微积分第三章答案

合集下载

微积分及其应用第三章习题解答

微积分及其应用第三章习题解答

1.(1)v =01.02001.02)()(=∆==∆=∆∆-∆+=∆∆t t t t t t s t t s ts=01.020)263(=∆=++∆t t t t =14.03 (2)14lim)2(200=∆∆==→∆t t ts v2。

(1)v =tt ∆=1=tt ts ∆=∆∆1=tg t g t ∆--∆+-∆+]215[])1(21)1(5[2=t g g ∆--215 (2)g t ht t -=∆∆==→∆5]lim[)1(1ν (3) tgt t t t g t t th tvtt t t t ∆--∆+-∆+=∆∆=∆∆==)215()((21)(50020000=t g gt ∆--2150 (4)000005)215(lim lim)(gt t g gt t h t t t -=∆--=∆∆=→∆→∆ν 3。

(1)x x f x x f x x f x x f x x ∆--∆-+=∆-∆-→∆→∆)()]([lim )()(lim000000=)()]()([lim 0,000x f xx f x x f x -=∆--∆-+-→∆(2))()()()((lim )()((lim0,00000000x f h x x h x f x f h h x f x f h h =--∆--=∆--→∆→∆(3)h h x f h x f h x f h x f h h 202000200)()((lim )()((lim -+=-+→∆→∆=0lim )()((lim 020200==-+→∆→∆h h x f h x f h h(4)xx x f x x f x ∆∆--∆+→∆)()(lim000=)(21()()()(21lim 0,00000x f x x x x x x f x x f x =∆--∆+∆--∆+→∆4。

(1)xx f x x f y x ∆-∆+='→∆)()(lim000=xxx x x x x x x x x x x ∆∆+∆+-=∆-∆+→∆→∆)()(lim 11lim 0000=2001)(1lim )(limxx x x xx x x x x x -=∆+-=∆∆+∆-→∆→∆ (2)x xx x xx f x x f x f x x ∆-∆+=∆-∆+='→∆→∆000lim )()(lim)(=xx x x x x xx x x x +∆+=+∆+-∆+→∆→∆1limlim 00=x215.解:1)5(21)5()5(21lim 2)5()5(lim00-='-=----=--→∆→∆f x f x f x f x f x x 6(1)==x x y 首先判断函数的连续性0x >时2x y =连续,0< x 时2-x y =连续,在0x =时,0])([lim )00(220=-∆+=++→∆x x x f f x0])([lim )00(220=+∆+=--→∆x x x f f x由于)00()00(-=+f f所以函数y 在0=x 处连续 下面判断可导性 在0=x 处 xf x f f x ∆-∆='+→∆+)0()(lim)0(0=xx x ∆∆++→∆20)0(lim=0lim 0=∆+→∆x xxf x f f x ∆-∆+='-→∆-)0()0(lim)0(0=0lim )(lim 020=∆-=∆∆---→∆→∆x xx x x由于)0()0(-+'='f f 故函数在0=x 处可导 (2))1(011-x 1-x sin lim)(lim 11f x f x x =≠==→→)(∴ 函数)(x f 在1=x 处不连续,从而0=x 在处不可导。

高等数学微积分教材答案

高等数学微积分教材答案

高等数学微积分教材答案第一章:导数与微分1.1 导数的定义1.1.1 极限的概念1.1.2 函数的极限1.1.3 导数的定义及计算方法1.2 导数的基本性质1.2.1 可导性与连续性的关系1.2.2 导数的四则运算法则1.2.3 导数的链式法则1.3 高阶导数与隐函数微分1.3.1 高阶导数的定义1.3.2 隐函数的导数计算方法1.4 微分的定义与微分公式1.4.1 微分的定义1.4.2 微分的性质1.4.3 微分公式第二章:微分学的应用2.1 函数的单调性与极值2.1.1 函数单调性的判定2.1.2 函数的极值与最值2.2 函数的凹凸性与拐点2.2.1 函数的凹凸性定义2.2.2 函数的拐点2.3 泰勒公式与函数的近似计算 2.3.1 泰勒公式的定义2.3.2 泰勒公式的应用2.4 最值问题与优化问题2.4.1 最值问题的分析方法2.4.2 优化问题的数学建模第三章:不定积分3.1 原函数与不定积分3.1.1 原函数的定义与性质3.1.2 不定积分的定义3.2 积分基本公式3.2.1 基本积分公式3.2.2 积分的线性性质3.3 第一类换元积分法3.3.1 第一类换元积分法的基本思想 3.3.2 第一类换元积分法的具体步骤3.4 分部积分法与第二类换元积分法 3.4.1 分部积分法的定义与应用3.4.2 第二类换元积分法的基本原理第四章:定积分与定积分的应用4.1 定积分的定义与性质4.1.1 定积分的几何意义4.1.2 定积分的性质4.2 定积分的计算方法4.2.1 定积分的基本计算方法4.2.2 定积分的换元法4.3 定积分的应用4.3.1 曲线与曲面的长度4.3.2 曲线与曲面的面积4.3.3 物理应用中的定积分4.4 微积分基本定理与不定积分的计算方法 4.4.1 微积分基本定理4.4.2 不定积分的计算方法第五章:数项级数5.1 数项级数的概念与性质5.1.1 数项级数的定义5.1.2 数项级数的性质5.2 收敛级数的判别法5.2.1 正项级数的判别法5.2.2 任意项级数的判别法5.3 幂级数与函数展开5.3.1 幂级数的收敛半径5.3.2 幂级数的函数展开5.4 常数项级数的求和5.4.1 等比级数的求和5.4.2 绝对收敛级数的求和第六章:级数的应用6.1 函数展开与泰勒级数6.1.1 函数展开与泰勒级数的概念6.1.2 泰勒级数的求法6.2 常微分方程与级数解6.2.1 常微分方程的基本概念6.2.2 幂级数解的构造6.3 分析几何中的级数应用6.3.1 曲线与曲面的参数方程6.3.2 空间曲线与曲面的求交问题6.4 物理学中的级数应用6.4.1 物理学中的振动问题6.4.2 物理学中的波动问题总结高等数学微积分教材涵盖了导数与微分、微分学的应用、不定积分、定积分与定积分的应用、数项级数和级数的应用等内容。

微积分第三章答案

微积分第三章答案

习题 3-11. 验证函数()f x =[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。

解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,那么有()0f ξ'==,83ξ=。

2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。

解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,那么满足拉格朗日中值定理,那么有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。

解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,那么满足柯西中值定理,那么有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ= 4. 假设4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。

证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,那么函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,那么在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。

这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,那么最多也只有3个实根,所以结论得到证明。

5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。

微积分科学出版社第三章习题3.4答案

微积分科学出版社第三章习题3.4答案

3.4 隐函数及由参数方程所确定的函数的导数 相关变化率习题3.41. 求由下列方程所确定的隐函数的导数:dy dx(1)2290y xy -+=解: ()()22900,2220,.d y xy d ydy xdy ydx dy y dx y x-+==--==-(2)3330x y axy +-=解: ()()332222300,33330,.d x y axy d x dx y dy axdy aydx dy ay x dx y ax+-==+--=-=-(3)x y xy e +=解:()()(),,.x y x y x y x y d xy d e ydx xdy e dx dy dy e y dx x e++++=+=+-=-(4)1yy xe =-解: ()1,,.1y y y yydy d xe dy e dx xe dy dy e dx xe =-=---=+(5解:0,0,d ddydx==+==(6)()cosy x y=+解:()()()()()cos,sin,sin.1sindy d x ydy x y dx dyx ydydx x y=+=-++-+=++(7)()sin cos0y x x y--=解:()()()()()()()sin cos00,sin cos sin0,cos sin.sin sind y x x y dxdy y xdx x y dx dyy x x ydydx x y x--==++--=+-=--(8)0x y=解:()()00,0,d x y ddx dydydx+==++==2.求下列隐函数在指定点的导数:dydx(1)1cos sin,2y x y=+点,02π⎛⎫⎪⎝⎭解:,0211cos sin sin cos ,22sin ,11cos 21 2.112dy d x y xdx ydy dy x dx y dy dx π⎛⎫ ⎪⎝⎭⎛⎫=+=-+ ⎪⎝⎭-=--==-- (2)ln 1,x ye y +=点()0,1()()()0,1ln 10,10,,111.112x x x xx d ye y d e dy ye dx dy y dy ye dx e ydy dx +==++==-+=-=-+3. 求下列方程确定的隐函数的微分:dy (1)2222 1.x y a b+= 解:()2222222210,220,.x y d d ab xdx ydy a bb x dy dx a y⎛⎫+== ⎪⎝⎭+==- (2).y xx y =解: ()()22ln ln ln ln ,ln ln ,ln .ln y x x yd y x d x y y x xdy dx ydx dy x yxy y y dy dx xy x x==+=+-=-4。

微积分(曹定华)(修订版)课后题答案第三章习题详解

微积分(曹定华)(修订版)课后题答案第三章习题详解

第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g dss t s dt t t t →→=-⨯-==-- 21lim(2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.(1)求曲线2y x =上点(2,4)处的切线方程和法线方程; (2)求过点(3,8)且与曲线2y x =相切的直线方程; (3)求xy e =上点(2,2e )处的切线方程和法线方程; (4)求过点(2,0)且与xy e =相切的直线方程。

解:略。

4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=-- 0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim limh h f x h f x f x h f x h h→-→+-+--=+- 000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数:(1) y ;(2) y;(3) y 3225x x.解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx -==15661()6y x x -''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =0x =点处连续但不可导。

经济数学基础 微积分 第三章习题解答

经济数学基础     微积分    第三章习题解答

尖点, 无切线, 不可导
无定义, 不可导
0
x
无确定切线, 不可导
0
x
尖点, 无切线, 不可导
8.讨论下列函数在x 0处的连续性与可导性;若可导,
求出f (0):
1 x
(1) f ( x) 1 x
x0 x0
解 lim f ( x) 1 lim f ( x) 1
x0
x0
所以函数在x 0连续.
3
y 1 (0 6x2 ) 6 x2
16.求下列函数的导数
(1) y
ex ex
ex ex
(e x ) e x ( x) e x
y
(e x
ex
)(e x
ex (e x
) (e x ex )2
e x )(e x
ex
)
(e x e x )2 (e x e x )2
(e x ex )2
y 10( x )9 ( x ) 1 x 1 x
10(
1
x
x
)9
1 x x (1 x)2
10x9 (1 x)11
(6) y ln ln ln x 设y ln u,u ln v,v ln x
y (lnu) (lnv) (ln x) 1 1 1 uv x
1 1 1
1
lnln x ln x x x ln x ln ln x
(3) y
1 1 x2
(1
x2
1
)2
y
1
(1
x2
)
3 2
(1
x
2
)
2
x(1
x
2
)
3 2
1
(1

微积分第三章习题参考答案

微积分第三章习题参考答案

一.1. 2 x2e x2 e x2 c
.2.
x2 ln x
x2 c .
2
4
3. xf ( x) f ( x) c . 4. x ln x x c .
5. x arcsin x 1 x2 c .
6. 1 x cos 2x 1 sin 2x c 1 x sin2 x x sin 2x c .

6
t3 dt
t 1

6
(t 2

t

1
t
1
)dt 1
2t 3 3t 2 6t 6ln(t 1) c
2 x 1 33 x 1 66 x 1
ln( 6 x 1 1) c.
p54.4.解法1:
1
x4 1 x4
I
x3(
x4
1 sin 2x 1 sin12x c.
4
24
( x 3)dx 1 (2 x 2)dx
2dx
6. x2 2x 5 2 x2 2x 5 x2 2x 5
1 ln( x2 2x 5) arctan x 1 c.
2
2
p54.三.1. 令x a sin t,
§3.2不定积分的换元法(53-54)
一.1. eex c , ln | ln x | c .
2. ln | x sin x | sin x 1 sin5 x 2 sin3 x c .
5
3
ln | sin x cos x | c n 2
3.
I

(sin
4.

微积分习题答案上海同济大学数学

微积分习题答案上海同济大学数学

微积分习题答案Chapter-3_上海同济大学数学三 1.解:(1) 200000()12()limlimlim.2t t t t s t t t t t v v g v gt tt t∆→∆→∆→∆∆∆+∆==-=-∆∆∆(2)由 00t v v gt =-=有0;v t g =(3)由0t v v gt =-有01(2).2T v g t v ==。

3.求曲线y =x (1-x )在横坐标为1处的切线的斜率。

解:由y '=1-2x 可知当x =1时,y '=-1。

5.解:(1) 2200(0)lim 0,(0)lim 0(0)0;00-+-+→→---'''====⇒=--x x x x y y y x x(2)110(0)lim lim ,(0)lim lim ,0αααα--++++-+→→→→---''==-==--x x x x xxy x y x x x因此,只有当α为有理数且2α≠n m时0(0)lim 0α→'==x y x 成立。

6.解:由于得f (x )在x =0和x =1点处可导,则必然在x =0和x =1点处连续,因此(1) 0(0)(0),lim (e 1)lim ()0;-+-+→→=-=+⇒=xx x f f x a a 即(2) 111sin(1)11(1)(1),limlim 1.11-+-+→→--+-''==⇒=--x x x b x f f b x x 即7.设f (x )在x =0点连续,且0()1lim1x f x x→-=-,(1)求f (0); (2) 问f (x )在x =0点是否可导?解:由于得f (x )在x =0点连续,则0lim ()(0).→=x f x f由0()1lim1x f x x→-=-有:(1) []0()1()1lim lim lim0lim ()10lim ()1→→→→→--⋅=⋅=⇒-=⇒=x x x x x f x f x x x f x f x xx,即f (0)=1;(2) 0()1()(0)limlim1(0) 1.0→→--'==⇒=-x x f x f x f f xx8.解:函数g (x )在x =0点连续,则当x →0时, 存在某个领域U δ(0),在此领域内g (x )是有界量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分第三章答案习题3-1 1. 验证函数f(x)?x4?x在区间[0,4]上满足罗尔定理的条件,并求出使得结论成立的点?。

解:显然函数f(x)?x4?x在区间[0,4]上连续,在(0,4)上可导,且有f(0)?f(4)?0 所以函数在区间[0,4]上满足罗尔定理,则有f?(?)?4????24???0,??8。

32. 验证函数f(x)?x3?1在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的?。

解:函数f(x)?x3?1在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则有7f(2)?f(1)?3?2,即??。

2?133. 函数f(x)?x4?1与g(x)?x2在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值?。

解:函数f(x)?x?1与g(x)?x在区间上连续,在区间(1,2)上可导,则满足柯西中值425f(2)?f(1)4?3定理,则有,即??。

?2g(2)?g(1)2?4. 若4次方程a0x4?a1x3?a2x2?a3x?a4?0有4个不同的实根,证明4a0x3?3a1x2?2a2x?a3?0 的所有根皆为实根。

证明:设f(x)?a0x4?a1x3?a2x2?a3x?a4,f(x)?0的四个实根分别为x1,x2,x3,x4,且x1?x2?x3?x4,则函数f(x)在[xi,xi?1](i?1,2,3)上满足罗尔定理的条件,则在(xi,xi?1)内至少存在一点?i,使得f?(?i)?0。

这说明方程4a0x3?3a1x2?2a2x?a3?0至少有3个实根,而方程为3次方,则最多也只有3个实根,所以结论得到证明。

5. 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)?0,证明:存在??(0,1),使得f?(?)??f(?)?。

解:构造辅助函数F(x)?xf(x),而F(x)?xf(x)满足罗尔定理的条件,所以有在(0,1),至少存在一点?,f(?)??f?(?)?0即f?(?)??6. 试用拉格朗日中值定理证明:sinx2?sinx1?x2?x1;当x?0时,f(?)?。

x?ln(1?x)?x。

1?x 解:设f(x)?sinx,则f(x)在区间(x1,x2)上满足拉格朗日中值定理,则有sinx1?sinx2sinx1?sinx2?cos?,??(x1,x2),又因为cos??1,则?1,x1?x2x1?x2sinx1?sinx2?x1?x2。

设f(x)?ln(1?x),则f(x)在区间(0,x)上满足拉格朗日中值定理,则有ln(1?x)1111ln(1?x)??1,???1,则??(0,x),又因为1?xx1?x1??x1??即x?ln(1?x)?x 1?x。

7. 证明等式:arctanx?arccotx??2。

证明:设f(x)?arctanx?arccotx,则有f?(x)?(arctanx?arccotx)??0,所以f(x)?c,代入x?0,得到arctanx?arccotx??2。

8.设f(x)在[1,2]上具有二阶导数f??(x),且f(2)?f(1)?0。

若F(x)?(x?1)f(x)。

证明:至少存在一点??(1,2),使得F??(?)?0。

证明:因为F(1)?F(2)?0,在[1,2]上应用罗尔定理,有F?(?1)?0,又因为F?(1)?0,所以在[1,?1]上应用罗尔定理,有F??(?)?0,[1,?1]?[1,2]。

9.设f(x)在[a,b]上连续,在(a,b)内可导,证明:在(a,b)内存在点?和?,使得f?(?)?a?bf?(?)。

2?证明:构造辅助函数g(x)?x2,f(x)与g(x)在(a,b)内满足柯西中值定理,即有f(b)?f(a)f?(?)f(b)?f(a),??(a,b) ??22?g(b)? g(a)g(?)b?a而f(x)在(a,b)内满足拉格朗日中值定理,所以f(b)?f(a)?f?(?)(b?a),即f?(?)? a?bf?(?)。

2?习题3-2 1. 用洛必达法则求下列极限:x3?3x?2sinaxx?sinxlim;lim;lim3;x?0sinbxx?0x?1x?x2?x?1x3ln(x?)(lnx)tan x2;lim;lim;lim??x????tanxxx?tan3xx?2221?limxex;(8) limxcotx;lim(secx?tanx);x?0x?022x??21x1tanx?);lim?x;limxx;lim(x???x?1x?1x?0lnx1x11?xlim(1?sinx);(14) limxx?0x?1 解:;limx?0sinbxx?0(sinbx)?x?0bcosbx0bx?sin x(x?sinx)?1?cosxsinx10lim?lim?lim?lim?;;332x?0x?0x?0x?00x(x)?3x6x6 ;0x3?3x?2(x3?3x?2)?3x2?36x3lim32?lim3 2?lim2?lim?x?1x?x?x?1x?1(x?x?x?1)?x?1 3x?2x?1x?16x?22;;lim ?lim??lim?lim?3;?tan3x?cosxsi n3x?cosx??sinx?x?x?x?x?2222 ;lim?lim?limx???x????x(x)?x???22lnx?1x? 4limlnx?0;x???1x2xln(x?)(ln(x?))?cos2x?22 ;lim??lim??lim??0;??????tanx(tanx )x?x?x?222x?2112??1 ;limx2ex?limx?0e?limx?01x?0x2x?0x2ex(?22)3x??;2?3x ;limxcotx?limx?0x?1;tanx ;lim(secx?tanx)?lim[x??2x??21sinx1?sinx? cosx?]?lim?lim?0;?sinxcosxcosxx ??cosxx?22 ;x1xlnx?(x?1)lnx ?)?lim?limx?1x?1x?1x?1 x?1lnx(x?1)lnxlnx?xxlnxlnx?11?lim?;?limx?1xlnx?x?1x?1lnx?22 lim( ;limlnxtanxlimtanxlnxlnx?x?0cotxlimsin2x xx?0?limlimx?x?0tanx?ex?0??ex?0?1?e?e?e0?1;;limx?ex???x???01xlimlnxx?elnxx???xlim? e1x???xlim?e0?1;;? lim(1?sinx)?ex?01x1limln(1?sinx)xx?0?ex ?0lim1?xlnxlimxln(1?sinx)1?ex?0limln(1? sinx)x?ex?0lim1?sinxcosx?e;;limxx?1?11?x?e11?limlnxxx?1?ex?11?ex? 1?。

elim?xl2.验证下列极限存在,但不能用洛必达法则求出。

1x;limx?sinx。

limx??x?0sinxxx2sin解:用洛必达法则求:11112xsin?x2cos(?2)x?limxxx?lim(2xsin1 ?cos1),求不出limx?0sinxx?0x?0cosxxx1x2sinx?limx?xsi n1?limx?limxsin1?0;用一般的方法:limx?0sinxx?0sinxxx?0sinxx?0xx2sin用洛必达法则求:limx?sinx1?cosx?lim?lim(1?cosx),求不出x??x??x??x1用一般的方法:limx?sinxsinx?lim(1?)?1?0?1。

x??x??xx3.设f(x)在x?0处二阶可导,且f(0)?0,试确定a的值使g(x)在x?0处可导,并求g?(0),其中?f(x)x?0? g(x)??x x?0??a解:因为函数f(x)在x?0处二阶可导,则函数在x?0处一定连续,即有limf(x)?f(0)?0,x?0又因为函数g(x)在x?0处可导,所以函数在x?0处也一定连续,即有limg(x)?g(0),limx?0x?0f(x)f?(x)?lim?limf ?(x)?a x?0x?0x1根据导数的定义以及洛必达法则,有f(x)?ag(x)?g(0)f(x)?ax g?(0)?lim ?limx?lim2x?0x?0x?0xxxf(?1)??1?0,f(0)?1?0。

根据零点定理,f(x)在内有一零点,另一方面,对于任意实数x,有f?(x)?5x4?1?0,所以f(x)在(??,??)内单调增加,因此,曲线y?f(x)与x轴有且只有一个实根。

5. 求下列函数的的凹凸区间以及拐点:y?3x4?4x3?1;y?4?3x?9;y?xex;y?x?ln(1?x);y? 解:函数的定义域为(??,??) 322又因为y??12x?12x,y???36x?24x?36x(x?)?0,得到x?0,x?2xarctanx;. y?e21?x232 3在(??,0)内,y???0,所以函数在此区间上是凹的,在(0,)内,y???0,所以函数在此区间上是凸的。

在(,??)内,y???0所以函数在此区间上是凹的。

且点(0,1)和点(,2323211)是曲线的拐点。

327函数的定义域为(??,??)。

因为y???112,易见函数在x?9处不可导。

,y???5333(x?9)29(x?9)当x?9时,y???0,曲线是凸的;当x?9时,y???0曲线是凹的。

点(9,4)为曲线的拐点。

函数的定义域为(??,??)。

因为y??e?xe,y???e(x?2)?0,得x??2。

当x??2时,y???0,曲线是凸的;当x??2时,y???0曲线是凹的。

点(?2,?2e)为曲线的拐点。

函数的定义域为(?1,??)。

因为y??1??2xxx11,y????0。

2x?1(1?x)所以当x??1时,y???0曲线是凹的。

函数的定义域为(??,??) 2(1?x2)4x(x2?3)又因为y??2,y????0,得到x??3,x?0,x?3 23(x?1)(1?x)在(??,?3)内,y???0,所以函数在此区间上是凸的在(3,0)内,y???0,所以函数在此区间上是凹的,在(0,3)内,y???0,所以函数在此区间上是凸的。

在(3,??)内,y???0所以函数在此区间上是凹的。

且点(?3,?33),(0,0),(3,)是曲线的拐点。

22函数的定义域为(??,??)。

earctanxearctanx(1?2x)1x?因为y??2,得。

,y????0222x?1(1?x)1arctan1112)为曲当x?时,y???0,曲线是凸的;当x?时,y???0曲线是凹的。

相关文档
最新文档