x的方程2x3a418.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n个图案用_____根火柴棒.20.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;21.如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为_____.22.一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块cm.的顶面,则水箱中露在水面外的铁块体积是______323.若-3x2m+6y3与2x4y n是同类项,则m+n=______.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、解答题25.先化简后求值:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy,其中x=﹣2,y=1.26.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(P+q)x+pq得x2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2所以x2+3x+2=x2+(1+2)x+1×2,x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+6x-27(2)若x2+px+8可分解为两个一次因式的积,则整数p的所有可能值是____(3)利用因式分解法解方程:x2-4x-12=027.化简:4(m+n)﹣5(m+n)+2(m+n).28.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?29.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.30.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?四、压轴题31.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).32.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 33.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯,故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.B解析:B 【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.5.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.6.D解析:D 【解析】A. ∵∠AOC =∠BOC , ∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误; B. ∵∠AOB =2∠BOC =∠AOC +∠BOC , ∴∠AOC =∠BOC , ∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误; C. ∵∠AOC =12∠AOB , ∴∠AOB =2∠AOC =∠AOC +∠BOC ,∴∠AOC =∠BOC , ∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误; D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确. 故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 7.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.C解析:C 【解析】 【分析】. 【详解】 ∵9<15<16,∴, 故选C. 【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.10.D解析:D 【解析】 【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解. 【详解】设应从乙处调x 人到甲处,依题意,得: 30+x =2(24﹣x ). 故选:D . 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.11.C解析:C 【解析】 【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可. 【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1) =4; 故选C . 【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.D解析:D 【解析】 【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图; B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图. 故答案是D. 【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.二、填空题13.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.三【解析】【分析】由题意设原价为x,分别对三个方案进行列式即可比较得出提价最多的方案. 【详解】解:设原价为x,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.15.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 18.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.19.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.20.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.21.11cm.【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.22.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.23.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、解答题25.﹣x2y,﹣4.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy=2x2y+2xy﹣3x2y+3xy﹣5xy=﹣x2y,当x=﹣2,y=1时,原式=﹣(-2)2×1=﹣4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.(1)(x+9)(x-3);(2)±9,±6;(3)x=6或-2【解析】【分析】(1)利用十字相乘法分解因式即可:(2)找出所求满足题意p的值即可(3)方程利用因式分解法求出解即可【详解】(1)x2+6x-27=(x+9)(x-3)故答案为:(x+9)(x-3);(2)∵8=1×8;8=-8×(-1);8=-2×(-4);8=4×2则p的可能值为-1+(-8)=-9;8+1=9;-2+(-4)=-6;4+2=6∴整数p的所有可能值是±9,±6故答案为:±9,±6;(3)∵方程分解得:(x-6)(x+2)=0可得x-6=0或x+2=0解得:x=6或x=-2【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则27.m +n .【解析】【分析】把(m +n )看着一个整体,根据合并同类项法则化简即可.【详解】解:4()5()2()m n m n m n +-+++(425)()m n =+-+m n =+.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.28.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM=202x﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.29.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m =﹣4+2+0=﹣2;(3)∵原点O 到点C 的距离为8,∴点C 所对应的数为±8,∵OC =AB ,∴AB =8,当点C 对应的数为8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为4,点A 所对应的数为﹣4,∴m =4﹣4+8=8;当点C 所对应的数为﹣8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.30.(1)13;(2)-2;(3)t= 9秒或17秒.【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C 表示的数是x ,分别表示出AC 、BC ,再根据AC-BC=1列出方程解答即可; (3)运动t 秒后,可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,再根据AB 的距离为4,可得方程,解方程即可.【详解】解:(1)AB=4-(-9)=13(2)设点C 表示的数是x ,则AC=x-(-9)=x+9,BC=4-x ,∵A 落在点B 的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x )=2x+5=1,解得:x=-2,∴点C 表示的数是-2.故答案为:-2.(3) 设运动t 秒后,点A 与点B 相距4个单位,由题意可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,∴()93424t t -+-+=(), ∴()93424t t -+-+=()或()93424t t -+-+=-()解得t=17或9.答:运动9秒或17秒后,点A与点B 相距4个单位.【点睛】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式表示出线段的长度.四、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105°(3)若点G 在点F 的右侧,∠FEG =2α﹣180°,若点G 在点F 的左侧侧,∠FEG =180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.33.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.。

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.﹣3的相反数是( ) A .13-B .13C .3-D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣76.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.﹣3的相反数是( )A .13-B .13C .3-D .39.下列各数中,有理数是( )A 2B .πC .3.14D 3710.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-411.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离12.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -二、填空题13.把53°24′用度表示为_____. 14.计算:()222a -=____;()2323x x ⋅-=_____.15.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.16.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.17.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 18.若∠1=35°21′,则∠1的余角是__.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.21.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 22.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 23.将520000用科学记数法表示为_____.24.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.27.观察下列等式:111 122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.28.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.29.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由. 30.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.31.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.32.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.5.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.6.C解析:C 【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.11.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.12.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二、填空题13.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.14.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】 此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键15.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 16.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,. 故答案为60.【点睛】 解析:60【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可. 【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.17.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.18.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.22.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.23.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.24.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25, 解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=.综上所述:x 的值为1413或11413. 【点睛】 本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==,⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 28.(1) a =-24,b =-10,c =10;(2) 点P 的对应的数是-443或4;(3) 当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8,理由见解析【解析】【分析】 (1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.29.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii )当AC=13AB 时,满足条件. 【详解】 (1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.31.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=22,∴点B 表示的数是8-22=-14,∵动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8-4t .故答案为-14,8-4t ;(2)设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,∵AC-BC=AB ,∴4x-2x=22,解得:x=11,∴点P 运动11秒时追上点Q ;(3) ①点P 、Q 相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间。

【推荐】【七上期末.数学】黄浦区2019-2020学年第一学期初一数学期末卷.docx

【推荐】【七上期末.数学】黄浦区2019-2020学年第一学期初一数学期末卷.docx

黄浦区2019学年第一学期期终试卷七年级数学(考试时间:90 分钟满分:100 分)一、单项选择题(本大题共5 题,每题3 分,满分15 分)1.计算:(−a)2⋅a4 的结果是()(A)a8 (B)−a6 (C)−a8 (D)a62.下列各式计算正确的是()(A)−a(3a 2 +1) = −3a 3 + a (B)(a +b) 2 = a 2 +b 2(C)(2a −3)(−2a −3) = 9 −4a 2(D)(2a −b) 2 = 4a 2 −2ab +b 23.下列各式:2351,,,,,()24a b x y x a bx yx a b mπ-+++--中,是分式的共有()个(A)2 (B)3 (C)4 (D)54.下列图形中是旋转对称图形但不是中心对称图形的是( )(A)(B)(C)(D)5.在下图右侧的四个三角形中,由△ABC 既不能经过旋转也不能经过平移得到的三角形是()CBA (A)(B)(C)(D)二、填空题(本大题共14 题,每题2 分,满分28 分)6.计算:−(−2)6÷(−2)3=.7. 计算:5ab2 ÷(−5b )2=.8. 合并同类项: (a 2b − 23b 2 a ) − (a 2b + ab 2 ) = .9. 将 2a −2 b (a − b ) −1 写成只含有正整数指数幂的形式: .10.若 4 x 2 +16 x y + ay 2 是完全平方式,则 a =11. 计算: ( x − 3)( x + 5) =12.已知整式 3x m y 3 与整式 5x 2 y n 是同类项,那么 n m =13.用科学记数法表示: −0.000312 =14.计算:1142x x+= . 15. 当 x= 时,分式293x x --的值为零。

16. 当 x = 时,分式44x+有意义 17. 计算:222y xy x y x y--- 18. 已知 m 、n 是整数, x m = 9 , x n =13,那么 x m −n = 19. 如图,一块等腰直角的三角板 ABC ,在水平桌面上绕点 C 按顺时针方向旋转到 A ′B ′C 的位置,使 A 、C 、B ′三点共线,那么旋转角的大小是度.三、简答题(本大题共 6 题,每题 6 分,满分 36 分)20. 计算:(−x 2 y 3 )4 ÷ (−x 3 y )−321. 因式分解: 9 − a 2 + 4ab − 4b 222.因式分解:2(x 2 − 2 x )2 − 4(x 2 − 2 x )− 623.解方程:11322x x x --=--24.计算:3232223981256232x x x x x x x x x x x ---+÷--+-25. 先化简,再求值:22223223y x y x y x y x x y xy y -+⋅--+其中 x =23, y = −3 。

〖精选4套试卷〗上海市黄浦区2020年初一(上)数学期末复习检测模拟试题

〖精选4套试卷〗上海市黄浦区2020年初一(上)数学期末复习检测模拟试题

2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒2.如图,点C 是直线AB 上一点,过点C 作CD CE ⊥,那么图中1∠和2∠的关系是( )A .互为余角B .互为补角C .对顶角D .同位角3.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .75 4.3x 的倒数与293x -互为相反数,那么x 的值为( ) A.32 B.32- C.3 D.-3 5.已知有理数a 、b 、c 在数轴上的对应点如图所示,|a-b|+|b-c|-|c-a|的结果( )A.a-bB.b+cC.0D.a-c6.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在()(n a b n +为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则2019(1)x +展开式中含2018x 项的系数是( )A.2016B.2017C.2018D.20197.如果x y =,那么下列等式不一定成立的是A.2239a a a -=-B.x a y a -=-C.ax ay =D.x y a a= 8.下列判断正确的是( )A .-a 不一定是负数B .|a|是一个正数C .若|a|=a ,则a >0;若|a|=-a ,则a <0D .只有负数的绝对值是它的相反数9.把(-8)+(+3)-(-5)-(+7)写成省略括号的代数和形式是( )A.8357-+--B.8387--+-C.8357-+++D.8357-++- 10.下列说法正确的是( ) A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.1-的倒数是1- 11.若( )﹣(﹣5)=﹣3,则括号内的数是( )A .﹣2B .﹣8C .2D .812.下列说法中正确的是( )A .两点之间的所有连线中,线段最短B .射线就是直线C .两条射线组成的图形叫做角D .小于平角的角可分为锐角和钝角两类二、填空题13.∠α=0'402035",它的补角β=__________; 14.如图,正方形ABCD 的边长是5,DAC ∠的平分线交DC 于点E ,若点P Q 、分别是AD 和AE 上的动点,则DQ PQ +的最小值是_______.15.若11x y =⎧⎨=-⎩是方程2kx y -=的一组解,则k =__________. 16.某项工程,甲单独完成要12天,乙单独完成要18天,如果甲先做了7天后,乙来支援由甲、乙合作完成余下的工程,则乙共做了___天.17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.若4x 3y 5+=,则()()38y x 5x 6y 2--++的值等于______.19.比较大小:①0________﹣0.5, ②﹣34________﹣45(用“>”或“<”填写) 20.比较大小:-3__________0.(填“< ”“=”“ > ”)三、解答题21.如图,OD 是∠AOB 的平分线,OE 是∠BOC 的平分线.(1)若∠BOC =50°,∠BOA =80°,求∠DOE 的度数;(2)若∠AOC =150°,求∠DOE 的度数;(3)你发现∠DOE 与∠AOC 有什么等量关系?给出结论并说明.22.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,∠BOC -∠BOD = 20°,求∠BOE 的度数.23.解方程(1)7y ﹣3(3y+2)=6(2)+1=x ﹣24.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页? 25.有这样一道题:“先化简,再求值:222(324)2()x x x x x -+---,其中100x =”甲同学做题时把100x =错抄成了10x =,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.计算:(1)(2)27.计算 (1)1125424929⎛⎫-⨯+-⨯ ⎪⎝⎭ (2)()()2108(2)43-+÷---⨯- ()()1573242612⎛⎫+-⨯- ⎪⎝⎭ (4)()(321210.5[23)3⎤---⨯⨯--⎦. 28.(1)计算1114125522-+---(); (2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.B2.A3.B4.C5.C6.D7.D8.A9.D10.D11.B12.A二、填空题13.139°39′25″14. SKIPIF 1 < 0解析:5215.116.317.118. SKIPIF 1 < 0解析:2019.>>20.<三、解答题21.(1) 65°’;(2) 150°;(3) ∠DOE=∠AOC,理由见解析22.∠BOE=140°.23.(1)y=﹣6;(2)x=524.这本名著共有216页.25.说明见解析.26.(1);(2).27.(1)﹣115;(2)0;(3)﹣18;(4)﹣656.28.(1)-2;(2)-14.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列说法中,正确的是( )A.两条射线组成的图形叫做角B.直线L 经过点A ,那么点A 在直线L 上C.把一个角分成两个角的射线叫角的平分线D.若AB =BC ,则点B 是线段AC 的中点2.如图,点C 是直线AB 上一点,过点C 作CD CE ⊥,那么图中1∠和2∠的关系是( )A .互为余角B .互为补角C .对顶角D .同位角3.如图,直线AB 和CD 交于点O ,OA 平分∠EOC ,若∠EOC =70°,则∠BOD 的度数为( )A .70°B .35°C .30°D .110°4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x =3×16(34﹣x)5.下列利用等式的性质,错误的是( )A.由a =b ,得到5﹣2a =5﹣2bB.由a c =b c ,得到a =bC.由a =b ,得到ac =bcD.由a =b ,得到a c =b c 6.下列各组中,不是同类项的是( )A .5225与B .ab ba -与C .2210.25a b a b -与 D .2332a b a b -与 7.某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x 名工人生产螺栓,其余人生产螺母.依题意列方程应为( )A .12x =18(28﹣x)B .2×12x=18(28﹣x)C .12×18x=18(28﹣x)D .12x =2×18(28﹣x)8.下列计算正确的是( )A .x 2﹣2xy 2=﹣x 2yB .2a ﹣3b =﹣abC .a 2+a 3=a 5D .﹣3ab ﹣3ab =﹣6ab 9.下列各组代数式中,属于同类项的是( )A .1xy 2与1x 2B .26m 与22m -C .25pq 与22p q -D .5a 与5b10.如图,数轴上有M 、N 、P 、Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( )A.MB.NC.PD.Q 11.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分12.﹣12016的相反数的倒数是()A.1B.﹣1C.2016D.﹣2016二、填空题13.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.14.在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点,…,那么十条直线相交时最多有____个交点.15.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.16.某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3805.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A.1601603045x x-=B.1601601452x x-=C.1601601542x x-=D.1601603045x x+=6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1127.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个8.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+19.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1 C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=6 10.﹣3的相反数是()A.13-B.13C.3-D.311.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=0 12.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个13.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A .设B .和C .中D .山 14.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .215.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题16.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 17.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.19.若3750'A ∠=︒,则A ∠的补角的度数为__________.20.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 21.﹣30×(1223-+45)=_____. 22.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 23.16的算术平方根是 .24.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.25.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 26.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.27.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.28.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.29.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.30.观察“田”字中各数之间的关系:则c 的值为____________________.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.33.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.34.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 35.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.36.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库

上海卢湾中学七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .35.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 6.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-27.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .348.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 9.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米10.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题13.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.14.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19零食¥82.00- 10.20 餐费¥100.00-15.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.18.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 19.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.20.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.21.﹣225ab是_____次单项式,系数是_____.22.当x= 时,多项式3(2-x)和2(3+x)的值相等.23.若x、y为有理数,且|x+2|+(y﹣2)2=0,则(xy)2019的值为_____.24.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,b,128…,则b=________.三、压轴题25.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?26.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.27.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.28.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.29.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q 第二次重合时,P Q、两点停止运动.(1)求AC,BC;(2)当t为何值时,AP PQ=;(3)当t为何值时,P与Q第一次相遇;(4)当t为何值时,1cmPQ=.31.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24+ BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 6.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.10.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题13.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.14.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 15.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭ba b a a b a b a b a b=()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.18.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.19.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .本题考查了两点间的距离,解决本题的关键是掌握线段的中点.20.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.21.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是.故答案为:三,.解析:三﹣2 5【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y ﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由题意得:x +2=0,y ﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、压轴题25.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.26.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.27.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,28.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.29.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t =240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.30.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.31.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.32.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。

【七上期末.数学答案】黄浦区第一学期初一数学期末卷【精校】.pdf

【七上期末.数学答案】黄浦区第一学期初一数学期末卷【精校】.pdf

黄浦区2019学年第一学期七年级数学期终试卷答案一、单项选择题(本大题共5题,每题3分,满分15分)(1)D (2)C (3)B (4)A (5)B二、填空题(本大题共14题,每题2分,满分28分)(6)8(7)5a (8)235ab −(9))(22b a a b −(10)16(11)1522−+x x (12)9(13)41012.3−×− (14)242xx +(15)3−(16)4−≠x (17)y x y +−(18)27(19)°135 三、简答题(本大题共6题,每题6分,满分36分).(20)原式(21)原式(22)原式(23)(24)原式分分分分分15173129839128222 (()( y x y x ) y x (y x −=−=−÷=++−−()分)原方程无实数根分)是增根经检验,分)分)分)分)(1 (1 2(1 2(1 42(1 163x -1-x (1 1231∴==−=−=+=−−−x x x x x ()()()))(())((()()()()()分)分)分)(1 2223(2 1221(3 226331316322++−=+−−=−−⋅−+−+⋅+−−=x x x x x x x x x x x x x x x x x x ()()()()分)分)分)(2 (2 -3(2 22b -a b a b a b ab a 2323244922+−+=−=+−−=()()[]()()()()()分)分)(分)(2 11322 123-22(2 32222222222−+−=+−−=−−−−=x x x x x x x x x x x不同,可相应给分)(答案供参考,若过程分)((分)(分)(2322)147(7))(147249)(2)(172)(,1,342242266222244222=−×=+−+=+∴=−=−+=+=−+=+∴==+b b a a b a b a ab b a b a ab b a b a ab b a )1))()()(()1))(222222223333分(分(( b b a a b a b b a a b a b a b a ++−+−+=+−=)1())()(()1())((633622633633分分 b b a a b ab a b a b b a a b a +−+−+=+−+=(25)原式(26)A,B,C,D 每个对称点得1分,结论1分(27)解:设公共汽车速度为小时千米/ x ,小汽车速度为小时千米/3 x (1分) ()分)千米每小时(速度为千米每小时,小汽车的公共汽车的速度为答:分)分)(意是原方程的根且符合题经检验,分)解得分16020 (1 603x 120(1 20 x 4 6020338080=∴==−+=x x x(28)(1)(2)(3) ()()()()()()()()()分分原式代入把分分分1 1121 332323,321 1 12 2222=+=−==−=+−=+−+⋅−+−=y x yx x yx y y x y y x y x y x x y x y x y。

2019-2020学年上海市黄浦区卢湾中学七年级上学期期末测试数学试题(精校版)

2019-2020学年上海市黄浦区卢湾中学七年级上学期期末测试数学试题(精校版)

上海市黄浦区卢湾中学2019-2020学年第一学期七年级数学学科期末测试卷(含答案)(精校版)(满分100分,考试时间90分钟)考生注意:1.本试卷含三个大题,共27题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题3分,满分18分) 1.下列运算正确的是(▲) (A )33623a a a ;(B )322a a a ;(C )236236a a a ; (D )62422ab ab b .2.2my 可以改写成(▲)(A )2m y ; (B )2m y y ; (C )2()m y ; (D )2m y y .3.将下列多项式分解因式,结果中不含因式1x 的是(▲) (A )2x x ; (B )21x ; (C )221x x ; (D )(2)(2)x x x .4.1x 是下列哪个分式方程的解(▲)(A )211xx; (B )2101x x ;(C )21012x x; (D )21012x x.5.下列四个图形中,中心对称图形的是(▲)(A ) (B ) (C ) (D )6.如图中由“”和“”组成轴对称图形,该图形的对称轴是直线(▲)(A )l 1; (B )l 2; (C )l 3; (D )l 4.l 1l 2 l 3l 4llll第6题图第16题图第17题图二、填空题(本大题共12题,每题2分,满分24分) 7.已知m +n =mn ,那么(m -1)(n -1)的值是 ▲ . 8.因式分解:32m mn = ▲ .9.计算:2(1510)(5)a b ab ab ▲ .10.如果多项式291x 加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是 ▲ .(填上一个你认为正确的即可)11.一台电视机成本价为a 元,销售价比成本价增加了25%,因库存积压,所以就按销售价7折出售,那么每台的实际售价为 ▲ 元. 12.分式31xx中字母x 的取值范围是 ▲ . 13.如果22440x xy y ,那么x yx y的值等于 ▲ . 14.如果24422x abx xx ,那么a b 的值是 ▲ .15.某手机芯片采用16纳米工艺(1纳米=910米),其中16纳米用科学记数法表示为 ▲ 米. 16.如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为1a ()的正方形,记图1、图2中阴影部分的面积分别为S 1、S 2,那么12S S 的值是 ▲ .(用含字母a 的代数式表示)17.如图,在长方形ABCD 中,点E 在边AB 上,将长方形ABCD 沿DE 所在直线翻折,点A 恰好落在边BC 上的点F 处,如果∠BEF =36°,那么∠AED 的度数是 ▲ .18.一组数:2,1,5,x ,17,y ,65……满足“从第三个数起, 前两个数依次为a 、b ,紧随其后的数就是2ab ” ,例如这组数中的第三个数5就是由221得到的,那么这组数中的x y 的值是 ▲ .三、解答题(本大题共9题,19-25每题6分,26题7分, 27题9分,满分58分) 19.计算:2225)32(21xy y xy x x x ++--.(结果按字母y 降幂排列) 20.计算:(321)(321)ab ab .21.计算:32222()()y y x x.(结果用正整数指数幂的形式表示)22.分解因式:22442y y x x ---.23.甲、乙两个工程队都参与某筑路工程,先由甲队筑路60千米,再由乙队完成剩下的筑路工程,已知乙队筑路总千米数是甲队筑路总千米数的43倍,甲队比乙队多筑路20天.如果甲、乙两队平均每天筑路千米数之比为5∶8,求乙队平均每天筑路多少千米?24.先化简:222222()1211m mm mmm m m m ,然后解答下列问题: (1)当3m时,求原代数式的值;(2)原代数式的值能等于1吗?为什么?25.如图O 是正五边形ABCDE 的中心,OA=1. (1)△ODE 绕着点 ▲ 按 ▲ 方向旋转 ▲ 度,可以得到△OBC ;(2) △ODE 沿 ▲ 所在直线翻折,可以得到三角形 ▲ .26.如果x 满足(9)(4)4x x ,求22(9)(4)x x 的值. 解:设9xa ,4x b ,则(9)(4)4x xab,(9)(4)5abx x,∴222222(9)(4)()252417x xa b ab ab .阅读上述的解题过程,请仿照上面的方法求解问题: (1)如果x 满足(5)(2)2x x ,求22(5)(2)x x 的值;(2)如图,已知正方形ABCD 的边长为x ,E 、F 分别是AD 、DC 上的点,且AE=1,CF=3,长方形EMFD 的面积是48,分别以MF 、DF 为边作正方形,求阴影部分的面积.27.如图1,长方形纸片ABCD 的两条边AB 、BC 的长度分别为a 、b (0)a b ,小明它第27题图1FCEAB (D ) ABCDA G BCDE F 第27题图2第27题图3BCD第25题图OAE第26题图沿对角线AC 剪开,得到两张三角形纸片(如图2),再将这两张三角纸片摆成如图3的形状,点A 、B 、D 、E 在同一条直线上,且点B 与点D 重合,点B 、F 、C 也在同一条直线上.(1)将图3中的△ABC 沿射线AE 方向平移,使点B 与点E 重合,点A 、C 分别对应点M 、N ,按要求画出图形,并直接写出平移的距离; (用含a 或b 的代数式表示)(2)将图3中的△DEF 绕点B 逆时针方向旋转60°,点要求画出图形,并直接写出∠ABQ 的度数;(3)将图3中的△ABC 沿BC 所在直线翻折,点A 直接写出GE 的长度.(用含a 、b 的代数式表示)第27题图3第27题图3A第27题图32019学年度第一学期七年级数学期末测试参考答案及评分说明(202001)一、选择题:(本大题共6题,每题3分,满分18分)1.D ; 2. B ; 3.A ; 4.D ; 5.C ; 6.C . 二、填空题:(本大题共12题,每题2分,满分24分) 三、解答题(本大题共9题,19-25每题6分,26题7分, 27题9分,满分58分) 19.解原式2222212352x x x y xy xy ··············································· (2分) 222322x x y xy ······························································ (2分) 222322xy x y x . ······························································ (2分)20.解原式[3(21)][3(21a b ab )] ·················································· (2分)22(3)(21)a b ··································································· (2分)229441a b b . ······························································ (2分)21.解原式6222()2y x x y ·········································································· (2分) 62244y x x y 24y . ································································ (2+2分) 7. 1;8. ()()m mn m n ;9.32a ;10. 6x ;(只需填一个)11.78a ;12. 1x;13.13;14.0 ; 15.8 1.610; 16.11a a ; 17.72;18.38.21.解原式22(4)24)x y xy ( ·························································· (2分)(2)(2)22)x y x y xy (·················································· (2分) (2)(22)xy x y . ·························································· (2分)23.解:设乙队平均每天筑路8x 千米,则甲队平均每天筑路5x 千米. ·············· (1分)根据题意得:4606032058xx. ······················································· (3分) 解得x=0.1. ······················································································ (1分) 经检验,x=0.1是原方程的解,且符合题意,所以8x=0.8. ························· (1分) 答:乙队平均每天筑路0.8千米. 24.(1)解原式=22(1)(1)1[](1)(1)(1)m m m m m m m m m······································ (1分)=2(1)111m m m m =11m m . ······································································ (2分) 当3m 时,原式31231. ··································································· (1分) (2)如果111m m ,那么11m m ,解得0m . ····························· (1分) 当0m 时,除式01mm ,原式无意义,所以原代数式的值不能等于1. ····· (1分) 25.(1)O ,顺时针,144;(或逆时针 216) ················································· (3分)(2) OD ,△ODC .(或OC ,△OAB ) ················································ (3分) 26.(1)设5-x=a ,x-2=b , ········································································· (1分) 则(5-x )(x-2)=ab=2,a+b=(5-x )+(x-2)=3, ················································· (1分) ∴(5-x )2+(x-2)2=a 2+b 2=(a+b )2-2ab=32-2×2=5. ·············································· (1分) (2)∵正方形ABCD 的边长为x ,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48. ············································· (1分) 阴影部分的面积=FM 2-DF 2=(x-1)2-(x-3)2. ··················································· (1分) 设(x-1)=a ,(x-3)=b ,则(x-1)(x-3)=ab=48.a-b=(x-1)-(x-3)=2,∴(a+b )2=(a-b )2 +4ab =196,∴a+b=14. ···························· (1分) ∴(x-1)2-(x-3)2=a 2-b 2=(a+b )(a-b )=14×2=28.·················································· (1分) 即阴影部分的面积是28.27.(1)按要求画出正确的图形. ································································ (2分)平移的距离是b. ·················································································(1分)(2)按要求画出正确的图形. ······································································(2分)ABQ. ····················································································(1分)30(3)按要求画出正确的图形. ······································································(2分)GE的长度是(b a). ·······································································(1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年上海黄浦区卢湾中学七上期末数学试卷一、选择题(共6小题;共18分)1. 下列运算正确的是( )A. a3+2a3=3a6B. 2a3−a2=aC. 2a2⋅3a3=6a6D. 2ab6÷2ab2=b42. y m+2可以改写成( )A. 2y mB. y m⋅y2C. (y m)2D. y m+y23. 将下列多项式分解因式,结果中不含因式x−1的是( )A. x2+xB. x2−1C. x2−2x+1D. x(x−2)+(2−x)4. x=−1是下列哪个分式方程的解( )A. 2x+1=1xB. x+1x2−1=0 C. 2x+1−1x+2=0 D. 2x−1+1x+2=05. 观察下列四个图形,中心对称图形是( )A. B.C. D.6. 图中由“○”和“▫”组成轴对称图形,该图形的对称轴是直线( )A. l1B. l2C. l3D. l4二、填空题(共12小题;共24分)7. 已知m+n=mn,则(m−1)(n−1)=.8. 因式分解:m3−mn2=.9. 计算:(15a2b−10ab)÷(−5ab)=.10. 如果多项式1+9x2加上一个单项式后,能成为一个整式的完全平方式,那么加上的单项式可以是(填上两个你认为正确的答案即可).11. 一台电视机成本价为a元,销售价比成本价增加了25%,因库存积压,所以就按销售价7折出售,那么每台的实际售价为元.12. 分式3x1−x中字母x的取值范围是.13. 若x2−4xy+4y2=0,则x−yx+y等于.14. 如果4xx2−4=ax+2−bx−2,那么a+b的值是.15. 某手机芯片采用16纳米工艺(1纳米=10−9米),其中16纳米用科学记数法表示为米.16. 如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a−1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则S1S2可化简为.17. 如图,在长方形ABCD中,点E在边AB上,将长方形ABCD沿DE所在直线翻折,点A恰好落在边BC上的点F处,如果∠BEF=36∘,那么∠AED的度数是.18. 一组数:2,1,5,x,17,y,65,⋯⋯满足“从第三个数起,前两个数依次为a,b,紧随其后的数就是2a+b”,例如这组数中的第三个数5就是由2×2+1得到的,那么这组数中的x+y的值是.三、解答题(共9小题;共82分)19. 计算:12x2−x(2x−xy+3y2)+5xy2.20. 计算:(3a−2b+1)(3a+2b−1).21. 计算:(y3x )2⋅(2y2−x)−2(结果用正整数指数幂形式表示).22. 分解因式:x2−2x−4y−4y2.23. 甲、乙两个工程队都参与某筑路工程,先由甲队筑路60千米,再由乙队完成剩下的筑路工程,已知乙队筑路总千米数是甲队筑路总千米数的43倍,甲队比乙队多筑路20天.如果甲、乙两队平均每天筑路千米数之比为5:8,求乙队平均每天筑路多少千米?24. 化简:(2x2+2xx2−1−x2−xx2−2x+1)÷xx+1,并解答:(1)当x=3时,求原式的值;(2)原式的值能等于−1吗?为什么?25. 如图O是正五边形ABCDE的中心,OA=1.(1)△ODE绕着点按方向旋转度,可以得到△OBC;(2)△ODE沿所在直线翻折,可以得到三角形.26. 若x满足(9−x)(x−4)=4,求(4−x)2+(x−9)2的值.解:设9−x=a,x−4=b,则(9−x)(x−4)=ab=4,a+b=(9−x)+(x−4)=5,∴(9−x)2+(x−4)2=a2+b2=(a+b)2−2ab=52−2×4=17.请仿照上面的方法求解下面问题:(1)若x满足(5−x)(x−2)=2,求(5−x)2+(x−2)2的值.(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边长作正方形,求阴影部分的面积.27. 如图1,长方形纸片ABCD的两条边AB,BC的长度分别为a,b(0<a<b),小明它沿对角线AC剪开,得到两张三角形纸片(如图2),再将这两张三角纸片摆成如图3的形状,点A,B,D,E在同一条直线上,且点B与点D重合,点B,F,C也在同一条直线上.(1)将图3中的△ABC沿射线AE方向平移,使点B与点E重合,点A,C分别对应点M,N,按要求画出图形,并直接写出平移的距离;(用含a或b的代数式表示)(2)将图3中的△DEF绕点B逆时针方向旋转60∘,点E,F分别对应点P,Q,按要求画出图形,并直接写出∠ABQ的度数;(3)将图3中的△ABC沿BC所在直线翻折,点A落在点G处,按要求画出图形,并直接写出GE的长度.(用含a,b的代数式表示)答案第一部分1. D 【解析】A. a3+2a3=3a3,A项错误;B. 2a3−a2=2a3−a2,B项错误;C. 2a2⋅3a3=6a5,C项错误;D. 2ab6÷2ab2=b4,D项正确.故答案选D.2. B 【解析】y m+2=y m⋅y2.3. A 【解析】x2+x=x(x+1),A项正确;x2−1=(x+1)(x−1),B项错误;x2−2x+1=(x−1)2,C项错误;x(x−2)+(2−x)=(x−2)(x−1),D项错误.4. D 【解析】当x=−1时.A.2x+1=1x中,2x+1的分母等于0,分式无意义,A错误;B.x+1x2−1=0中,x2−1=0,分母等于0,分式无意义,B错误;C.2x+1−1x+2=0中,2x+1的分母等于0,分式无意义,C错误;D.2x−1+1x+2=0中,2−2+1−1+2=0,D正确.5. C6. C 【解析】观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴.∴该图形的对称轴是直线l3.第二部分7. 1【解析】根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(m−1)(n−1)=mn−m−n+1=mn−(m+n)+1,直接代入m+n=mn可求得(m−1)(n−1)=1.8. m(m+n)(m−n)【解析】m3−mn2=m(m2−n2)=m(m+n)(m−n).9. −3a+2【解析】(15a2b−10ab)÷(−5ab)=(15a2b−10ab)×1−5ab=−3a+2.10. ±6x或814x4【解析】①当9x2是平方项时,1±6x+9x2=(1±3x)2,∴可添加的项是6x或−6x;②当9x2是乘积二倍项时,1+9x2+814x4=(1+92x2)2,∴可添加的项814x4.11. 78a【解析】销售价比成本价增加了25%,∴销售价=a×(1+25%).实际售价按照销售价的7折出售,∴实际售价:a×(1+25%)×70%=78a.12. x≠1【解析】分式中分母不能0,∴1−x≠0,故x≠1.13. 13【解析】∵x2−4xy+4y2=0,∴(x−2y)2=0,∴x=2y,∴x−yx+y =2y−y2y+y=13.14. 0【解析】4xx2−4=ax−2ax2−4−bx+2bx4−4,4x x2−4=(a−b)x−2(a+b)x2−4.∴a−b=4,a+b=0.15. 1.6×10−8【解析】∵1纳米=10−9米,∴16纳米=1.6×10−8米.16. a+1a−117. 72∘【解析】∵△DFE是由△DAE折叠得到的,∴∠AED=∠FED,又∵∠BEF=36∘,∴∠AEF=180∘−36∘=144∘,∴∠AED=12×144∘=72∘.18. 38【解析】∵从第三个数起,前两个数依次为a,b,紧随其后的数就是2a+b,∴x=2×1+5=7,故x=7.∴y=2×7+17=31.∴x+y=38.第三部分19. 12x 2−x (2x −xy +3y 2)+5xy 2=12x 2−2x 2+x 2y −3xy 2+5xy 2=−32x 2+x 2y +2xy 2.20. 原式=[3a −(2b −1)][3a +(2b −1)]=(3a )2−(2b −1)2=9a 2−4b 2+4b −1.21.原式=y 6x 2⋅(−x 2y 2)2=y 6x 2⋅x 24y 4=y 24.22. 原式=(x 2−4y 2)−(2x +4y )=(x +2y )(x −2y )−2(x +2y )=(x +2y )(x −2y −2).23. 设乙队平均每天筑路 8x 千米,则甲队平均每天筑路 5x 千米. 根据题意得:605x −60×438x=20. 解得x =0.1.经检验,x =0.1 是原方程的解,且符合题意. ∴8x =0.8.答:乙队平均每天筑路 0.8 千米.24. (1)原式=[2x (x+1)(x+1)(x−1)−x (x−1)(x−1)2]⋅x+1x=(2x x−1−xx−1)⋅x+1x=x x−1⋅x+1x=x+1x−1.当 x =3 时, 原式=42=2.(2) 如果x+1x−1=−1,即 x +1=−x +1,∴x =0,而当 x =0 时,除式 xx+1=0, ∴ 原代数式的值不能等于 −1.25. (1) O ;顺时针;144 或 O ;逆时针;216【解析】正五边形的每各内角为 360÷5=72,即 72 度,分两种情况讨论:① △ODE 绕着点 O 按顺时针方向旋转 144 度,即 OE 与 OC 重合,OD 与 OB ,旋转角为 ∠DOB 或 ∠EOC ,可以得到 △OBC ;② △ODE 绕着点 O 按逆时针方向旋转 216 度,即 OE 与 OC 重合,OD 与 OB ,可以得到 △OBC . (2) OD ;ODC 或 OC ;OAB【解析】根据翻折的性质,翻折前后图形能够完全重合,即成轴对称,那条直线即为对称轴,可分两种情况:①故△ODE沿OD所在直线翻折,可以得到三角形ODC.②故△ODE沿OC所在直线翻折,可以得到三角形OAB.26. (1)设5−x=a,x−2=b,则(5−x)(x−2)=ab=2,a+b=(5−x)+(x−2)=3,∴(5−x)2+(x−2)2=a2+b2=(a+b)2−2ab=32−2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x−1,DF=x−3,∴(x−1)⋅(x−3)=48,∴(x−1)−(x−3)=2,∴阴影部分的面积=FM2−DF2=(x−1)2−(x−3)2.设(x−1)=a,(x−3)=b,则(x−1)(x−3)=ab=48,a−b=(x−1)−(x−3)=2,∴a=8,b=6,a+b=14,∴(x−1)2−(x−3)2=a2−b2=(a+b)(a−b)=14×2=28.即阴影部分的面积是28.27. (1)①找出已知图形中的相关的点A,B,C;②过这些点作与已知平移方向平行的线段,使这些平行线段的长度都等于平移的长度b.③依照图形依次连接对应点,得到新的图形,这个图形就是已知图形的平移图形.按要求画出正确的图形.平移的距离是b.(2)30∘.【解析】①在已知图形上找到旋转中心B,点C、点A;②作出这些点的对应点,对应点的找法是:以旋转中心为顶点,以BC为一边,向逆时针方向作角的另一边,使这些角等于60度,且使另一边长度都等于对应线段到旋转中心的长度,在这些“另一边”的端点P就是点C的对应点;同理找到点A的对应点Q.③顺次连接对应点P,Q,B.∵∠ABC=90∘,又∵BQ是由BF绕点B逆时针旋转60∘得到的,∴∠QBF=60∘,∴∠ABQ=∠ABC−∠QBF=90∘−60∘=30∘.(3)(b−a)【解析】以点B为圆心,以BA长为半径作弧,交BE与点G,连接CG,△CGB即为所求的图形.如图:由题意知BE=b,AB=a,∵△CGB是由△CAB翻折而来,∴BA=BG=a,∴GE的长度是BE−BG=(b−a).。

相关文档
最新文档