锻件超声波探伤
锻件超声波探伤标准
锻件超声波探伤标准锻件超声波探伤是一种非破坏性检测方法,广泛应用于工业生产中,用于检测锻件内部的缺陷和异物。
其标准化是确保产品质量和安全的重要步骤。
本文将介绍锻件超声波探伤的标准要求,以及其在工业生产中的重要性。
首先,锻件超声波探伤的标准主要包括国家标准、行业标准和企业标准。
国家标准是由国家标准化管理委员会制定和发布的,具有法律效力,适用于全国范围内的锻件超声波探伤工作。
行业标准是由相关行业协会或组织制定的,适用于特定行业内的锻件超声波探伤工作。
企业标准是由企业根据自身生产实际情况制定的,适用于企业内部的锻件超声波探伤工作。
这些标准的制定和执行,可以有效规范锻件超声波探伤工作,提高产品质量和安全水平。
其次,锻件超声波探伤的标准要求包括设备要求、人员要求、操作要求和报告要求等方面。
设备要求包括超声波探伤仪器的性能和精度要求,以及探头的选择和使用要求。
人员要求包括操作人员的培训和资质要求,以及操作人员的责任和义务。
操作要求包括探伤工艺的规范和流程要求,以及检测参数的设置和调整要求。
报告要求包括检测结果的记录和报告要求,以及异常情况的处理和报告要求。
这些要求的严格执行,可以保证锻件超声波探伤工作的准确性和可靠性。
最后,锻件超声波探伤标准的重要性不言而喻。
首先,它可以帮助企业提高产品质量,降低生产成本,提高市场竞争力。
其次,它可以帮助企业保障产品安全,避免因产品质量问题而导致的事故和损失。
最后,它可以帮助企业提升员工技能,提高生产管理水平,实现可持续发展和创新发展。
因此,制定和执行锻件超声波探伤标准,对于企业和社会都具有重要意义。
综上所述,锻件超声波探伤标准的制定和执行,对于保障产品质量和安全,提高生产效率和管理水平,具有重要意义。
我们应该加强对锻件超声波探伤标准的学习和理解,提高对其重要性的认识,不断完善和落实相关标准要求,推动锻件超声波探伤工作的规范化和标准化,为工业生产的可持续发展做出贡献。
铸件和锻件的超声波探伤方法应用
• 白点是因钢中含氢量较高时由锻造过程中 残余应力热加工后的相变应力和热应力等 原因产生,是一种细微的氢裂纹,在白点 纵向断口上呈银白色的园点或椭圆形斑点, 故称白点。
• 热处理缺陷:裂纹。由热处理工艺参数 不良引起。
• 二、探伤方法概述 • 轴类锻件探伤
①纵波(直探头)可在轴的园周方向和轴端部探 测。
• Δ也可用二次底波B1和B2调。工件只有一 个厚度,如某饼型锻件厚300mm,直径很 大,可利用始波T和B1调(但不太准)因T 对零,B1对某刻度,如8格,此时忽略了探
头中引起混响和保护膜引起的延迟,严格 说调好后始波不在零位,而是略后左移。
• 双晶直探头:
• 可在JB/T4730-2005双晶直探头标准试块 上调节,使始波对零,深45mm平底孔在第 8格以内。
• 疏松是由钢锭凝固时形成的不致密和孔穴, 锻造时锻压比不够未全熔合造成,主要存 在于钢锭中心及头部。铸造引起裂纹主要 是指锻钢件表面上出现的较浅的龟状表面 缺陷也称龟裂,是由于原材料成份不当, 表面状况不好,加热温度和加热时间不合 适等原因产生。
• 锻造缺陷:折叠、白点、裂纹等。
• 锻造裂纹可出现在工件中不同位置,可由缩孔残 余在锻造时扩大产生,表面下气泡锻造产生,柱 状晶粗大引起,轴芯晶间裂纹锻造时引起,非金 属夹杂物引起,锻造加热不当引起,锻造变形不
• 测:当量、位置。如分散性夹层、夹杂等。
• 3. 密集缺陷□--可能是疏松、非金属夹杂、 白点或成群小裂纹。
• 定义:JB/T4730-2005标准术语和定义第 3.16条规定。
• 在荧光屏扫描线上相当于50mm声程范围内 有5个或5个以上缺陷反射信号,或在 50mm×50mm检测面上发现在同一深度范 围内有5个或5个以上缺陷反射信号。其反
锻件焊缝超声波探伤报告(二)
锻件焊缝超声波探伤报告(二)引言概述:本文是针对锻件焊缝超声波探伤的报告,主要针对锻件焊缝的超声波探伤方法、设备和结果进行详细的分析与总结。
通过对焊缝超声波探伤的技术与实际应用的研究,报告将给读者带来有关锻件焊缝超声波探伤的全面认识。
1. 超声波探伤方法1.1 传统超声波探伤方法1.2 直接记录法1.3 影像记录法1.4 焊缝体积扫描法1.5 其他超声波探伤方法2. 超声波探伤设备2.1 超声波探伤仪器的选择2.2 超声波发射器和接收器的特点2.3 超声波探头的分类与应用2.4 超声波传感器的定位方法2.5 超声波仪器的运行与维护3. 焊缝超声波探伤结果的分析3.1 基本缺陷的检测3.2 焊接接头的完整性检测3.3 焊缝内部结构的评估3.4 焊缝缺陷的定位与评估3.5 焊缝强度与可靠性的评定4. 焊缝超声波探伤实例分析4.1 实例一:焊缝内部结构的扫描与评估4.2 实例二:焊接接头的强度评定4.3 实例三:焊缝缺陷的定位与评估4.4 实例四:焊缝体积扫描的实际应用4.5 实例五:超声波探伤在焊缝质量控制中的作用5. 结果与讨论5.1 锻件焊缝超声波探伤的优点与局限性5.2 锻件焊缝超声波探伤技术的发展方向5.3 锻件焊缝超声波探伤在实际工程中的意义5.4 锻件焊缝超声波探伤在质量控制中的应用前景5.5 锻件焊缝超声波探伤的展望与挑战总结:通过对锻件焊缝超声波探伤的详细介绍与分析,可以得出锻件焊缝超声波探伤技术是一种有效且可靠的质量评估方法。
本报告回顾了焊缝超声波探测方法、设备和结果的关键要点,并给出了相关实例分析。
最后,对锻件焊缝超声波探伤的优点、局限性以及未来的发展方向进行了总结和展望,显示其在质量控制中的重要性和应用前景。
锻钢件的超声波探伤检查方法缺陷等级分类及判定标准
锻钢件的超声波探伤检查方法缺陷等级分类及判定标准1•目的规范公司锻钢件的超声波探伤检查方法,规范缺陷等级分类及判定标准2•内容2.1探伤装置使用脉冲反射式超声波探伤仪。
2.2探伤方法原则上采用单晶头垂直探伤法。
但是精密探伤及有特殊要求的部位,将同时采用其他探伤方法。
2.3探伤方向及探伤范围按下表实施探伤。
但是,认定有缺陷等异状时,必须从所有方向开始探伤。
探伤方向及扫查范围向:对半圆周进行全面探伤。
但小齿轮、螺纹轴、蜗轮、辊子等表层附近特别重要的锻钢件,要从整周开始进行全面探伤。
轴类锻钢件径向:外周全面探伤轴向:从两个方向进行全面探伤轴向:从两个方向开始进行全面探伤从长度方向,宽度方向,板厚方向三个方向开始进行全面探伤。
但齿条等表层附近特别重要的锻钢件,三个方向均需从两面开始全面探伤。
径向:对外周进行全面探伤轴向:从一个方向开始全面探伤。
但是,齿圈等表层附近特别重要的锻钢件要从两个方向起全面探伤。
径向:对外周进行全面探伤轴向:从一个方向开始全面探伤。
但是,齿轮、车轮等表层附近特别重要的锻钢件要从两个方向起全面探伤。
探伤表面的表面粗糙度要达至【Ra12.5以上较好精加工状态。
2.5测量范围的调整原则上,测定范围要调整至底面回波在显示屏时间轴上显现2次。
2.6探伤方式、使用频率和使用探头探伤方式,使用频率和使用探头见下表。
2.7探伤灵敏度的设定2.7.1底面回波方式的灵敏度设定⑴直径或壁厚在2mm以下的部位,将各不同直径或壁厚的致密部位上第1次底面回波高度(BG)调整至探伤仪显示器刻度板的80%。
然后,根据图4进行灵敏度的增幅,以此作为探伤起始灵敏度。
另外,对于超过检查部位的壁厚1/2以上的区域进行探伤时,需要进一步提高灵敏度12dB进行探伤。
关于小齿轮、螺纹轴、蜗轮、齿轮、齿条、车轮等表层附近特别重要的锻钢件,则用提高了12dB后的灵敏度进行全面或是从两面开始探伤。
⑵试验部位的壁厚超过2m时,使用探头专用的DGS曲线图。
锻件超声波探伤标准
锻件超声波探伤标准
锻件超声波探伤是一种常用的无损检测方法,通过超声波的传播和反射来检测
锻件内部的缺陷和异物,对于保证锻件质量和安全具有重要意义。
为了规范锻件超声波探伤工作,制定了一系列的标准,本文将对锻件超声波探伤标准进行详细介绍。
首先,锻件超声波探伤标准包括了探伤设备的选择和使用。
探伤设备应当符合
国家标准,并且经过定期的检测和维护,确保设备的准确性和可靠性。
操作人员需要经过专业培训,熟悉设备的使用方法和操作流程,严格按照操作规程进行工作。
其次,锻件超声波探伤标准还规定了探伤工艺和参数的选择。
在进行探伤前,
需要对锻件进行清洁和表面处理,确保探测的准确性。
探伤时需要选择合适的探头和探测模式,根据锻件的材质和形状确定合适的探伤参数,包括频率、增益、衰减等,以确保对各种缺陷的有效检测。
另外,锻件超声波探伤标准还规定了探伤结果的评定标准。
根据探伤图像和信号,对锻件内部的缺陷进行评定,包括尺寸、位置、数量等,判断缺陷对锻件性能和安全的影响程度,确定是否合格或需要修复。
最后,锻件超声波探伤标准还对探伤记录和报告进行了规定。
探伤结果应当及
时记录和报告,包括探伤图像、信号数据、评定结果等,确保可追溯性和可验证性。
对于不合格的锻件,需要进行修复并重新进行探伤,直至符合要求为止。
总的来说,锻件超声波探伤标准的制定和执行,对于提高锻件质量和安全性具
有重要意义。
只有严格按照标准要求进行操作,才能有效地发现和排除锻件内部的缺陷,保证锻件的可靠性和安全性。
希望本文对锻件超声波探伤标准有所帮助,谢谢阅读。
关于锻件超声波探伤的标准及规程
关于锻件超声波探伤的标准及规程1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度.饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.三维尺寸a、b、c中最上称厚度.底波降低量GB/BF(dB)无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示.密集区缺陷当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.缺陷当量直径用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.AVG曲线以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线.2探伤人员锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.3探伤器材探伤仪应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.探头探头的公称频率主要为,频率误差为±10%.主要采用晶片尺寸为Φ20mm的硬保护膜直探头.必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.探头主声束应无双峰,无偏斜.耦合剂可采用机油、甘油等透声性能好,且不损害工件的液体.4探伤时机及准备工作探伤时机探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.准备工作探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.探伤表面应无划伤以及油垢和油潜心物等附着物.锻件的几何形状及表面检查均合格后,方可进行探伤.重要区锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.5探伤方法锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.横波探伤横波探伤应按附录B的要求进行.纵波探伤扫查方法锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.扫查范围:应对锻件整个表面进行连续全面扫查.扫查速度:探头移动速度不超过150mm/s.扫查复盖应为探头直径的15%以上.当锻件探测厚度大于400mm时,应从相对两端面探伤.探伤灵敏度的校验原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近倍)的参考试块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.探伤灵敏度不得低于Φ2mm当量直径.缺陷当量的确定采用AVG曲线及计算法确定缺陷当量.计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.材质衰减系数的测定a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.b. 衰减系数a(dB/m)的计算为式中 T----声程,m.AVG曲线图见附录C.灵敏度的重新校验除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;b. 开路电压波动或操作者怀疑灵敏度有变动时;c. 连续工作4以上;d. 工作结束时.当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行重新评定.6记录记录当量直径超过Φ4mm的单个缺陷的波幅的位置.密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.其他锻件应记录大于等于Φ3mm当密集区.缺陷密集区面积以50mm×50mm的方块作为最小量度单位,其边界可由半波高并法决定.应按表2要求记底波降低量衰减系数,若供需双方有规定时,应记录衰减系数.7等级分类单个缺陷反射的等级见表1.表1 单个缺陷反射的等级等级ⅠⅡⅢⅣⅤ缺陷当量直径≤Φ4 >Φ4+(>5~8dB) Φ4+(>8~12dB) Φ4+(>12~16dB) >Φ4+16dB)底波降低量的等级见表2.表2 由缺陷引起底波防低量的等级等级ⅠⅡⅢⅣⅤ底波降低量BG/BF ≤8 >8~14 >14~20 >20~26 >26注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减.②表2仅适用于声程大于一倍近场区的缺陷.密集区缺陷等级见表3.表3 密集区缺陷引起的等级等级ⅠⅡⅢⅣⅤ密集区缺陷占探伤总面积百分比H 0 >0~5% >5~10% >10~20% >20%注:表1至表3的等级应作为独立的等级分别使用.如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理. 按、、节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制.8探伤报告探伤报告不应少于以下内容.工件情况工件名称、材料牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.探伤条件探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、参考反射体、耦合剂等.探伤结果8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.缺陷等级及其他.探伤人员的资格证号、等级、姓名、报告签发人的资格证号、等级、姓名、日期.附录A试块要求(补充件)远场区使用,探测表面为平面时,应采用CS2型标准试块.近场区使用,探测表面为平面时,应采用CS1型标准试块.探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.附录B横波探伤(补充件)横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.探头探头公称频率主要为,也可用2MHz.探头晶片面积为140-400mm2.原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头.参考反射体为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).探伤方法扫查方法扫查方向见图B1.探头移动速度不应超过150mm/s.扫查复盖应为探头宽度的15%以上.灵敏度检验从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.记录记录超---振幅曲线一半的缺陷反射和缺陷检出位置.附录CAVG 曲线图(参考件)AVG曲线参考图例如下:AVG曲线图必须在CS1和CS2型标准试块上测定后绘制.。
锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料
第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。
它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。
一些标准规定对某些锻件和铸件必须进行超声波探伤。
由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。
第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。
锻压过程包括加热、形变和冷却。
锻件的方式大致分为镦粗、拔长和滚压。
镦粗是锻压力施加于坯料的两端,形变发生在横截面上。
拔长是锻压力施加于坯料的外圆,形变发生在长度方向。
滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。
滚压既有纵向形变,又有横向形变。
其中镦粗主要用于饼类锻件。
拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。
为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。
锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。
铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。
锻造缺陷主要有:折叠、白点、裂纹等。
热处理缺陷主要有:裂纹等。
缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。
疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。
夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。
内在夹杂主要集中于钢锭中心及头部。
裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。
奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。
锻造和热处理不当,会在锻件表面或心部形成裂纹。
白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。
合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。
白点在钢中总是成群出现。
二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。
关于锻件超声波探伤的标准及规程
关于锻件超声波探伤的标准及规程1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度.饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.三维尺寸a、b、c中最上称厚度.底波降低量GB/BF(dB)无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示.密集区缺陷当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.缺陷当量直径用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.AVG曲线以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线.2探伤人员锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.3探伤器材探伤仪应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内.仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.探头探头的公称频率主要为,频率误差为±10%.主要采用晶片尺寸为Φ20mm的硬保护膜直探头.必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.探头主声束应无双峰,无偏斜.耦合剂可采用机油、甘油等透声性能好,且不损害工件的液体.4探伤时机及准备工作探伤时机探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.准备工作探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.探伤表面应无划伤以及油垢和油潜心物等附着物.锻件的几何形状及表面检查均合格后,方可进行探伤.重要区锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.5探伤方法锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.横波探伤横波探伤应按附录B的要求进行.纵波探伤扫查方法锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.扫查范围:应对锻件整个表面进行连续全面扫查.扫查速度:探头移动速度不超过150mm/s.扫查复盖应为探头直径的15%以上.当锻件探测厚度大于400mm时,应从相对两端面探伤.探伤灵敏度的校验原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近倍)的参考试块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.探伤灵敏度不得低于Φ2mm当量直径.缺陷当量的确定采用AVG曲线及计算法确定缺陷当量.计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.材质衰减系数的测定a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.b. 衰减系数a(dB/m)的计算为?式中 T----声程,m.AVG曲线图见附录C.灵敏度的重新校验除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;b. 开路电压波动或操作者怀疑灵敏度有变动时;c. 连续工作4以上;d. 工作结束时.当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行重新评定.6记录记录当量直径超过Φ4mm的单个缺陷的波幅的位置.密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.其他锻件应记录大于等于Φ3mm当密集区.缺陷密集区面积以50mm×50mm的方块作为最小量度单位,其边界可由半波高并法决定.应按表2要求记底波降低量衰减系数,若供需双方有规定时,应记录衰减系数.7等级分类单个缺陷反射的等级见表1.表1 单个缺陷反射的等级等级 ?Ⅰ ?Ⅱ ?Ⅲ ?Ⅳ ?Ⅴ缺陷当量直径?≤Φ4?>Φ4+(>5~8dB)?Φ4+(>8~12dB)?Φ4+(>12~16dB)?>Φ4+16dB)底波降低量的等级见表2.表2 由缺陷引起底波防低量的等级等级 ? ?Ⅰ ?Ⅱ ?Ⅲ ?Ⅳ ?Ⅴ底波降低量?BG/BF?≤8?>8~14?>14~20?>20~26?>26注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减.②表2仅适用于声程大于一倍近场区的缺陷.密集区缺陷等级见表3.表3 密集区缺陷引起的等级等级 ?Ⅰ ?Ⅱ ?Ⅲ ?Ⅳ ?Ⅴ密集区缺陷占探伤总面积百分比H?0?>0~5%?>5~10%?>10~20%?>20% 注:表1至表3的等级应作为独立的等级分别使用.如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理.按、、节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制.8探伤报告探伤报告不应少于以下内容.工件情况工件名称、材料牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.探伤条件探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、参考反射体、耦合剂等.探伤结果8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.缺陷等级及其他.探伤人员的资格证号、等级、姓名、报告签发人的资格证号、等级、姓名、日期.附录A试块要求(补充件)远场区使用,探测表面为平面时,应采用CS2型标准试块.近场区使用,探测表面为平面时,应采用CS1型标准试块.探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.附录B横波探伤(补充件)横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.探头探头公称频率主要为,也可用2MHz.探头晶片面积为140-400mm2.原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头.参考反射体为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).探伤方法扫查方法扫查方向见图B1.探头移动速度不应超过150mm/s.扫查复盖应为探头宽度的15%以上.灵敏度检验从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.记录记录超---振幅曲线一半的缺陷反射和缺陷检出位置.附录CAVG 曲线图(参考件)AVG曲线参考图例如下:AVG曲线图必须在CS1和CS2型标准试块上测定后绘制.。
锻件与铸件超声波探伤详细教程(附实例解析)
锻件与铸件超声波探伤详细教程(附实例解析)第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。
它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。
一些标准规定对某些锻件和铸件必须进行超声波探伤。
由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。
第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。
锻压过程包括加热、形变和冷却。
锻件的方式大致分为镦粗、拔长和滚压。
镦粗是锻压力施加于坯料的两端,形变发生在横截面上。
拔长是锻压力施加于坯料的外圆,形变发生在长度方向。
滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。
滚压既有纵向形变,又有横向形变。
其中镦粗主要用于饼类锻件。
拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。
为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。
锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。
铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。
锻造缺陷主要有:折叠、白点、裂纹等。
热处理缺陷主要有:裂纹等。
缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。
疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。
夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。
内在夹杂主要集中于钢锭中心及头部。
裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。
奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。
锻造和热处理不当,会在锻件表面或心部形成裂纹。
白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。
合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。
白点在钢中总是成群出现。
二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。
锻件超声波探伤标准
锻件超声波探伤标准如果您有关锻件超声波探伤的技术问题或者您需要超声波探伤仪的话,请联系我们,或可以选择在线咨询。
1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.1.1.2 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t 为公称厚度.1.1.3 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.1.1.4 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.1.1.5 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.三维尺寸a、b、c中最上称厚度.1.2 底波降低量GB/BF(dB)无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示.1.3 密集区缺陷当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.1.4 缺陷当量直径用A VG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.1.5 A VG曲线以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫A VG曲线,亦称为DGS曲线.2探伤人员锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.3探伤器材3.1 探伤仪3.1.1 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内.3.1.2 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.3.1.3 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.3.1.4 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.3.2 探头3.2.1 探头的公称频率主要为2.5Mhz,频率误差为±10%.3.2.2 主要采用晶片尺寸为Φ20mm的硬保护膜直探头.3.2.3 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.3.2.4 探头主声束应无双峰,无偏斜.3.3 耦合剂可采用机油、甘油等透声性能好,且不损害工件的液体.4探伤时机及准备工作4.1 探伤时机探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.4.2 准备工作4.2.1 探伤面的光洁度不应低于Ra3.2,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.4.2.2 探伤表面应无划伤以及油垢和油潜心物等附着物.4.2.3 锻件的几何形状及表面检查均合格后,方可进行探伤.4.3 重要区锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.5探伤方法锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.5.1 横波探伤横波探伤应按附录B的要求进行.5.2 纵波探伤5.2.1 扫查方法5.2.1.1 锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.5.2.1.2 扫查范围:应对锻件整个表面进行连续全面扫查.5.2.1.3 扫查速度:探头移动速度不超过150mm/s.5.2.1.4 扫查复盖应为探头直径的15%以上.5.2.1.5 当锻件探测厚度大于400mm时,应从相对两端面探伤.5.2.2 探伤灵敏度的校验5.2.2.1 原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).5.2.2.2 用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.5.2.2.3 曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近(0.7-1.1倍)的参考试块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.5.2.2.4 探伤灵敏度不得低于Φ2mm当量直径.5.2.3 缺陷当量的确定5.2.3.1 采用A VG曲线及计算法确定缺陷当量.5.2.3.2 计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.5.2.3.3 材质衰减系数的测定a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.b. 衰减系数a(dB/m)的计算为式中T----声程,m.5.2.3.4 A VG曲线图见附录C.5.3 灵敏度的重新校验5.3.1 除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;b. 开路电压波动或操作者怀疑灵敏度有变动时;c. 连续工作4以上;d. 工作结束时.5.3.2 当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行重新评定.6记录6.1 记录当量直径超过Φ4mm的单个缺陷的波幅的位置.6.2 密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.6.2.1 饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.6.2.2 其他锻件应记录大于等于Φ3mm当密集区.6.2.3 缺陷密集区面积以50mm×50mm的方块作为最小量度单位,其边界可由半波高并法决定.6.3 应按表2要求记底波降低量6.4 衰减系数,若供需双方有规定时,应记录衰减系数.7等级分类7.1 单个缺陷反射的等级见表1.表1 单个缺陷反射的等级等级ⅠⅡⅢⅣⅤ缺陷当量直径≤Φ4 >Φ4+(>5~8dB) Φ4+(>8~12dB) Φ4+(>12~16dB) >Φ4+16dB) 7.2 底波降低量的等级见表2.表2 由缺陷引起底波防低量的等级等级ⅠⅡⅢⅣⅤ底波降低量BG/BF ≤8 >8~14 >14~20 >20~26 >26注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减.②表2仅适用于声程大于一倍近场区的缺陷.7.3 密集区缺陷等级见表3.表3 密集区缺陷引起的等级等级ⅠⅡⅢⅣⅤ密集区缺陷占探伤总面积百分比H 0 >0~5% >5~10% >10~20% >20%注:表1至表3的等级应作为独立的等级分别使用.7.4 如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理.7.5 按7.1、7.2、7.3节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制.8探伤报告探伤报告不应少于以下内容.8.1 工件情况工件名称、材料牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.8.2 探伤条件探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、参考反射体、耦合剂等.8.3 探伤结果8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.8.3.2 缺陷等级及其他.8.4 探伤人员的资格证号、等级、姓名、报告签发人的资格证号、等级、姓名、日期.附录A试块要求(补充件)A.1 远场区使用,探测表面为平面时,应采用CS2型标准试块.A.2 近场区使用,探测表面为平面时,应采用CS1型标准试块.A.3 探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.附录B横波探伤(补充件)B.1 横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.B.2 探头B.2.1 探头公称频率主要为2.5MHz,也可用2MHz.B.2.2 探头晶片面积为140-400mm2.B.2.3 原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头. B.3 参考反射体B.3.1为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).B.4 探伤方法B.4.1 扫查方法B.4.1.1 扫查方向见图B1.B.4.1.2 探头移动速度不应超过150mm/s.B.4.1.3 扫查复盖应为探头宽度的15%以上.B.4.2 灵敏度检验从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.B.5 记录记录超---振幅曲线一半的缺陷反射和缺陷检出位置.附录CA VG 曲线图(参考件)C.1 A VG曲线参考图例如下:C.2 A VG曲线图必须在CS1和CS2型标准试块上测定后绘制.文章链接:中国化工仪器网/Tech_news/Detail/110051.html。
GB4730超声波探伤标准
GB/T4730-2005承压设备用钢锻件超声检测和质量分级4.2 承压设备用钢锻件超声检测和质量分级4.2.1范围本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量分级。
本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内外半径之比小于80%的环形和筒形锻件的周向横波检测。
4.2.2探头双晶直探头的公称频率应选用5MHz。
探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~φ25mm。
4.2.3试块应符合3.5的规定。
4.2.3.1单直探头标准试块采用CSI试块,其形状和尺寸应符合图4和表4的规定。
如确有需要也可采用其他对比试块。
图4 CSI标准试块表4 CSI标准试块尺寸 mm试块序号CSI-1 CSI-2 CSI-3 CSI-4 L 50 100 150 200D 50 60 80 804.2.3.2双晶直探头试块a) 工件检测距离小于45mm时,应采用CSⅡ标准试块。
b) CS Ⅱ试块的形状和尺寸应符合图5和表5的规定。
图5 CS Ⅱ标准试块表5 CS Ⅱ标准试块尺寸 mm试块序号 孔径 检测距离L123456789CSII-1 φ2 51015202530354045CSII-2 φ3 CSII-3 φ4 CSII-4φ64.2.3.3 检测面是曲面时,应采用CS Ⅲ标准试块来测定由于曲率不同而引起的声能损失,其形状和尺寸按图6所示。
图6 CSIII 标准试块4.2.4 检测时机检测原则上应安排在热处理后,孔、台等结构机加工前进行,检测面的表面粗糙度R α≤6.3μm 。
4.2.5检测方法4.2.5.1一般原则锻件应进行纵波检测,对筒形和环形锻件还应增加横波检测。
4.2.5.2 纵波检测a) 原则上应从两个相互垂直的方向进行检测,尽可能地检测到锻件的全体积。
主要检测方向如图7所示。
其他形状的锻件也可参照执行。
b) 锻件厚度超过400mm时,应从相对两端面进行100%的扫查。
黑皮材锻件超声波探伤检验规程
f 加倍减 6dB 大平底孔与φ2 平底孔灵敏度公式 KB/φ2=20lgλs/2π
表 2 直探头定钢缺陷当量表
8
52 48 45 42 40 38 36 34 33 32 30 29 28 27 26 25
7
50 46 43 41 39 37 35 33 32 31 29 28 27 26 25 24
(2)热冷锻件(hot-cold–worked forgings)——锻造温度稍低于重结晶温度 可增加锻件的机械强度,在此温度下锻造出的产品,热-冷加工锻件必须是先锻 造或轧制。可以是一个连续的先热加工,然后控制终锻温度的冷加工过程。
讨论:由于生产方式的不同,热轧或热轧与冷处理棒材,连铸坯不认为是 锻件。
铁素体带状
锭、坯成分偏析造成
淬透性、淬硬性不合
钢水成分问题
4
性 能
力学性能不合
1.化学成分异常 2.断裂部位有缺陷时,根据缺 陷性质确定。 3.其它
顶锻不合
1.轧制缺陷造成的 2.汽泡、发纹、夹杂造成 3.二种缺陷都有
第6页共6页
(3)热锻件(hot-worked forgings)——锻造温度高于再结晶温度锻造出的 钢产品。 3 锻件的超声波检验
依据 ASTM A388 进行大锻件的超声波检查。对于 BR 或 DA 级别的锻件应 该进行纵波检测,而对于 S 级别的锻件进行剪切波检测。
A BR 级别——纵波检测 底波反射法(the back reflection method)探伤依据 ASTM A388 标准,对应于 缺陷的完全底波反射。当出现: (1)底波反射低于 5%满刻度时,认为是底波的完全损失,无检测意义。 (2)草状波严重时,无检测意义。 若采用对比试块,出现以上两种情况可拒绝检验锻件无损检验。 探伤的对比试块需满足如下条件: (1)对比试块厚度与实际锻件厚度类似,仪器设定不能变化,对比试块与 锻件的回波幅度对比差别不能超过 25%。 (2)对比试块的化学成分、组织状态应该与锻件的成分相似。 (3)截面小于或等于 300mm 的锻件,对比试块要有一个¢6.5mm 的平底 孔。大于 300mm 而小于 455mm 的试块,须有一个¢9.5mm 的平底孔。当试块
锻件超声波检测标准
锻件超声波检测标准1. 检测设备与材料1.1. 超声波探伤仪:应采用数字式超声波探伤仪,其性能应符合国家相关标准规定。
1.2. 探头:应选用频率为2.0MHz至5.0MHz的探头,其性能应符合国家相关标准规定。
1.3. 耦合剂:应采用甘油或硅油等声耦合剂。
1.4. 标准试块:应采用与被检锻件材料、规格相近的标准试块进行校准。
2. 锻件种类与规格2.1. 锻件种类:本标准适用于各种金属材料的自由锻件和模锻件的超声波检测。
2.2. 锻件规格:本标准适用于直径小于或等于1.0m的锻件。
3. 检测方法与步骤3.1. 检测面清理:清除锻件表面的氧化皮、锈蚀等杂质,确保探头与锻件表面良好接触。
3.2. 仪器校准:使用标准试块进行探伤仪校准,调整仪器灵敏度和扫描速度等参数。
3.3. 检测区域确定:根据锻件种类和规格,确定超声波检测的区域。
3.4. 探头布置:在确定的检测区域内,合理布置探头,确保检测无漏检。
3.5. 检测操作:将探头放置在锻件上,通过仪器控制使探头发射超声波并接收回波信号。
3.6. 数据记录:记录超声波检测过程中得到的所有数据,包括回波信号的时间、幅度、位置等信息。
4. 检测数据分析4.1. 数据处理:对采集到的超声波检测数据进行数字信号处理,提取出与缺陷相关的特征信号。
4.2. 缺陷判断:根据提取的特征信号,结合国家相关标准,对锻件内部是否存在缺陷进行判断。
4.3. 缺陷定位:根据检测数据,确定缺陷在锻件内部的相对位置。
4.4. 缺陷定量:根据检测数据,对缺陷的大小和形状进行定量分析。
5. 缺陷判断与分级5.1. 缺陷判断:根据国家相关标准规定的判断准则进行缺陷判断。
5.2. 缺陷分级:根据缺陷的大小、形状、位置等因素,结合锻件的使用要求,对缺陷进行分级。
6. 检测报告编制6.1. 检测报告内容:检测报告应包括以下内容:检测设备与材料、锻件种类与规格、检测方法与步骤、检测数据分析、缺陷判断与分级、结论等。
齿轮锻件超声波探伤的分类
齿轮锻件超声波探伤的分类
锻件的工艺生产设计过程中,会遇到不同程度的探伤,主要会造成如下的几个缺陷:
1)单个缺陷。
间隔大于50mm,当量直径不小于起始记录当量的缺陷情形;
2)分散缺陷。
缺陷间隔小于或等于50mm,同时存在2个或2个以上且5个以下,当量直径不小于起始记录当量的数据;
3)密集区缺陷。
在荧光屏扫描线相当于50mm声程范围内同时有5个或5个以上的缺陷发射信号,或是在50mm×50mm的检测面上,在同一深度范围内有5个或5个以上的缺陷反射信号,其反射波幅大于某一特定的当量缺陷基准反射波幅;
4)游动信号。
岁探头在锻件表面某一方向移动时,其信号前沿连续移动25mm以上深度的缺陷信号。
兆威机电通过在齿轮及齿轮箱领域十二年的专业设计、开发、生产,通过行业的对比及大量的实验测试数据设计开发出减速齿轮箱,行星减速器,行星减速电机,减速齿轮箱电机。
超声波锻件探伤操作步骤
“汉威”HS610e数字超声波探伤仪简便操作说明(锻件)
一、直探头的零点校准:
按“自动调校”键,屏幕出现“请输入材料声速5940m/s”,按“确认”键;分别输入起始距离(工件厚度)和终止距离(工件厚度的倍数,例如2倍),再“确认”;用闸门锁定回波,再“确认”,待到屏幕出现“自动校准完毕”(注意:在此过程中,探头务必保持不动),完成后按“闸门”键。
二、锻件探伤应用:
1、首先将探头放在锻件工件并找出底波的最高回波,按闸门移位对应的“△”,用“左右方向”键移动闸门锁定回波,再按“自动增益”键将回波调整到屏幕满刻度的80%高度,此时记下基准dB栏读数,根据公式ΔdB=20lg(2λx/πф2)算出数值,按“增益”三次使增益栏反显,按“右上方向”键在原回波基准dB读数基础上增加刚才公式所算出的dB读数。
此时基准dB栏读数为扫查灵敏度。
注:λ=材料声速/频率=2.36, X=锻件厚度,ф=2
2、移动探头在工件上寻找缺陷波,寻找到最大回波,按闸门移位对应的“△”,用“左右方向”键移动闸门锁定回波,按“自动增益”键将回波调整到屏幕满刻度的80%高度,记下偏差dB栏读数和缺陷深度。
利用公式ΔdB1=40lg(x/h)算出数值。
注:x=锻件厚度,h=缺陷实测深度
评级方法1:Φ4±XXdB (XXdB=偏差dB栏读数-12dB-ΔdB1)
缺陷序号
X
(mm)
Y
(mm)
H
(mm)
密集区缺陷
面积比(%)
BG/BF(dB)
Amax
(φ4±dB)
评定
级别
备注
/ /
/ /
/ /。
锻件超声波探伤方法简介
(1)、计算:对于平底孔或实心圆柱体底 面,同距离处底波与平底孔回波的分贝差 为:
△=20lg PB/Pf=20lg2λx/πDf2 λ-波长
x-被探部位的厚度
Df-平底孔直径
(2)、调节:探头对准完好区域的底面,调节增 益使底波B1到达基准高,然后用增益键增益△dB, 这时灵敏度就调节好了。为了便于发现缺陷可再 增益5~10dB作为扫查灵敏度。
近场区
干涉:频率相同的两列波叠加,使某些区域的振动加强,某 些区域的振动减弱,而且振动加强的区域和振动减弱的区域 相互隔开。这种现象叫做波的干涉。
近场区:波源附近由于波的干涉而出现一系列声压极大极小 值的区域,称为超声波的近场区。
近场区探伤定量是不利的,处于声压极小值处的较大缺陷回 波可能较低,而处于声压极大值处的较小缺陷回波可能较高, 这样就容易引起误判,甚至漏检,因此应尽可能避免在近场 区探伤定量。
例:用2.5p20z探头径向探伤Ф500mm的实心圆柱体锻件, C=5900m/s,问如何利用底波调节500/Ф2灵敏度?
解:由题意得:λ=C/f=5.9/2.5=2.36(mm)
柴油机锻件
柴油机是动力机械的一种,它常用来作发动机。以大型柴油机为例, 所用的锻件有汽缸盖、主轴颈、曲轴端法兰输出端轴、连杆、活塞杆、 活塞头、十字头销轴、曲轴传动齿轮、齿圈、中间齿轮和染油泵体等 十余种。
船用锻件
船用锻件分为三大类,主机锻件、轴 系锻件和舵系锻件。主机锻件与柴油机锻 件一样。轴系锻件有推力轴、中间轴艉轴 等。舵系锻件有舵杆、舵柱、舵销等。
原材料的缺陷造成的锻件缺陷通常有:
1.表面裂纹:
锻件焊缝超声波探伤报告(一)2024
锻件焊缝超声波探伤报告(一)引言概述:
本报告旨在对锻件焊缝进行超声波探伤分析,以评估焊缝中的缺陷情况。
通过超声波技术,我们能够探测和确定焊缝中可能存在的裂纹、孔隙和夹杂等缺陷,从而为焊接质量和安全性提供评估和改进的依据。
正文内容:
一、超声波检测仪器和方法
1. 选用合适的超声波探伤仪器和探头。
2. 对焊缝进行合适的耦合,确保信号传递的完整性。
3. 进行超声波扫描以获取焊缝的全面数据。
二、焊缝表面缺陷的检测
1. 通过超声波扫描检测焊缝表面的裂纹。
2. 探测焊缝表面的孔隙和气泡。
3. 检测焊缝表面的夹杂物。
三、焊缝内部缺陷的检测
1. 通过超声波穿透焊缝进行内部缺陷的探测。
2. 检测焊缝内部裂纹的长度和深度。
3. 探测焊缝内部孔隙和夹杂物的分布情况。
四、焊缝质量评估标准
1. 根据焊缝的设计规范和标准,对焊缝缺陷进行分级评估。
2. 采用合适的评估指标和方法进行焊缝质量的定量评估。
3. 判断焊缝缺陷对焊接结构安全性的影响。
五、焊缝缺陷处理和改进建议
1. 对于发现的焊缝缺陷,需要及时进行修复和处理。
2. 根据缺陷分布和特点,提出焊缝改进的建议和措施。
3. 进行焊缝质量改进的跟踪和监督。
总结:
通过超声波探伤技术对锻件焊缝进行检测,可以准确、全面地
评估焊缝中的缺陷情况。
本报告详细介绍了超声波检测仪器和方法、焊缝表面和内部缺陷的探测、焊缝质量评估标准以及焊缝缺陷处理
和改进建议。
通过对焊缝进行超声波探伤,我们能够提高焊接质量
和安全性,确保锻件的正常使用。
锻件探伤标准
锻件探伤标准锻件作为重要的机械零部件,在工业生产中扮演着至关重要的角色。
为了保证锻件的质量,探伤工作显得尤为重要。
本文将就锻件探伤标准进行详细介绍,以期为相关工作者提供一定的参考。
首先,锻件探伤标准主要包括磁粉探伤、超声波探伤和射线探伤三种方法。
磁粉探伤是利用磁粉在磁场中的吸附作用,对锻件进行缺陷探伤。
该方法操作简便,成本较低,对表面和近表面缺陷的探伤效果较好。
超声波探伤则是利用超声波在材料中传播的特性,对锻件进行探伤。
该方法可以对锻件进行全面、深层的探伤,对内部缺陷的检测效果较好。
射线探伤是利用射线在材料中透射、吸收和散射的规律,对锻件进行探伤。
该方法对于密度大、吸收射线能力强的缺陷有较好的探伤效果。
其次,针对不同的锻件材料和形状,探伤标准也有所不同。
对于碳素钢锻件,探伤标准主要关注表面和近表面的氧化皮、裂纹、夹杂等缺陷;对于合金钢锻件,除了关注表面和近表面的缺陷外,还需对内部的气孔、夹杂等进行全面检测;对于不锈钢锻件,除了需要检测表面和内部的缺陷外,还需要关注其晶粒大小和晶界清晰度。
此外,对于不同形状的锻件,如轴类、盘类、环类等,探伤标准也会有所差异,需要根据具体形状进行相应的探伤规定。
最后,锻件探伤标准的制定和执行需要严格按照国家标准和行业规范进行。
在进行探伤工作时,操作人员需要严格按照操作规程进行,确保探伤结果的准确性和可靠性。
同时,探伤设备的选用和维护也是保证探伤效果的关键,需要定期进行设备的检测和校准,确保设备的正常运行。
综上所述,锻件探伤标准是保证锻件质量的重要环节,对于保障设备安全运行和延长设备使用寿命具有重要意义。
希望本文能够为相关工作者提供一定的参考,促进锻件探伤工作的规范化和标准化,提升锻件质量和安全水平。
关于锻件超声波探伤的标准及规程 锻件探伤都有什么标准
关于锻件超声波探伤的标准及规程锻件探伤都有什么标准关于锻件超声波探伤的标准及规程1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.1.1.2 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度.1.1.3 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.1.1.4 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.1.1.5 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.三维尺寸a、b、c中最上称厚度.1.2 底波降低量GB/BF(dB)无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示.1.3 密集区缺陷当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.1.4 缺陷当量直径用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.1.5 AVG曲线以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG 曲线,亦称为DGS曲线. 2探伤人员锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.3探伤器材3.1 探伤仪3.1.1 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内.3.1.2 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.3.1.3 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.3.1.4 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.3.2 探头3.2.1 探头的公称频率主要为2.5Mhz,频率误差为±10%.3.2.2 主要采用晶片尺寸为Φ20mm的硬保护膜直探头.3.2.3 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.3.2.4 探头主声束应无双峰,无偏斜.3.3 耦合剂可采用机油、甘油等透声性能好,且不损害工件的液体.4探伤时机及准备工作4.1 探伤时机探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.4.2 准备工作4.2.1 探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.4.2.2 探伤表面应无划伤以及油垢和油潜心物等附着物.4.2.3 锻件的几何形状及表面检查均合格后,方可进行探伤.4.3 重要区锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.5探伤方法锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.5.1 横波探伤横波探伤应按附录B的要求进行.5.2 纵波探伤5.2.1 扫查方法5.2.1.1 锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.5.2.1.2 扫查范围:应对锻件整个表面进行连续全面扫查.5.2.1.3 扫查速度:探头移动速度不超过150mm/s.5.2.1.4 扫查复盖应为探头直径的15%以上.5.2.1.5 当锻件探测厚度大于400mm时,应从相对两端面探伤.5.2.2 探伤灵敏度的校验5.2.2.1 原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).5.2.2.2 用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.5.2.2.3 曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近(0.7-1.1倍)的参块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.5.2.2.4 探伤灵敏度不得低于Φ2mm当量直径.5.2.3 缺陷当量的确定5.2.3.1 采用AVG曲线及计算法确定缺陷当量.5.2.3.2 计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.5.2.3.3 材质衰减系数的测定a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.b. 衰减系数a(dB/m)的计算为式中 T----声程,m.5.2.3.4 AVG曲线图见附录C.5.3 灵敏度的重新校验5.3.1 除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;b. 开路电压波动或操作者怀疑灵敏度有变动时;c. 连续工作4以上;d. 工作结束时.5.3.2 当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行 __.6记录6.1 记录当量直径超过Φ4mm的单个缺陷的波幅的位置.6.2 密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.6.2.1 饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.6.2.2 其他锻件应记录大于等于Φ3mm当密集区.6.2.3 缺陷密集区面积以50mm×50mm的方块作为最小量度,其边界可由半波高并法决定.6.3 应按表2要求记底波降低量6.4 衰减系数,若供需双方有规定时,应记录衰减系数.7等级分类7.1 单个缺陷反射的等级见表1.表1 单个缺陷反射的等级等级ⅠⅡⅢⅣⅤ缺陷当量直径≤Φ4 >Φ4+(>5~8dB) Φ4+(>8~12dB) Φ4+(>12~16dB) >Φ4+16dB)7.2 底波降低量的等级见表2.表2 由缺陷引起底波防低量的等级等级ⅠⅡⅢⅣⅤ底波降低量 BG/BF ≤8 >8~14 >14~20 >20~26 >26注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减. ②表2仅适用于声程大于一倍近场区的缺陷.7.3 密集区缺陷等级见表3.表3 密集区缺陷引起的等级等级ⅠⅡⅢⅣⅤ密集区缺陷占探伤总面积百分比H 0 >0~5% >5~10% >10~20% >20%注:表1至表3的等级应作为独立的等级分别使用.7.4 如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理.7.5 按7.1、7.2、7.3节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制.8探伤报告探伤报告不应少于以下内容.8.1 工件情况工件名称、牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.8.2 探伤条件探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、反射体、耦合剂等.8.3 探伤结果8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.8.3.2 缺陷等级及其他.8.4 探伤人员的资格证号、等级、姓名、签发人的资格证号、等级、姓名、日期.附录A试块要求(补充件)A.1 远场区使用,探测表面为平面时,应采用CS2型标准试块.A.2 近场区使用,探测表面为平面时,应采用CS1型标准试块.A.3 探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.附录B横波探伤(补充件)B.1 横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.B.2 探头B.2.1 探头公称频率主要为2.5MHz,也可用2MHz.B.2.2 探头晶片面积为140-400mm2.B.2.3 原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头.B.3 参考反射体B.3.1为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V 形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).B.4 探伤B.4.1 扫查方法B.4.1.1 扫查方向见图B1.B.4.1.2 探头移动速度不应超过150mm/s.B.4.1.3 扫查复盖应为探头宽度的15%以上.B.4.2 灵敏度检验从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.B.5 记录记录超---振幅曲线一半的缺陷反射和缺陷检出位置.附录CAVG 曲线图(参考件)C.1 AVG曲线参考图例如下:C.2 AVG曲线图必须在CS1和CS2型标准试块上测定后绘制.内容仅供参考。
锻件超声波探伤标准
锻件超声波探伤标准锻件超声波探伤是一种常用的无损检测方法,它能够对锻件的内部缺陷进行有效的检测,保障了锻件的质量和安全性。
在进行锻件超声波探伤时,需要严格遵守相关的标准,以确保检测结果的准确性和可靠性。
本文将介绍锻件超声波探伤的相关标准,希望能够对从事相关工作的人员有所帮助。
首先,进行锻件超声波探伤时,需要遵守国家相关标准,如GB/T 4162-2008《金属材料超声波检验方法》等。
这些标准规定了超声波探伤的基本原理、设备要求、操作规程等内容,对于保证检测的准确性和可靠性起到了重要的作用。
因此,在进行锻件超声波探伤时,必须严格按照相关标准的要求进行操作,不得随意更改或省略任何步骤。
其次,对于锻件超声波探伤的设备要求也需要符合相关标准的规定。
超声波探伤设备是进行检测的关键工具,其性能直接影响到检测结果的准确性。
因此,必须选择符合国家标准要求的超声波探伤设备,并且在使用过程中要进行定期的维护和校准,以确保设备的正常工作状态。
另外,在进行锻件超声波探伤时,操作人员的素质和技术水平也是至关重要的。
相关标准对于操作人员的资质和培训要求都有明确的规定,必须经过专业培训并取得相应的资质证书才能从事超声波探伤工作。
只有具备了专业的知识和丰富的实践经验,操作人员才能够准确地判断和分析锻件中的缺陷情况,确保检测结果的准确性。
此外,锻件超声波探伤的操作规程也是按照相关标准来执行的。
操作规程包括了设备的使用方法、检测的步骤、数据的记录和分析等内容,必须严格按照标准的要求进行操作,不得随意更改或省略任何步骤。
只有在严格遵守操作规程的情况下,才能够获得准确可靠的检测结果。
总的来说,锻件超声波探伤标准是保证检测结果准确性和可靠性的重要保障。
只有严格遵守相关标准的要求,选择符合标准要求的设备,培训具备资质的操作人员,并严格按照操作规程进行操作,才能够保证锻件超声波探伤的有效性和可靠性。
希望相关人员能够重视标准的作用,严格遵守标准要求,提高锻件超声波探伤工作的质量和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锻件超声波探伤
1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.
1.1.2 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度.
1.1.3 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.
1.1.4 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.
1.1.5 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.
三维尺寸a、b、c中最上称厚度.
1.2 底波降低量GB/BF(dB)
无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB 值表示.
1.3 密集区缺陷
当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm 的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.
1.4 缺陷当量直径
用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.
1.5 AVG曲线
以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线.
2探伤人员
锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.
3探伤器材
3.1 探伤仪
3.1.1 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内.
3.1.2 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.
3.1.3 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.
3.1.4 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.
3.2 探头
3.2.1 探头的公称频率主要为2.5Mhz,频率误差为±10%.
3.2.2 主要采用晶片尺寸为Φ20mm的硬保护膜直探头.
3.2.3 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.
3.2.4 探头主声束应无双峰,无偏斜.
3.3 耦合剂
可采用机油、甘油等透声性能好,且不损害工件的液体.
4探伤时机及准备工作
4.1 探伤时机
探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.
4.2 准备工作
4.2.1 探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.
4.2.2 探伤表面应无划伤以及油垢和油潜心物等附着物.
4.2.3 锻件的几何形状及表面检查均合格后,方可进行探伤.
4.3 重要区
锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.
5探伤方法
锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.
横波探伤应按附录B的要求进行.
5.2 纵波探伤
5.2.1 扫查方法
5.2.1.1 锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.
5.2.1.2 扫查范围:应对锻件整个表面进行连续全面扫查.
5.2.1.3 扫查速度:探头移动速度不超过
5.2.1.4 扫查复盖应为探头直径的15%以上.
5.2.1.5 当锻件探测厚度大于400mm时,应从相对两端面探伤.
5.2.2 探伤灵敏度的校验
5.2.2.1 原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).
5.2.2.2 用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.
5.2.2.3 曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近(0.7-1.1倍)的参考试块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.
5.2.2.4 探伤灵敏度不得低于Φ2mm当量直径.
5.2.3 缺陷当量的确定
5.2.3.1 采用AVG曲线及计算法确定缺陷当量.
5.2.3.2 计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.
5.2.3.3 材质衰减系数的测定
a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.
b. 衰减系数a(dB/m)的计算为
式中 T----声程,m.
5.2.3.4 AVG曲线图见附录C.
5.3 灵敏度的重新校验
5.3.1 除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.
a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;
b. 开路电压波动或操作者怀疑灵敏度有变动时;
c. 连续工作4以上;
d. 工作结束时.
5.3.2 当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行重新评定.
6记录
6.1 记录当量直径超过Φ4mm的单个缺陷的波幅的位置.
6.2 密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.
6.2.1 饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.
6.2.2 其他锻件应记录大于等于Φ3mm当密集区.
6.2.3 缺陷密集区面积以50mm×50mm的方块作为最小量度单位,其边界可由半波高并法决定.
6.3 应按表2要求记底波降低量
6.4 衰减系数,若供需双方有规定时,应记录衰减系数.
7等级分类
7.1 单个缺陷反射的等级见表1.
表1 单个缺陷反射的等级
ⅠⅡⅢⅣⅤ
等级
缺陷当量≤Φ4>Φ4+(>5~8dB)Φ4+(>8~12dB)Φ4+(>12~16dB)>Φ4+16dB)
7.2 底波降低量的等级见表2.
表2 由缺陷引起底波防低量的等级
注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减.
②表2仅适用于声程大于一倍近场区的缺陷.
7.3 密集区缺陷等级见表3.
表3 密集区缺陷引起的等级
注:表1至表3的等级应作为独立的等级分别使用.
7.4 如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理.
7.5 按7.1、7.2、7.3节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制. 8探伤报告
探伤报告不应少于以下内容.
8.1 工件情况
工件名称、材料牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.
8.2 探伤条件
探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、参考反射体、耦合剂等.
8.3 探伤结果
8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.
8.3.2 缺陷等级及其他.
8.4 探伤人员的资格证号、等级、姓名、报告签发人的资格证号、等级、姓名、日期.
附录A
试块要求
(补充件)
A.1 远场区使用,探测表面为平面时,应采用CS2型标准试块.
A.2 近场区使用,探测表面为平面时,应采用CS1型标准试块.
A.3 探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.
附录B
横波探伤
(补充件)
B.1 横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.
B.2 探头
B.2.1 探头公称频率主要为2.5MHz,也可用2MHz.
B.2.2 探头晶片面积为140
-400mm2.
B.2.3 原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头.
B.3 参考反射体
B.3.1
为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).
B.4 探伤方法
B.4.1 扫查方法
B.4.1.1 扫查方向见图B1.
B.4.1.2 探头移动速度不应超过150mm/s.
B.4.1.3 扫查复盖应为探头宽度的15%以上.
B.4.2 灵敏度检验
从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.
B.5 记录
记录超---振幅曲线一半的缺陷反射和缺陷检出位置.
附录C
AVG 曲线图
(参考件)
C.1 AVG曲线参考图例如下:
C.2 AVG曲线图必须在CS1和CS2型标准试块上测定后绘制.
如有侵权请联系告知删除,感谢你们的配合!。