微积分试题及答案

合集下载

微积分试题及答案

微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。

解析:首先,我们需要求函数f(x)的导数。

对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。

因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。

接下来,我们需要求在 x = 2 处的导数。

将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。

答案:函数f(x)在x = 2处的导数为10。

2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。

解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。

首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。

根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。

3. 求曲线y = x^3在点(1, 1)处的切线方程。

解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。

首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。

微积分试题及答案

微积分试题及答案

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求02lim x x→等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、limββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin limsin x x xx x→-求 5、计算 6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x x xdx='=+-++=3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==Q :::当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:2201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxxx x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x a aL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x MM M xf A x f A xεεξε→∞→∞=∴∀>∃>>-<><<>∴-<=Q 当时,有取=,则当0时,有即2、 证明:[]()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1x x x f x xe f x f f e f e f x x e x f x xe ξξξξ=-=-<=->∈=='=+>∈∴-Q Q 令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

微积分数学竞赛试题及答案

微积分数学竞赛试题及答案

微积分数学竞赛试题及答案试题一:极限问题题目:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导后再求极限。

对分子和分母分别求导得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]因此,原极限的值为1。

试题二:导数问题题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数。

解答:首先求函数 \( f(x) \) 的导数:\[ f'(x) = 6x - 2 \]然后将 \( x = 1 \) 代入导数表达式中:\[ f'(1) = 6 \times 1 - 2 = 4 \]所以,函数在 \( x = 1 \) 处的导数为4。

试题三:积分问题题目:求定积分 \(\int_{0}^{1} x^2 dx\)。

解答:使用幂函数的积分公式:\[ \int x^n dx = \frac{x^{n+1}}{n+1} + C \]对于 \( n = 2 \),我们有:\[ \int x^2 dx = \frac{x^3}{3} + C \]计算定积分的值:\[ \int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1}= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \]试题四:级数问题题目:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 是否收敛。

解答:这个级数可以通过部分分式分解来简化:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]将这个结果代入级数中,我们得到一个望远镜级数:\[ \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1}\right) \]这个级数的项会相互抵消,只剩下第一项 \( \frac{1}{1} \),所以级数收敛,其和为1。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

微积分综合练习试题和参考答案与解析

微积分综合练习试题和参考答案与解析

(1)函数 f(X)=•1 In(x - 2) 的定义域是(2)函数 f(x)=1 ln( x 2)的定义域是 ____________ •答案:(—2, —1)^(—1,2](4)若函数f(x T xs 「x 0在X 二0处连续,则k =x _ 0•答案:k = 1(1)设函数y 二-xe,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数综合练习题1 (函数、极限与连续部分)1 •填空题(3)函数 f (x 2^ x 2 4x 7,贝U f(x)二 _______________________ •答案:f(x^ x 2 3(5) 函数 f(x-1) =x 2 -2x ,则 f(x)二 __________________ .答案:f(x) =x 2 -1x 2 _2x _3(6)函数y _________________________ 的间断点是.答案:x- -1x +1 1(7)lim xsin .答案:1X护 x sin 4x(8)若 lim _______________ 2,则 k = .答案:k = 2―0 sin kx2.单项选择题答案:B(2)下列函数中为奇函数是( ).答案:CA. xsin xln (x . 1 x 2) D . x x 2).D . x 卞 一5 且 x = -4x(3)函数y ln(x • 5)的定义域为(x +4A. x 占-5 B . x -4 C . x 占 一5 且 x = 0答案:D2(4)设 f(X * 1) = X 「1 ,则 f(X)二( )A. x(x 1)C. x=1,x=2, x=3D x 2 -3x 2(1)(2)解: limX —3x 2 -3x 2x 2 -4-9(x-2)(x-1) (x-2)(x 2)lim x =3 x-9(x-3)(x 3)-2x -3xB (x -3)(x 1)= lim 』^X —3 X 14 2答案:A3.计算题-4C. x(x _2)D . (x +2)(x —1)答案: Ce^2,x 式0亠 (5) 当k =()时,函数f f(x) =在x=0处连续..k,x = 0A. 0B. 1C .2D . 3答案:Dx +1,x 式0 (6) 当k =()时,函数f f(x)—w,在X = 0处连续、k,x = 0 A. 0 B. 1C .2D .-1答案:B(7) 函数f (x)x —3— 2 的间断点是()X 2 _3x +2A. x =1,x = 2B.x =3.无间断点解:WORD 格式整理版综合练习题2 (导数与微分部分)(3)解:lim "卫二 lim HX T x 2 -5x 4x —4 & -4)(x -1)二lim x j4x -2x —11 •填空题(1)曲线f(x) __________________________________ ・1在(1,2)点的切斜率是11答案:2(2)_______________________________________________________ 曲线f(x) =e x在(0,1)点的切线方程是 __________________________________________ •答案:y = x • 1(3)已知f (x^ x3 3x,则f (3) =答案: f (x) =3x23x ln3f (3) =27 (1 ln 3)(4)已知f(x) = In x ,贝U f (x) = _____________________ •1 1答案:f (x) , f (x) = 2x x(5)若f (x) _______________________________ ,贝y f (0)二答案:f (x)二「2e» xe」f (0) =「22.单项选择题(1)若f (x) = e^ cosx,贝U f (0)= ( ) •A. 2B. 1C. -1D. -2因f (x) = (e“ cosx) = (e“)cosx e^(cosx)-x X x=-e cosx -e sin x = -e (cosx sinx)所以f (0) - -e-0 (cos0 sin0) - -1答案:C(2)设y = lg2 x,则dy 二(1 1A. dx B dx2x xln 10答案:B(3)设y二f (x)是可微函数,则)•ln 10 1 C •dx D • 一dxx x df(cos2x)二( )•A • 2f (cos2x)dxB f (cos2x)sin 2xd2x(4)若 f(X) . 丄3=si nx a,其中a 是常数,则f (x) =().A2.cosx 3a B. sin x 6ac.-sin xD.cosx答案 :C3.计算题1e ,求八(1 )设 y = x 211 2 1 .1C . 2f (cos2x)sin 2xdxD . - f (cos2x)sin2xd2xx(2 )设 y = sin 4x cos 3 x ,求 y .2解: y = 4cos4x 3cos x(-sinx)2= 4cos4x 「3sinxcos x(3 )设 y = e % 12,求讨.x答案:D21 解: / = 2xe x x 2e x (-p)二 e x (2x-1)A.单调增加 B .单调减少C.先增后减 D •先减后增答案:D(2)满足方程f (x) =0的点一定是函数y二f (x)的( ).A极值点 B.最值点 C .驻点 D.间断点答案:C(3)下列结论中( )不正确.A . f (x)在X=X0处连续,则一定在X0处可微.B . f(X)在X = X0处不连续,则一定在X0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(-::,•::)上单调增加的是( ).A . sinxB . e XC . X10D . 3「x答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为h m容器的表面积为y m l。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试题及答案完整版

微积分试题及答案完整版

微积分试题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x xx x --的()A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、不是间断点3、试求0x →等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、36、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈B 、221y x =-+C 、2y x =D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x=+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( )3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点( )5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求4、20tan sin limsin x x xx x→-求 5、计算、210lim(cos )x x x +→计算五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)2、描绘函数21y x x=+的图形(12分)六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x +→+∞→==则2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、 2、 3、 解: 4、解:5、解:6、解:五、应用题1、解:设每件商品征收的货物税为a,利润为()L x 2、图象六、证明题1、证明:2、证明:。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 在 \( x = 2 \) 处的导数是:A. 0B. 2C. 4D. 8答案:C2. 定积分 \( \int_{0}^{1} x dx \) 的值是:A. 0B. 0.5C. 1D. 2答案:B二、填空题1. 若 \( f(x) = 3x^3 - 2x^2 + x \),则 \( f'(x) \) 等于__________。

答案:\( 9x^2 - 4x + 1 \)2. 曲线 \( y = x^3 \) 与直线 \( y = 6x \) 相切的点的横坐标是__________。

答案:2三、简答题1. 请说明如何求函数 \( f(x) = \ln(x) \) 的导数。

答案:函数 \( f(x) = \ln(x) \) 的导数可以通过对数函数的导数公式求得,即 \( f'(x) = \frac{1}{x} \)。

2. 计算定积分 \( \int_{1}^{e} e^x dx \)。

答案:首先找到 \( e^x \) 的原函数,即 \( e^x \) 本身。

然后根据定积分的计算法则,代入上下限得到 \( e^e - e \)。

四、计算题1. 求曲线 \( y = x^2 + 3x - 2 \) 在 \( x = -1 \) 处的切线斜率及切点坐标。

答案:首先求导得到 \( y' = 2x + 3 \)。

将 \( x = -1 \) 代入得到切线斜率 \( m = 1 \)。

切点坐标为 \( (-1, 0) \)。

2. 计算由曲线 \( y = x^2 \),直线 \( y = 4x \) 及 \( x \) 轴所围成的平面图形的面积。

答案:首先求出两曲线的交点,然后计算定积分 \( \int_{0}^{2} (4x - x^2) dx \),结果为 \( \frac{16}{3} \)。

五、证明题1. 证明 \( \frac{d}{dx} [(x^2 + 1)^5] = 10x(x^2 + 1)^4 \)。

微积分试卷及规范标准答案6套

微积分试卷及规范标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。

解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。

代入x=1得斜率为7。

又因为该点经过(1,3),故切线方程为y = 7x - 4。

8. 求曲线y = x^3上与x轴围成的面积。

解:首先确定曲线截距为(0,0),解方程得x=0。

利用定积分区间求解:∫[0,1] x^3dx = 1/4。

以上为微积分考试题目及答案,希望对您的学习有所帮助。

感谢阅读!。

大学微积分试题及答案

大学微积分试题及答案

大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。

答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。

答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。

答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。

答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-6x+4。

令f'(x)=0,解得x=1, 2。

在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。

因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。

在区间端点处,f(0)=-2,f(3)=1。

所以,函数在区间[0,3]上的最大值为1,最小值为-2。

2. 求由曲线y=x^2与直线y=4x-3围成的面积。

微积分基础试题及答案

微积分基础试题及答案

微积分基础试题及答案1. 求函数 \(f(x) = 3x^2 - 2x + 1\) 在 \(x = 2\) 处的导数。

2. 判断函数 \(f(x) = \ln(x)\) 是否在 \(x = 1\) 处连续,并求其在该点的导数。

3. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

4. 求由曲线 \(y = x^2\) 与直线 \(x = 2\) 及 \(y = 0\) 所围成的面积。

5. 利用微积分基本定理求不定积分 \(\int x e^x dx\)。

6. 求函数 \(g(x) = \sin(x) + \cos(x)\) 在区间 \([0, 2\pi]\) 上的最大值和最小值。

7. 证明 \(\frac{d}{dx}(e^x) = e^x\)。

8. 求函数 \(f(x) = \frac{1}{x}\) 在 \(x = 1\) 处的切线方程。

9. 计算 \(\lim_{x \to 0} \frac{\sin(x)}{x}\)。

10. 求函数 \(f(x) = x^3 - 6x^2 + 11x - 6\) 的极值点。

答案1. 求导得 \(f'(x) = 6x - 2\),代入 \(x = 2\) 得 \(f'(2) =10\)。

2. 函数 \(f(x) = \ln(x)\) 在 \(x = 1\) 处连续,且 \(f'(x) = \frac{1}{x}\),代入 \(x = 1\) 得 \(f'(1) = 1\)。

3. 计算定积分得 \(\int_{0}^{1} x^2 dx = \frac{1}{3}x^3\Big|_{0}^{1} = \frac{1}{3}\)。

4. 由曲线 \(y = x^2\) 与直线 \(x = 2\) 及 \(y = 0\) 所围成的面积为 \(\int_{0}^{2} x^2 dx = \frac{1}{3}x^3 \Big|_{0}^{2} =\frac{8}{3}\)。

物理微积分试题及答案

物理微积分试题及答案

物理微积分试题及答案一、选择题(每题3分,共30分)1. 微积分中,函数的导数表示的是:A. 函数在某一点的斜率B. 函数在某一点的面积C. 函数在某一点的体积D. 函数在某一点的切线方程答案:A2. 以下哪个选项是牛顿-莱布尼茨公式的表述?A. 微分和积分是互为逆运算B. 定积分的值等于原函数的差C. 微分是积分的逆运算D. 积分是微分的逆运算答案:B3. 在物理学中,下列哪个量不是标量?A. 速度B. 力C. 温度D. 压力答案:B4. 根据能量守恒定律,下列哪个说法是正确的?A. 能量可以在不同形式之间转换,但总量不变B. 能量可以在不同形式之间转换,总量会减少C. 能量可以在不同形式之间转换,总量会增加D. 能量不能在不同形式之间转换答案:A5. 以下哪个选项是正确的微分方程形式?A. \(\frac{dy}{dx} = y\)B. \(\frac{dy}{dx} = x\)C. \(\frac{dy}{dx} = y^2\)D. 以上都是答案:D6. 根据麦克斯韦方程组,电场和磁场之间的关系是:A. 电场产生磁场B. 磁场产生电场C. 电场和磁场相互独立D. 以上都不是答案:B7. 以下哪个是正确的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 所有选项答案:D8. 在热力学中,下列哪个是正确的?A. 温度是热能的量度B. 热量是热能的量度C. 熵是系统无序度的量度D. 所有选项答案:D9. 根据量子力学,下列哪个是正确的?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的行为遵循经典力学定律D. 粒子的行为遵循相对论定律答案:B10. 在电磁学中,下列哪个是正确的?A. 电场线是实际存在的物理实体B. 磁场线是实际存在的物理实体C. 电场线和磁场线都是虚拟的,用于描述场的分布D. 电场线和磁场线都是实际存在的物理实体答案:C二、填空题(每题4分,共20分)1. 微积分中的导数定义为函数增量与自变量增量的比值在自变量增量趋向于零时的极限,即 \(\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}\)。

微积分基础试题及答案

微积分基础试题及答案

微积分基础试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 2x^2D. x答案:A2. 曲线y=e^x在x=0处的切线斜率是:A. 1B. eC. e^0D. 0答案:A3. 定积分∫(0 to 1) x dx的值是:A. 1/2B. 1/3C. 1D. 0答案:A4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. sin(x) + CC. -cos(x) + CD. cos(x) + C答案:D5. 极限lim(x→0) (1/x)的值是:A. 0B. ∞C. -∞D. 不存在答案:D6. 函数f(x)=x^3-3x^2+2的极值点是:A. x=1B. x=2C. x=1或x=2D. x=0答案:C7. 曲线y=ln(x)在x=e处的切线方程是:A. y=x-1B. y=x+1C. y=1-xD. y=1+x答案:A8. 函数f(x)=x^2+2x+1的最小值是:A. 0B. 1C. 2D. 3答案:B9. 曲线y=x^3-3x^2+2x的拐点是:A. x=0B. x=1C. x=2D. x=3答案:B10. 函数f(x)=x^2-4x+4的对称轴是:A. x=2B. x=-2C. x=0D. x=4答案:A二、填空题(每题2分,共20分)1. 函数f(x)=x^3的二阶导数是______。

答案:6x2. 定积分∫(0 to π/2) sin(x) dx的值是______。

答案:13. 函数f(x)=x^2+3x+2的零点是______。

答案:-1和-24. 曲线y=x^2在x=1处的切线斜率是______。

答案:25. 函数f(x)=e^x的不定积分是______。

答案:e^x + C6. 极限lim(x→∞) (1/x)的值是______。

答案:07. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. 1/3B. 1/4C. 1/2D. 1答案:B3. 函数 \( y = \ln(x) \) 的原函数是:A. \( x \)B. \( x^2 \)C. \( e^x \)D. \( x\ln(x) - x \)答案:D4. 微分方程 \( y'' - y' - 6y = 0 \) 的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 + r - 6 = 0 \)C. \( r^2 - 6 = 0 \)D. \( r^2 + 6 = 0 \)答案:A5. 函数 \( f(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是:A. \( 1 + x + x^2 \)B. \( 1 + x + x^2/2 \)C. \( 1 + x + x^2/6 \)D. \( 1 + x + x^3/6 \)答案:B二、简答题(每题5分,共10分)1. 请解释什么是不定积分,并给出一个简单函数的不定积分的例子。

答案:不定积分是求原函数的过程,即给定一个函数 \( f(x) \),找到另一个函数 \( F(x) \),使得 \( F'(x) = f(x) \)。

例如,函数 \( f(x) = 2x \) 的不定积分是 \( F(x) = x^2 + C \),其中\( C \) 是积分常数。

2. 请解释什么是偏导数,并给出一个二元函数的偏导数的例子。

答案:偏导数是多元函数对其中一个变量的局部变化率的度量。

例如,对于函数 \( f(x, y) = x^2y + y^3 \),关于 \( x \) 的偏导数是 \( f_x(x, y) = 2xy \),而关于 \( y \) 的偏导数是\( f_y(x, y) = x^2 + 3y^2 \)。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 设函数 f(x) = x^3 - 3x^2 + 2x + 1,那么 f'(1) 的值是多少?A. -1B. -4C. -3D. 0答案:C2. 给定曲线 y = 2e^x - x,求当 x = 0 时,曲线的切线方程为?A. y = 1 - xB. y = x - 1C. y = e - xD. y = x - e答案:A3. 对于函数 f(x) = 3x^2 + 2x + 1,在 [0,2] 区间上的定积分为?A. 12B. 10C. 14D. 16答案:C二、填空题1. 设函数 g(x) = 2x^3 - 6x + 5 的不定积分为 F(x),那么 F(2) 的值为________。

答案:272. 设函数 h(x) = x^4 - 2x^3 + 3x^2 + 5x - 2,那么 h'(x) 的导函数为_________。

答案:4x^3 - 6x^2 + 6x + 5三、解答题1. 计算函数f(x) = ∫[0,2] (3x^2 + 2x + 1) dx 的值。

解答步骤:首先对 f(x) 进行积分得到 F(x) = x^3 + x^2 + x + C。

然后将积分上下限代入 F(x),得到 F(2) = 2^3 + 2^2 + 2 + C = 14 + C。

由于题目没有给定积分常数 C,所以无法具体计算 F(2) 的值。

2. 求函数g(x) = ∫[-1,1] (2x^3 - 6x + 5) dx 的值。

解答步骤:首先对 g(x) 进行积分得到 G(x) = x^4 - 3x^2 + 5x + C。

然后将积分上下限代入 G(x),得到 G(1) - G(-1) = (1^4 - 3(1)^2 +5(1)) - ((-1)^4 - 3(-1)^2 + 5(-1))= (1 - 3 + 5) - (1 - 3 - 5) = 3 - (-7) = 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题2分)
1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)
B 、(0,lg2]
C 、(10,100)
D 、(1,2)
2、x=-1是函数x ƒ()=()
22
1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点
3、试求02lim x x
→等于()
A 、-1
4
B 、0
C 、1
D 、∞ 4、若
1y x
x y
+=,求y '等于() A 、
22x y y x -- B 、22y x y x -- C 、22y x x y
-- D 、22x y
x y +-
5、曲线2
21x
y x
=-的渐近线条数为() A 、0
B 、1
C 、2
D 、3
6、下列函数中,那个不是映射()
A 、2y x = (,)x R y R +-∈∈
B 、221y x =-+
C 、2y x =
D 、ln y x = (0)x > 二、填空题(每题2分) 1、
__________
2、、2(1))l i m ()1
x n x
f x f x nx →∞-=+设 (
,则 的间断点为__________
3、21lim
51x x bx a
x
→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________
5、ln 2111x y y x +-=求曲线 ,在点(,
)的法线方程是__________ 三、判断题(每题2分)
1、2
2
1x y x
=+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim
β
βαα
=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin x
y x
=求函数 的导数
2、21
()arctan ln(12f x x x x dy =-+已知),求
3、2326x xy y y x y -+="已知,确定是的函数,求
4、20tan sin lim
sin x x x
x x
→-求 5、
计算 6、2
1
lim(cos )x x x +
→计算 五、应用题
1、设某企业在生产一种商品x 件时的总收益为2)100R
x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润
最大的情况下,总税额最大?(8分) 2、描绘函数21
y x x
=+
的图形(12分) 六、证明题(每题6分)
1、用极限的定义证明:设01
lim (),lim ()x x f x A f A x +→+∞→==则
2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、
选择题
1、C
2、C
3、A
4、B
5、D
6、B 二、填空题
1、0x =
2、6,7a b ==-
3、18
4、3
5、20x y +-= 三、判断题
1、√
2、×
3、√
4、×
5、× 四、计算题 1、
1sin
1
sin 1
sin ln 1
sin ln 22))1111cos ()ln sin 1111(cos ln sin )
x
x
x x
x x
y x e
e x x x x x x x x x x x
'='='

⎤=-+⎢⎥⎣
⎦=-+((
2、
22
()112(arctan )121arctan dy f x dx
x
x x dx x x xdx
='=+-++=
解:
2
22
2)2)222302323(23)(23(22)(26)
(23x y xy y y x y
y x y y x y x y yy y x y
--'+'=-∴'=--'----'∴''=
-
4、 解:
2
223000tan sin ,1cos 2
1tan (1cos )12lim lim sin 2
x x x x
x x x x
x x x x
x x x →→
→--∴==当时,原式=
5、 解:
652
3
2
2
22
2
61)6111611
6(1)166arctan 6arctan
x t dx t t
t t t t t t
t t C C
===
+=++-=+=-+=-+=-+⎰⎰

⎰令原式(
解:
2
2
01
ln cos 0
1lim
ln cos 202
00012
lim 1lim ln cos ln cos lim 1
(sin )
cos lim 2tan 1
lim 22x x
x x x
x x x x x e e
x x
x
x
x x x
x x e
+
+
→++++→→→→→-===-=-==-∴= 原式其中:
原式 五、应用题
1、解:设每件商品征收的货物税为a ,利润为()L x
222()()()100(20050)2(50)200()45050()0,,()4(50)
4
1
(502)
4
1
0250
2
25L x R x C x ax
x x x x ax x a x L x x a a
L x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==
-=
'=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值
2、 解:
()(
)2
3
00,01
202201
D x y x x y x y x y x =-∞⋃+∞='=-
'==''=+
''==-,间断点为令则令则
渐进线:
3
2lim lim 001
lim x x x y y y x y y x y x x
→∞→→∞=∞∴=∴=+==∞∴无水平渐近线
是的铅直渐近线无斜渐近线
图象
六、证明题 1、 证明:
lim ()0,0
()11101
()1
lim ()x x f x A
M x M f x A x M
M M x
f A x f A x
εε
ξε
→∞
→∞=∴∀>∃>>-<><<>∴-<=当时,有取=,则当0时,有即
2、 证明:
[]()1()0,1(0)10,(1)10
0,1()0,1()(1)0,(0,1)
()0,110,1x x
x f x xe f x f f e f e f x x e x f x xe ξξξξ=-=-<=->∈=='=+>∈∴-令在()上连续由零点定理:至少存在一个(),使得即又
则在上单调递增
方程在()内有且仅有一个实根
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档