雷达信号分析与处理 第一章&第二章

合集下载

雷达信号分析

雷达信号分析

2 0
2B T
§3.3 雷达测速精度
一、分析条件和方法 二、分析结果
1 2E
N0
2 2 t 2 t 2 dt
2
t 2 dt
三、单载频矩形脉冲信号: 2 2 T 2
3
§3.4 信号的非线性相位特性
对测量精度的影响
(t) 0 ,具有非线性相位。
时间相位常数: 2 t ' (t)a2 (t)dt 2 t ' (t) u(t) 2 dt
§4.1 模糊函数的推导 §4.2 模糊函数与分辨力的关系 §4.3 模糊函数与匹配滤波器输出响应的关系 §4.4 模糊函数的主要性质 §4.5 模糊图的切割 §4.6 模糊函数与精度的关系 §4.7 利用模糊函数对单载频矩形脉冲雷达
③径向速度为正。 一、静止点目标
s(t) (t)e j 2f0t sr (t) (t )e j2f0 (t )
二、运动点目标
sr (t) [t (t)]e j2f0[t (t)]
R(t) R0 VT
经过推导有:
Sr (t)
[t
2v t
]e
j
2f0 [t
2vt C
]
C
[t ]e j 2f0 e j 2 ( f0 fd )t
2
T /2
t(2kt)dt
T / 2
2kT2
2
[a(t)] dt
T /2
dt T / 2
3
例2: u(t) rect ( t )e jkt
T
t T
(t ) k t ' (t ) k
2
t ' (t)a 2 (t)dt
2
t/2
t (k )dt

ALENIA雷达讲义

ALENIA雷达讲义

第一章SSR原理1.1航路二次雷达SSR原理基本概念:雷达的原意为无线电检测和测距,他起到对目标定位的作用。

以脉冲雷达为例,通过天线发射射频脉冲。

当射频信号遇到目标以后,其中的一部分能量向雷达站方向反射,通过天线进入接收机。

经过雷达的接收系统放大、检测等处理后,可以发现目标的存在,并可以提取其他的参数信息。

测距是基于光速不变的原理。

由于回波信号往返雷达和目标之间,他将滞后于所发射的探测脉冲时间为Tr。

以探测脉冲作为时间基准,目标和雷达站之间的斜距R为:R = C * Tr / 2由上式可见,对目标的测距(系指斜距)和测时是一致的。

测角,对于监视雷达而言系指方位角 ,亦即偏离正北方向的角度。

一般由扫描天线的主波束的指向所确定,在航管雷达系统中常把工作于上述状态下的雷达称之为一次监视雷达(PSR)。

目前一次雷达主要有三大类:A.航路的监视一次雷达,作用距离在300-500公里B.机场的监视一次雷达,作用距离在100-150公里C.着陆雷达(在跑道附近)。

其信号是提供给塔台调度员的,在塔台显示器上观看飞机下滑的全过程,提供信号仰角7度(上下10度)PSR的优缺点:优点:只要有目标存在就可以发现它(不管敌我)缺点:⑴辐射功率很大(要足够大)R与P的关系:R↔功率的四次方根造价要高得多,设备庞大。

⑵易受干扰(障碍物,气象)⑶不能对目标识别当两个目标很近时也无法区别。

⑷要得到目标的高度也很困难。

二次雷达设备——第1页二次监视雷达(SSR)和一次监视雷达的区别在于工作方式不同。

一次监视雷达可以靠目标对雷达发射的电磁波(射频脉冲)反射,主动发现目标并确定其位置,而二次监视雷达不能靠接收目标反射的自身发射的探测脉冲工作。

他是同地面站(通常称询问机)通过天线的方向性波束发射频率为1030兆赫的一组询问编码(射频脉冲)。

当天线的波束指向装有应答机的飞机的方向时,应答机检测这组询问编码信号,判断编码信号的内容,然后由应答机用1090兆赫的频率发射一组约定的回答编码(射频)脉冲。

短波天气雷达数据质量控制与分类识别研究

短波天气雷达数据质量控制与分类识别研究

短波天气雷达数据质量控制与分类识别研究第一章绪论短波天气雷达(S-Band Weather Radar)已成为现代气象学重要的观测手段之一。

它通过发射短波电磁波,接收反射回波,实现对降水、风向风速等气象要素的探测。

然而,S-Band天气雷达的反射回波受到气象环境的影响,存在数据质量问题。

为了提高S-Band天气雷达探测效果和数据质量,需要对其数据进行质量控制和分类识别。

本文首先介绍了S-Band天气雷达的基本原理和数据质量影响因素,然后分析了数据质控和分类识别的目的和重要性,最后提出了一种综合应用的方法。

第二章 S-Band天气雷达数据质量影响因素S-Band天气雷达探测结果受到多种气象因素的影响。

其中,降水和非降水干扰、雷达本身的技术性问题、地物效应以及天气现象多样性是影响S-Band天气雷达数据质量的主要因素。

1. 降水和非降水干扰在一些特殊的气象条件下,S-Band天气雷达可能接收到来自其他物体反射的微波信号。

例如在海岸线上,雷达可能接收到海浪、潮汐、海鸟和飞机等非降水目标产生的回波信号。

此外,在闪电活动密集的时候,雷达接收到来自闪电放电的电磁波,造成雷达的接收通道失真。

2. 雷达本身的技术性问题S-Band天气雷达技术性问题也会造成数据质量下降。

例如,雷达天线所处高度、反射面精度、期间观测误差、系统同步不足和长时间观测等,这些因素都会影响雷达反射回波的扫描功率和观测范围。

3. 地物效应地物效应是由地面和人造干扰物体(如建筑物、桥梁、车辆和污染)引起的雷达回波的变化。

地物效应会干扰雷达的观测,造成探测误差,同时也会对数据质量产生负面影响。

4. 天气现象多样性S-Band天气雷达观测的天气现象多种多样,包括降水、冰晶和雨滴等。

不同类型的天气现象对雷达回波信号的特征不同,所以S-Band天气雷达数据质量受到了天气现象多样性的影响。

第三章 S-Band天气雷达数据质量控制S-Band天气雷达数据质量控制是提高雷达数据质量的关键步骤。

雷达气象学之第一章(天气雷达系统及探测理论)

雷达气象学之第一章(天气雷达系统及探测理论)

天气雷达产品的显示方式2
• RHI (距离高度显示):固定方位角,天线 做俯仰扫描,探测某方位上回波垂直结构 。坐标:R-最低仰角的斜距; H-按测高 公式计算(标准大气折射)。
天气雷达产品的显示方式3
• CAPPI (等高平面位置显示):雷达以多 个仰角(仰角逐渐抬高)做0-360 °扫描 ,得到三维空间回波资料(体扫描),利 用内插技术获得某高度的平面分布
• 基本径向速度:表示整个360度方位扫描径 向速度数据,径向速度即物体运动速度平 行与雷达径向的分量。径向速度有许多直 接的应用,可以导出大气结构,风暴结构, 可以帮助产生、调整和更新高空分析图等。 平均径向速度产品有两点局限性:一是垂 直于雷达波束的风的径向速度被表示为0; 二是距离折叠和不正确的速度退模糊。
• 散射开来的电磁波称 为散射波
入射波
散射波
• 雷达波束通过云、降水粒子时将被散射, 其中有一部分散射波要返回雷达方向,被 雷达天线接收,在雷达显示器上就反映有 回波信号。
二、散射成因
• 微粒——粒子在入射电磁波极化下作强迫 的多极振荡,从而发出次波(散射波)。
• 粒子对电磁波的散射只改变电磁波的传播 方向,没有改变能量大小。
• d≈λ的大球形质点的散射,称为米散射。
§3.2 球形水滴和冰粒的散射
• 雷达天线接收到的只是粒子散射中返回雷 达方向(即θ= 180º方向)的那一部分能量, 这部分能量称为后向散射能量。
在a 2 r 1时 的瑞利散射条件下
在a 2 r 复数1时模的平方
后(向) 散16射 44函r6数mm:22 12(2 代入 4 ( )中
• 产品生成:根据操作员的输入指令,RPG在 体积扫描的基础上产生所需产品。

天气雷达的基本工作原理和参数-168页文档资料

天气雷达的基本工作原理和参数-168页文档资料
多普勒天气雷达除常规天气雷达功能 之外,还可利用降水回波频率与发射频率 之间变化的信息来测定降水粒子的径向速 度,并通过此推断风速分布,垂直气流速 度,大气湍流,降水粒子谱分布,降水中 特别是强对流降水中风场结构特征。
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
体扫模式 (VCP:Volume Cover Pattern) 扫描方式确定一次体积扫中使用多少个仰角,
而具体是哪些仰角则由体扫模式来规定。WSR-88D 可有20个不同的VCP,目前只定义了其中的4个: VCP11 -- VCP11(scan strategy #1,version 1) 规定5分钟内对14个具体仰角的扫描方式。 VCP21 -- VCP21(scan strategy #2,version 1) 规定6分钟内对9个具体仰角的扫描方式。 VCP31 --- VCP31 (scan strategy #3,version 1)规定10分钟内对5个具体仰角的扫描方式。 VCP32 --- VCP32(scan strategy #3,version 2)确定的10分钟完成的5个具体仰角与VCP31相同。 不同之处在于VCP31使用长雷达脉冲而VCP32使用 短脉冲。 WSR-98D未定义VCP32。
自相干多普勒天气雷达结构框图
全相干多普勒天气雷达结构框图
fo 发射脉冲的载频 fd 多普勒频率
发射频率 Vs 多普勒频移
发射频率 多普勒频移
中国新一代天气雷达系统简介
• 1、雷达数据采集系统(RDA) • 2、雷达产品生成子系统(RPG) • 3、主用户处理器子系统(PUP)

倒车雷达

倒车雷达

目录摘要: (2)第一章绪论 (2)1.1课题背景 (2)1.2当前国内外倒车雷达的研究发展情况 (2)1.3研究倒车雷达的目的和意义 (3)第二章超声测距原理 (3)2.1 引言 (3)2.2 超声波模块的性能特点 (4)2.3 接口定义 (4)2.4超声波模块工作原理 (4)第三章倒车雷达系统硬件电路的设计 (5)3.1单片机AT89C52芯片的引脚及功能 (5)3.2定时器电路 (6)3.3报警模块 (6)第四章倒车雷达的的系统软件设计 (7)4.1超声波测距程序 (7)4.2 蜂鸣器报警程序 (8)第五章总结与展望 (8)5.1 总结 (8)5.2 对以后倒车雷达技术的展望 (9)参考文献 (9)基于单片机的倒车雷达设计摘要:随着我国经济飞速发展,越来越多的人拥有了自己的汽车,同时由泊车和倒车所引发的事故也越来越多。

这些事故常常给驾驶员带来许多的麻烦,因此,有助于驾驶员泊车和倒车的倒车雷达应运而生。

倒车雷达全称叫“倒车防撞雷达”,也叫“泊车辅助装置”,是汽车泊车安全辅助装置,能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车和启动车俩时前后左右探视所引起的困扰,并帮助驾驶员扫除视野的死角和视线模糊的缺陷。

本文介绍了以AT89S52单片机为核心的一种低成本、高精度、微型化,并有数字显示和声光报警功能的倒车雷达系统,该倒车雷达根据超声波测距原理研制,采用温度补偿技术、开机自检技术和优化的软硬件技术,将测得的结果送至数码管显示,同时进行三级声光报警。

驾驶员只需坐在驾驶室就能做到心里有数,极大的提高了泊车和倒车时的安全和效率。

关键词:倒车雷达;超声波测距;报警系统;硬件电路;软件设计第一章绪论1.1课题背景改革开放以来我国经济的飞速发展,汽车已经走进千家万户,交通拥挤的状况愈发的严重,交通事故逐年攀升,由此引发的人员伤亡和财产损失让人触目惊心。

在拥挤的公路、街道、停车场和超市等大型场所,加上无法消失的视觉盲区和驾驶员目测的误差以及视线由于各种原因的模糊,驾驶人员在泊车过程中没法注意到车后的环境情况,造成的交通事故给车主和社会带来了很大的危害,倒车雷达应用而生。

雷达信号分析与处理第一章第二章

雷达信号分析与处理第一章第二章

s(t) S ( f )e j2 ftdf
S(W) 或 S(f) 存在的充分条件是 s(t) 绝对可积,即 s(t)dt
雷达信号分析与处1理3
第二章 雷达信号与线性处理系 统
在雷达工程术语中,时间函数 s(t)称为雷达信号的时间波形,频率函数 S(W) 或 S(f) 称为雷达信号的频谱密度或频谱。
s(t) S( f ) 表示信号s(t) 和其频谱S(f)
复数表示
s(t) s1(t) js2 (t) S( f ) R( f ) jI ( f )
e j2 ft cos(2 ft) j sin(2 ft)
s1(t)
R( f ) cos(2 ft) I ( f )sin(2 ft)df
雷达信号分析与处理6
第一章 绪论
雷达发明之前的防空:盲人雷达;光学测距仪
1935年,英国皇家物理研究所的沃森.瓦特博士进行无线电科学考察 荧光屏上的亮点 载重汽车上的第一台雷达 东海岸对空警戒雷达网
雷达信号分析与处理7
第一章 绪论
二 、雷达测量原理
Radar-- Radio detection and ranging(无线电探测和测距)
测距 测高 测速
三、雷达与通信信号区别 1电磁波频率;
3天线方向性;
5信号处理;
2传输目的; 4主要考虑方面;
雷达信号分析与处理8
第一章 绪论
1.2 研究雷达信号的目的和意义
一、雷达所面临的问题 四大威胁 电子干扰 (干扰机:压制式、欺骗式)
徘徊者EA-6B
低空突防(巡航导弹)
咆哮者EF-18G
新型运8电子干扰机
第一章 绪论
二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统

杂波背景下的目标跟踪技术

杂波背景下的目标跟踪技术
问题。
本处理、相关滤波及雷达控制提出有效的方法。 首先, 阐述了导致船用雷达产生密集杂波的外部环境因素, 包括大气异常传 播现象、 气象现象、海杂波、 仙波现象及多径效应。 在此基础上, 针对某港口的
杂波现象, 分析其成因及对雷达系统性能的影响。 然后描述了 信号处理采取的反
eh ad t r n c t r s i u le l i om t n u uao . co c e ad em p w c ti ccc r ao acm li n l , l u u a h h z y i n i f i c tn
Til t e os a nii ad etci ic tr in et m t dotc ittn tgt k g l eevom n hd , h f k ao n a r n n ry h e r i r a u nr a d cs dT e s ti eptt t e cm o m t d o tc ittn r ius . d eao xaa s e m n h s r k ii , e e h i rtn ie h o s s r e o f n ao a i t n e pa s r k ii bs o H uh s r ic tr in et h pt hs o tc ittn e n g tnf m l eevom n e u m i n n ao a d o r o n a i a u nr . F ayaot Kha feun t a eri gsm dl X t tci i l, p t ann r g c lao u oe(G ) r k g nl d h e i s h cetn t A l i e t o n a
当雷达所处的环境杂波现象比较严重或者雷达信号处理机未能正常发挥其性能时增加的虚假点迹将导致虚警不断影响雷达系统性能

雷达试题-(1-4章)

雷达试题-(1-4章)

雷达试题-(1-4章)第⼀章引论⼀、填空1、我国新⼀代天⽓雷达业务组⽹的建设⽬标是:在我国东部和中部地区,装备()和()多普勒天⽓雷达系统。

2、根据我国雷达布局原则,在我国第⼆地形阶梯地域和⿊龙江、吉林省布设()频段新⼀代天⽓雷达。

3、根据我国雷达布局原则,在天⽓、⽓候相近的地区,组⽹的新⼀代天⽓雷达在()和()上要尽可能统⼀。

4、我国《新⼀代天⽓雷达系统功能规格需求书》要求:对⼤范围降⽔天⽓的监测距离应不⼩于()km;对⼩尺度强对流天⽓现象的有效监测和识别距离应⼤于()km。

5、我国《新⼀代天⽓雷达系统功能规格需求书》要求:雷达探测能⼒在50km处可探测到的最⼩回波强度S波段应不⼤于()dBZ、C波段应不⼤于()dBZ。

6、我国《新⼀代天⽓雷达系统功能规格需求书》要求新⼀代天⽓雷达应有⼀定的晴空回波探测能⼒,在湿润季节应能观测到()km左右距离范围内的晴空⼤⽓中的径向风场分布。

7、新⼀代天⽓雷达系统的应⽤主要在于对灾害性天⽓,特别是风害和冰雹相伴随的灾害性天⽓的()和()。

它还可以进⾏较⼤范围降⽔的定量估测,获取降⽔和降⽔云体的()。

8、从径向速度图像上可以看出⽓流的()、()和()的特征,并可给出定性和()的估算。

9、辐合(或辐散)在径向风场图像中表现为⼀个最⼤和最⼩的(),两个极值中⼼的连线和雷达的射线()。

10、⽓流中的⼩尺度⽓旋(或反⽓旋)在径向风场图像中表现为⼀个最⼤和最⼩的(),中⼼连线⾛向于雷达射线()。

11、具有辐合(或辐散)的⽓旋(或反⽓旋)表现出最⼤、最⼩值的连线与雷达射线⾛向()。

根据中⼼连线的长度、径向速度最⼤值、最⼩值及连线与射线的夹⾓,可以半定量地估算⽓旋(或反⽓旋)的()和()。

12、新⼀代天⽓雷达采⽤()体制,共有7种型号,其中S波段有3种型号,分别为()。

C波段有4种型号,分别为CINRAD-()。

13、SA和SB雷达的正式名称分别为CINRAD-SA和CINRAD-SB,在国际上称为()。

雷达信号分析及处理 第一章

雷达信号分析及处理 第一章
雷达信号分析与处理
6
第一章 绪论

雷达发明之前的防空:盲人雷达;光学测距仪

1935年,英国皇家物理研究所的沃森.瓦特博士进行无线电科学考察
荧光屏上的亮点 载重汽车上的第一台雷达 东海岸对空警戒雷达网
雷达信号分析与处理
7
第一章 绪论
二 、雷达测量原理
测距 测速
Radar-- Radio detection and ranging(无线电探测和测距)

二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统
雷达信号分析与处理
11
第一章 绪论
三、新型雷达信号的要求 不易被对方侦察和模拟(LPI),应采用复杂的调制 有良好的分辨力和抗干扰的能力,要求信号应有“图钉”型 的模糊函数 具有极宽的频带,使任何快速侦察干扰系统均无法施行瞄准 式干扰 容易进行最佳信号处理 四、雷达发射信号的发展 单载频矩形脉冲(SP) 线性调频(LFM/NLFM)、相位编码(PC)、脉冲串(PS) 频率步进(SF)、频率捷变(FA)
电波的反射现象,这就预示着可以利用无线电波来发现人类肉眼看不到的目 标。 1904年,德国发明家克里斯蒂安·许尔斯迈尔在实验室进行原始雷达的试验, 并取得了雷达设计的专利,但这种原始的雷达探测距离还达不到声波定位器 作用的距离。 1922年9月,美国海军实验员泰勒和扬格在华盛顿附近的波特马克河畔,进 行两岸无线电通信试验。(波特马克试验)
s(t ) S ( f )
复数表示
表示信号s(t) 和其频谱S(f)
s(t ) s1 (t ) js2 (t ) S ( f ) R( f ) jI ( f )

雷达信号处理

雷达信号处理

雷达信号处理技术与系统设计第一章绪论1.1 论文的背景及其意义近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。

雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。

区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。

固定杂波的中心频率位于零频,很容易设计滤波器将其消除。

但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。

最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。

后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。

为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。

CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术2.1 引言雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。

根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。

脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。

这种情况在实际工作中是不允许的。

采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。

天气雷达的基本工作原理和参数知识讲解

天气雷达的基本工作原理和参数知识讲解
E(t)ReE1[e(xpi(1ti0t)] E1co2s(f0f1)t

风暴跟踪信息文本产品(上海)
风暴结构产品(SS)
冰雹指数产品(HI)
回波顶高产品(ET)
回波顶高等值线产品(ETC)
垂直液态水含量产品(VIL)
强天气概率产品(SWP)
一小时降水量产品(OHP)
三小时降水量产品(THP )
风暴总降水量产品(STP)
多普勒频率fd与目标物径向 速度Vr的关系
多普勒频率fd 定义: 目标物相对于雷达作径向运动
引起回波信号的频率变化,称 多普勒频移,亦称多普勒频率, 单位:赫兹(Hz)。
多普勒频率fd与目标物径向速度Vr 的关系(证明见P211-212)
fd
2Vr
其中: f d为多普勒频率
Vr 为目标物的径向速度
(单位 Hz )
(也称多普勒速度 , 单位 m / s)
这类产品主要有:
• 平面位置显示(PPI)
• 垂直最大回波强度显示 (CR)
• 等高平面位置显示(CAPPI)
• 距离高度显示(RHI)、
• 任意垂直剖面显示(VCS)
WSR-88D产品生成器根据用户要求生成的基本产 品有:基本反射率产品6种,平均径向速度产品6 种,速度谱宽产品3种,共计3类15种气象产品, 如下表
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26
中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)

示 产 生 冰 雹 的 可 能
图 中 绿 色 三 角 形

雷达原理复习提纲大全

雷达原理复习提纲大全

雷达原理复习提纲大全发射机自激振荡式发射机(电真空)主振放大式发射机(电真空发射机、全固态发射机)单级振荡式发射机:简单、经济、轻便。

主振放大式发射机:频率稳定性高、发射信号相位相参、波形灵活。

雷达数据的录取方式:半自动录取和全自动录取固态发射机的优点:不需要阴极加热、寿命长;具有很高的可靠性:体积小、重量轻:工作频带宽、效率高:系统设计和运用灵活:维护方便,成本较低。

雷达原理知识点汇总第一章绪论1、雷达概念(Radar):radar的音译,“Radio Detection and Ranging ”的缩写。

原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。

2、雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。

在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。

3、雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位。

随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。

4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP。

方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。

俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。

5、雷达工作方式连续波和脉冲波6、雷达测距原理R=(C∆t)/2式中,R为目标到雷达的单程距离,∆t为电磁波往返于目标与雷达之间的时间间隔,C为电磁波的传播速率(3×108米/秒)7、影响雷达性能指标脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。

雷达原理复习总结

雷达原理复习总结

第一章 绪论(重点)1、雷达的基本概念雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息雷达概念:Radio Detection and Ranging 的缩写。

无线电探测和测距,无线电定位。

雷达的任务:雷达检测,目标定位,目标跟踪,目标成像,目标识别。

从雷达回波中可以提取目标的有用信息,获取方式: 目标信息 雷达提取 空间位置 距离 R=Ct/2 回波延时 方位 天线扫描 仰角速度 多普勒频移尺寸和形状 回波延时、多普勒频移2、目标距离的测量测量原理、距离测量分辨率、最大不模糊距离测量原理:通过接收信号的时间延迟进行测距 R=Ct/2 (t:滞后时间) 距离测量分辨率最大不模糊距离3、目标角度的测量角度分辨率角度分辨率:位于同一距离上的两个目标在方位角平面或仰角平面上可被区分的最小角度4、雷达的基本组成哪几个主要部分,各部分的功能是什么同步设备(Synchronizer):雷达整机工作的频率和时间标准。

发射机(Transmitter):产生大功率射频脉冲。

收发转换开关(Duplexer): 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。

天线(Antenna):将发射信号向空间定向辐射,并接收目标回波。

接收机(Receiver):把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。

显示器(Scope):显示目标回波,指示目标位置。

天线控制(伺服)装置:控制天线波束在空间扫描。

电源第二章 雷达发射机1、雷达发射机的任务雷达发射机的任务:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。

2、雷达发射机的主要质量指标雷达发射机的主要质量指标:工作频率或波段,输出功率,总效率,信号形式,信号稳定度3、雷达发射机的分类雷达发射机的分类:1、按调制方式: ①连续波发射机 ②脉冲发射机2、按工作波段:①短波②米波③分米波④厘米波⑤毫米波3、按产生信号方式 :①单级振荡式 ②主振放大式4、按功率放大使用器件: ①真空管发射机 ②固态发射机4、单级振荡式和主振放大式发射机组成, 以及各自的优缺点。

雷达第一章

雷达第一章

火控&成像雷达
Ka波段
W波段
导弹导引头
雷 达 框 图
发射器 传播介质 信号处理器 波形发生器
目标散射面积
天线
接收器
脉冲压缩
多普勒处理 控制/ 显示
记录 检测 跟踪&参 数估计
雷 达 测 距 方 程
天线孔径 发射功率
发射脉冲
目标散射面积
接收脉冲
发射 功率 接收信号能量
传输 增益
传播 因子
目标散 传播 损耗 射面积 因子
控制台/显示
探测 记录
追踪和参数估计
轮廓
• 什么是雷达 • 基础 • 教学日历
介绍雷达系统教程议程
• • • • • • • • • • 介绍 雷达方程 传播效果 雷达目标截获面积 检测噪声与信号的脉冲压缩 雷达天线 雷达杂波和一些无关紧要的东西 Processing-MTI和脉冲多普勒信号 跟踪和参数估计 发射机与接收机
提纲
为什么要用雷达? 基本知识
教学日历
雷达无线电探测和定位
天线 传播
目标 散射 截面
发射脉冲
雷达可观测量: •目标距离 •目标夹角(方位角和海拔) •目标大小(雷达散射截面) •目标速度(多普勒效应) •目标特性(目标成像)
反射脉冲(回波)
电 磁 波 电 磁 波 谱
波长(m)
波长大小
电波名 无线电波 红外线
为何多普勒重要? 海面雷达 机载雷达
杂乱回波比目标回波多很多。
然而,目标移动,杂乱目标不变
注意:如果你也在移动,需要考虑 这个因素。
多普勒可以区分移动的和不移动的物体
杂乱的多普勒谱
速度
雷达系统方块图
传播介质

雷达成像技术(保铮word版)-第一章-概论

雷达成像技术(保铮word版)-第一章-概论

前言雷达成像技术是上个世纪50年代发展起来的,它是雷达发展的一个重要里程碑。

从此,雷达不仅仅是将所观测的对象视为“点”目标,来测定它的位置与运动参数,而是能获得目标和场景的图像。

同时,由于雷达具有全天候、全天时、远距离和宽广观测带,以及易于从固定背景中区分运动目标的能力,雷达成像技术受到广泛重视。

雷达成像技术应用最广的方面是合成孔径雷达(Synthetic Aperture Radar,简称SAR)。

当前,机载和星载SAR的应用已十分广泛,已可得到亚米级的分辨率,场景图像的质量可与同类用途的光学图像相媲美。

利用SAR的高分辨能力,并结合其它雷达技术,SAR还可完成场景的高程测量,以及在场景中显示地面运动目标(GMTI)。

SAR的高分辨,在径向距离上依靠宽带带信号,几百兆赫的频带可将距离分辨单元缩小到亚米级;方向上则依靠雷达平台运动,等效地在空间形成很长的线性阵列,并将各次回波存贮作合成的阵列处理,这正是合成孔径雷达名称的来源。

合成孔径可达几百米或更长,因而可获得高的方位分辨率。

雷达平台相对于固定地面运动形成合成孔径,实现SAR成像。

反过来,若雷达平台固定,而目标运动,则以目标为基准,雷达在发射信号过程中,也等效地反向运动而形成阵列,据此也可对目标成像,通称为逆合成孔径雷达(ISAR)。

ISAR显然可以获取更多的目标信息。

最简单的雷达成像是只利用高距离分辨(HRR)的一维距离像。

当距离分辨率达米级,甚至亚米级时,对飞机、车辆等一般目标,单次回波已是沿距离分布的一维距离像,它相当目标三维像以向量和方式在雷达射线上的投影,其分布与目标相对于雷达的径向结构状况有关。

同时,高距离分辨率有利于分辨距离接近的目标,以及目标回波的直达波和多径信号。

本书将对当前已经广泛应用和具有应用潜力的内容作较为全面的介绍。

本书是《雷达技术丛书》中的一册,主要对象为从事雷达研制工作的技术人员,因此,本书编著时考虑到读者已有《雷达原理》和《雷达系统》方面的基础,对雷达各部件的基本情况也已比较熟悉,与上述内容有关的部分,本书均作了省略。

《雷达原理》第一章 题集

《雷达原理》第一章 题集

《雷达原理》第一章题集课程名称:雷达原理考试形式:课后练习满分:100 分---注意事项:1. 本题集共四部分,总分 100 分。

2. 请将答案写在答题纸上。

3. 所有题目必须回答,选择题请将正确答案的字母填在答题纸上,其余题目请将答案写清楚。

---第一部分选择题(共 20 题,每题 2 分,共 40 分)1. 雷达的基本工作原理是()A. 信号的反射B. 电磁波的传播C. 信号的放大D. 数据的处理2. 在雷达系统中,天线的主要作用是()A. 发射和接收电磁波B. 处理信号C. 记录数据D. 过滤噪声3. 雷达信号的脉冲宽度越短,分辨率()A. 越高B. 越低C. 不变D. 与天线有关4. 在连续波雷达中,目标的距离是通过()来测量的。

A. 信号的幅度B. 信号的相位C. 信号的频率D. 信号的时延5. 雷达的“多普勒效应”主要用于()A. 测量目标的速度B. 测量目标的距离C. 提高信号的强度D. 过滤杂波6. 在脉冲雷达中,回波信号的延迟时间与目标的()有关。

A. 速度B. 方向C. 距离D. 大小7. 雷达中“信号噪声比”通常用来衡量()A. 信号的强度B. 噪声的强度C. 信号质量D. 接收机的灵敏度8. 目标的回波信号强度与其()成正比。

A. 距离的平方B. 反射面积C. 速度D. 温度9. 雷达中的“波束宽度”主要影响()A. 雷达的探测范围B. 雷达的分辨率C. 信号的强度D. 天线的大小10. 相控阵雷达的主要优点是()A. 结构简单B. 能够快速改变波束方向C. 成本低D. 体积小11. 在雷达系统中,目标检测的基本步骤是()A. 发射信号、接收回波、处理信号B. 仅发射信号C. 仅接收回波D. 处理信号后发射12. 雷达成像的基本原理是()A. 利用信号的频率B. 利用信号的幅度C. 利用信号的相位信息D. 利用信号的时延13. 反射体的形状对雷达信号的影响主要体现在()A. 回波的强度B. 回波的时间C. 回波的频率D. 回波的相位14. 在雷达测距中,使用的公式为()A. 距离 = 光速×时间B. 距离 = 时间 / 光速C. 距离 = 光速 / 时间D. 距离 = 时间 + 光速15. 适合高空探测的雷达类型是()A. 地面雷达B. 空中雷达C. 卫星雷达D. 水面雷达16. 雷达中“脉冲重复频率”的增加将导致()A. 探测距离增加B. 探测范围增加C. 分辨率降低D. 分辨率提高17. 在合成孔径雷达中,成像的关键是()A. 信号的频率B. 运动的路径C. 发射的功率D. 目标的大小18. 关于“目标指向性”,下列说法正确的是()A. 只与目标的速度有关B. 仅与雷达的工作频率有关C. 与目标的形状、材料及入射角有关D. 不影响信号的返回19. 雷达系统中的“干扰”主要来源于()A. 自身发射B. 环境噪声C. 目标物体D. 以上均可20. 在目标检测中,雷达的“波长”对()有影响。

天气雷达的工作原理ppt课件

天气雷达的工作原理ppt课件

从而使雷达荧光屏上出现的目标标志(用亮点或垂
直偏移表示)的方位、仰角就是目标相对于雷达的
实际方位、仰角。
.
16
5、天线转换开关
因为雷达发射和接受的都是持续时间极短(微秒量 级)、间歇时间很长(千微秒量级)的高频脉冲波,这 就有可能使发射和接收共用一根天线。天线转换开关的 作用是:在发射机工作时,天线只和发射机接通,使发 射机产生的巨大能量不能直接进入接收机,从而避免损 坏接收机;当发射机停止工作时,天线立即和接收机接 通,微弱的回波信号只进入接收机。
距离仰角显示器是显示云 和降水的垂直结构的显示器。 由于距离高度显示器只能在低 仰角下使用,如711雷达和7l3 雷达在作距离仰角显示时,天 线的最大仰角只分别为320和 290,这样的仰角看不到近距 离天顶附近的云雨情况,为了 解近距离天顶附近的云雨情况 和结构,某些天气雷达(国产 713雷达)可以作“距离仰角显 示”,这种显示器简称为REI
线的转动系统,一部分是同步系统。天线转动系统
的作用是:(1)使天线绕垂直轴转动,以便探测
平面上的降水分布,或漏斗面上降水、云的分布;
(2)使天线在某一方位上作上下俯仰,以便探测
云和降水的垂直结构和演变。
天线同步系统(也叫伺服系统)的作用是:使
阴极射线管上不同时刻时间扫描基线的方位、仰角
和相应时间天线所指的方位、仰角一致(即同步),
(Rang Elevation Indicator) .
横坐标为距离,纵坐 标为高度,垂直坐标尺度 和水平坐标尺度一样,因 此它没有距离高度显示器 那样出于两个坐标尺度不 一样而引起的失真。 23
等高平面位置显示器(CAPPl)
平面位置显示器只是在仰角为0时得到降水目标 的平面分布,仰角大于0时得到的是一个远处高近 处低的漏斗面上的云雨分布。为了解不同高度上的 云和降水分布,了解降水发生发展的三度空间情况, 人们使用了 “等高平面位置显示器”,简称 CAPPI(Constant Altitude PPl)。等高平面位置显 示器能够显示不同高度平面上的云雨分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16
第二章 雷达信号与线性处理系统
s* (t ) S * ( f ) [性质3] 共轭性 * S ( f ) S * ( f ) 若 s(t ) 为实信号,则 s (t ) s(t ) 。因此 说明实信号频谱与其共轭频谱的负频率函数是相等的。

[性质4] 比例性 s(at ) S ( ) a a a 1时,时间波形被压缩, a 1 时,时间波形被扩展。 其中a为任意常数。 这个特性说明,信号在时域上的尺度压缩 a倍,其频谱在频域上尺度就要扩 展 a倍,同时幅度要降低 a倍,反之亦然。这个性质反映了信号时域上宽度和 频域上宽度的内在关系,即信号形式给定后,时域上宽度与频域上宽度成反 S( f ) 比关系。 s (t ) s (at ) 1
课程教学目的

了解雷达发射的信号形式对雷达测量精度、分 辨力及抗干扰能力等性能的影响; 掌握利用模糊函数进行雷达信号的分析方法和 对雷达信号进行匹配处理的方法;


为研究各种新型雷达信号和分析雷达系统性能 打下理论基础。
2
课程内容简介
第一部分 信号分析与处理基础 (复数表示、信号相关、匹配滤波)--- 基础
S ( f ) s(t )e


j 2 ft
dt
s(t ) S ( f )e j 2 ft df


S(W) 或 S(f) 存在的充分条件是 s(t) 绝对可积,即



s(t )dt
13
第二章 雷达信号与线性处理系统
在雷达工程术语中,时间函数 s(t)称为雷达信号的时间波形,频率函数 S(W) 或 S(f) 称为雷达信号的频谱密度或频谱。
12
第二章 雷达信号与线性处理系统
第二章 雷达信号与线性处理系统
2.1 信号的傅里叶分析方法 2.1.1 傅里叶变换 傅里叶正、反变换的定义分别为
S () s(t )e


jt
dt
1 s(t ) 2



S ( )e jt d
其中s(t)是以时间为变量的函数, S(W)是以频率为变量的函数。 对称形式

s( f ) s( f ) S (t ) s( f ) S (t ) S (t )
如果已知信号的时间波形为s(t),频谱为S(f) ,若另一个信号的时间波形与已知信号的 频谱形式相同,则这个信号的频谱形式就与已知信号的时间波形s(t)形式相同。这个性 质为某些信号的时间波形和频谱的互求提供了方便。
测距
测高
测速
三、雷达与通信信号区别 1电磁波频率;
3天线方向性; 5信号处理;
2传输目的; 4主要考虑方面;
8
第一章 绪论
1.2 研究雷达信号的目的和意义
一、雷达所面临的问题 四大威胁 电子干扰 (干扰机:压制式、欺骗式)
徘徊者EA-6B
咆哮者EF-18G
新型运8电子干扰机
低空突防(巡航导弹)

a2
1
f
S( f )
1 f S( ) a a
s (t )
1
s (at )
0
1 2
t
0
f
(a)压缩时间波形
1
(b)展宽的频谱
17
第二章 雷达信号与线性处理系统
[性质5] 时延和频移特性 s (t t0 ) S ( f )e j 2 ft (a)时延特性 ) 说明信号在时间上延迟 t 0 后,其频谱是原信号频谱S(f)乘以延迟因子exp( j 2 ft0, 相当于在频域中对所有频率分量都给一个与频率成线性关系的相移。 (b)频移特性 S ( f f 0 ) s(t )e j 2 f t exp( j 2 f 0t ) 说明信号在频域上频移f0 就等效在时域上乘一个因子 ,也可以说, 信号在时域上乘一个因子 exp( j 2 f就等效在频域上将整个频谱移动一个频率 0t ) f0 。

0
0
[性质6] 调制特性 s(t ) cos(2 f0t ) S ( f f 0 ) S ( f f 0 ) 2 说明调制信号的频谱是原信号(非调制信号)频谱在频域上向正负频率方向 各搬移频率 后的两个频谱之和的一半,也就是说,信号的调制过程就是把原 信号的频率平移 的过程。
AGM-86C空射巡航导弹
BGM-109陆攻型导弹
SA-15 空射对地巡航导弹
长剑10陆基巡航导弹
9
第一章 绪论

反辐射导弹(反雷达导弹)

AGM45 百舌鸟 隐身飞机
AGM78 标准
AGM88 哈姆
鹰击91
F117 夜鹰
F22 猛禽
F35 闪电2
歼20
10
第一章 绪论

二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统

第二部分 雷达测量精度、分辨力及模糊函数 (测距测速精度、距离速度分辨力、模糊函数及 其性质)--- 工具

第三部分 复杂雷达信号的分析 (调频Байду номын сангаас冲信号、相位编码信号、相干脉冲串信 号)--- 具体信号分析

3
课程内容简介
课程的意义和特点 意义:新体制理论基础、对系统指导作用 特点:基本概念、基本理论、基本方法、信号决定雷达性能(固 有分辨力和最大理论精度) 参考书 1、朱晓华,《雷达信号分析与处理》,国防工业出版社 2、贾鸿志,《雷达信号分析》,南理工 3、林茂庸,《雷达信号理论》,国防工业出版社 4、N. LEVANON, E. MOZESON, RADAR SIGNALS, A JOHN WILEY & SONS, INC., PUBLICATION 5、W.S. BURDIC, RADAR SIGNAL ANALYSIS, Prentice-Hall, Inc.
s(t ) S ( f )
复数表示
表示信号s(t) 和其频谱S(f)
s (t ) s1 (t ) js2 (t ) S ( f ) R ( f ) jI ( f )

e j 2 ft cos(2 ft ) j sin(2 ft )
s1 (t )

R( f )cos(2 ft ) I ( f )sin(2 ft)df I ( f )cos(2 ft ) R( f )sin(2 ft ) df
卷积定理使我们能通过频域中的简单乘法运算求出时域中的卷积运算,同样, 也可通过时域中的简单乘法运算求出频域中的卷积运算。

[性质9] 帕塞瓦尔(Parsevel)定理

更为一般的表达式


s1 (t )s (t )dt S1 ( f )S2* ( f )df
* 2




s1 (t )s (t )dt
电波的反射现象,这就预示着可以利用无线电波来发现人类肉眼看不到的目 标。 1904年,德国发明家克里斯蒂安· 许尔斯迈尔在实验室进行原始雷达的试验, 并取得了雷达设计的专利,但这种原始的雷达探测距离还达不到声波定位器 作用的距离。 1922年9月,美国海军实验员泰勒和扬格在华盛顿附近的波特马克河畔,进 行两岸无线电通信试验。(波特马克试验)
2.1.2 傅里叶变换的主要性质 [性质1] 可加性 as1 (t ) bs2 (t ) aS1 ( f ) bS2 ( f ) 其中 a、b 为任意常数。这个性质说明信号和的频谱等于各信号频谱之和。 [性质2] 对称性 S (t ) s( f ) 说明信号频谱的频率变量换成时间变量后,它的傅里叶变换是此信号时间函 数的时间变量用 取代。 S (t ) s( f ) 同理 如果 s(t ) 是-t的偶函数,则S ( f ) 也是 -f 的偶函数,这样便有
2 2

实信号平方的积分与复信号幅度模平方的积分是相等的,它们都表示了信 号的能量,这个能量可由s(t ) 频谱幅度模平方 S ( f ) 2下的面积给出,因此我 2 们称 S ( f ) 为信号s(t ) 的能量谱密度。
信号的总能量既可以按照每单位时间内的能量在整个时间内的积分计算出 来,也可以按照每单位频率内的能量在整个频率范围内的积分而得到。
(3)若 是实奇信号,即
s(t )
s(t ) s(t )
,则
S ( f ) R( f ) jI ( f ) jI ( f ) j s(t )sin(2 ft )dt 即实奇信号的频谱是实信号频谱的虚部,也就是说,实奇信号的频谱是频率 的虚奇函数。

15
第二章 雷达信号与线性处理系统
(1) 若 s(t ) 是实信号,即 s2 (t ) 0, s1 (t ) s(t )
R( f ) s(t )cos(2 ft )dt


I ( f ) s(t )sin(2 ft )dt


实信号频谱的实部是偶函数,虚部是奇函数,因此
S ( f ) R( f ) jI ( f ) R( f ) jI ( f ) S ( f )

1
[性质7] 微分特性
S n (t ) ( j 2 f )n S ( f ) ( j 2 t )n s(t ) S n ( f )
18
第二章 雷达信号与线性处理系统

[性质8] 卷积定理
s1 (t ) s2 (t ) S1 ( f ) S2 ( f ) s1 (t ) s2 (t ) S1 ( f ) S2 ( f )
11
第一章 绪论
三、新型雷达信号的要求 不易被对方侦察和模拟(LPI),应采用复杂的调制 有良好的分辨力和抗干扰的能力,要求信号应有“图钉”型 的模糊函数 具有极宽的频带,使任何快速侦察干扰系统均无法施行瞄准 式干扰 容易进行最佳信号处理 四、雷达发射信号的发展 单载频矩形脉冲(SP) 线性调频(LFM/NLFM)、相位编码(PC)、脉冲串(PS) 频率步进(SF)、频率捷变(FA)
相关文档
最新文档