七年级有理数的加减法计算题练习
有理数的加减法练习题及答案
有理数的加减法练习题及答案篇一:有理数加减法经典测七年级(上)有理数的加减法测验一.选择题(每题2分,共18分)1.相反数是它本身的数是()2、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数3、以下说法不正确的选项()A、有理数的绝对值一定是正数B、数轴上的两个有理数,绝对值大的离原点远C、一个有理数的绝对值一定不是负数D、两个互为相反数的绝对值相等4、已经明白a为有理数,以下式子一定正确的选项()A.︱a︱=aB.︱a︱≥a C.︱a︱=-a D.a>05、以下各式中,等号成立的是()A、-?6=6B、?(?6)=-6 C、-2 11226、在数轴上表示的数8与-2这两个点之间的间隔是()A、6 B、10 C、-10D-67、在-5,-1,-3.5,-0.01,-2,-212各数中,最大的数是()101A -12B -C -0.01D -5108、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 9 9、?357,?,?的大小顺序是()。
468753735A ????? B ?????,864846573357C ????? D ?????684468二、填空题(每空1分,共22分)1. |-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________ 2. 最大的负整数是_____________;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 4,0得相反数是,-(-4)的相反数是。
5. 绝对值最小的数是36.1的绝对值是。
312133.14?π= 2-3。
7. 20、假设零件的长度比标准多0.1cm记作0.1cm,那么—0.05cm表示____________. 8. 21、大于?411且小于1的整数有。
249. 19、x=y,那么x和y的关系10. 把以下各数填在相应的大括号里:+1124,-6,0.54,7,0,3.14,200%,3万,-,3.4365,-,-2.543。
七年级有理数的加减乘除乘方计算训练(80小题)-有解析
有理数的加减乘除乘方计算(80小题)1.计算:(1)(−37)−(−47);(2)(−53)−16;(3)(−210)−87;(4)1.3−(−2.7).【答案】解:(1)(−37)−(−47)=−37+47=10;(2)(−53)−16=−69;(3)(−210)−87=−297;(4)1.3−(−2.7)=1.3+2.7=4.【解析】此题主要考查有理数的减法,解题关键是掌握有理数的减法法则,据此求解即可.(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可;(4)根据有理数的减法法则计算即可.2.计算:(1)−7+3−5+20;(2)223+(−223)+513−(−512);(3)4.25+(−2.18)−(−2.75)+5.18;(4)43−(−87)−2−13−17【答案】解:(1)原式=−12+23=11;(2)原式=0+163+112=326+336=656=1056;(3)原式=(4.25+2.75)+(5.18−2.18)=7+3=10;(4)原式=(43−13)−2+(87−17)=1−2+1=0.【解析】此题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则和运算律是解题关键.(1)根据结合律和交换律先同号相加,再异号相加即可求解;(2)根据结合律和相反数的定义算223+(−223)并将513和512化成假分数,然后通分后算加法得出结果再化成带分数即可;(3)根据结合律和交换律先算4.25−(−2.75)和(−2.18)+5.18,再算加法即可求解;(4)根据结合律和交换律先算43−13和87−17,再算加减即可求解.3. 计算:(1)|−7|+|−9715|; (2)(+4.85)+(−3.25);(3)(−3.1)+6.9;(4)−(−15)+(−645);(5)(−3.125)+(+318). 【答案】解:(1)原式=7+9715=16715;(2)原式=4.85−3.25=1.6;(3)原式=−(6.9−3.1)=−3.8;(4)原式=15−645=−635;(5)原式=−3.125+3.125=0.【解析】本题考查有理数的加法,以及绝对值,掌握运算法则是解题关键.(1)先化简绝对值,再计算加法即可;(2)先化简括号,再计算即可;(3)根据异号两数相加,取绝对值较大的符号,再用较大的绝对值减较小的绝对值即可;(4)先化简括号,再计算即可;(5)将分数化为小数,再计算即可.4. 用简便方法计算:(1)−13×23−0.34×27+13×(−13)−57×0.34;(2)(−13−14+15−715)×(−60).【答案】解:(1)原式=(−13)×(23+13)+0.34×(−17−57)=−13×1+0.34×(−1)=−13−0.34=−13.34;(2)原式=−13×(−60)−14×(−60)+15×(−60)−715×(−60)=20+15−12+28=51【解析】本题主要考查了有理数的混合运算,关键是熟练掌握乘法运算律.(1)运用乘法分配律进行计算可得结果;(2)利用乘法分配律进行计算,最后计算加减可得结果.5. 计算:(1)(−8)×9×(−1.25)×(−19);(2)−113×214÷(−112);(3)(−132)÷(134−58+12);(4)(−3)÷134×0.75×|−213|÷9.【答案】解:(1)原式=(−8)×(−1.25)×[9×(−19)]=10×(−1)=−10;(2)原式=−43×94×(−23) =2;(3)原式=(−132)÷(148−58+48)=(−132)÷138 =−132×813=−152;(4)原式=−3×47×34×73×19=−13.【解析】本题主要考查的是有理数的乘法,有理数的混合运算的有关知识.(1)利用有理数的乘法的计算法则进行计算即可;(2)利用混合运算的运算法则进行计算即可;(3)利用混合运算的运算法则进行计算即可;(4)利用混合运算的运算法则进行计算即可.6.计算:(1)−2.2+(−4.3)(2)−(−334)+(−15.5)(3)−(−5)−|−4|(4)−21−12+33+12−67.【答案】解:(1)−2.2+(−4.3)=−(2.2+4.3)=−6.5(2)−(−334)+(−15.5)=3.75−15.5=−(15.5−3.75)=−11.75(3)−(−5)−|−4|=5−4=1(4)−21−12+33+12−67=−100+45=−55.【解析】此题主要考查有理数的加减及混合运算(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)先求出相反数,根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先求出相反数和绝对值,再相减(4)利用分组法,符号相同的加在一起,再根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解7.计算:(1)(−99)+(−103);(2)(−16)+9;(3)3+(−8)+(−1).(4)|−18|+|−6|;(5)|−36|+|+24|.【答案】解:(1)(−99)+(−103)=−(99+103)=−202(2)(−16)+9=−(16−9)=−7;(3)3+(−8)+(−1)=3+(−9)=−(9−3)=−6.(4)|−18|+|−6|=18+6=24;(5)|−36|+|+24|=36+24=60.【解析】此题主要考查有理数的加法,根据同号两数相加,取相同的符号,并把绝对值相加,异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先同号相加,再异号相加求解较简便(4)先求个数的绝对值,再相加(5)先求个数的绝对值,再相加8.计算题(1)−(−8)+(−32)+(−|−16|)+(+28)(2)0.36+(−7.4)+0.3+(−0.6)+0.64;。
专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)
七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。
七年级数学有理数的加减法测试题人教版
七年级数学有理数的加减法测试题1. 已知两个数的和为正数,则( )A.一个加数为正,另一个加数为零B.两个加数都为正数C.两个加数一正一负,且正数的绝对值大于负数的绝对值D.以上三种都有可能2. 若两个数相加,如果和小于每个加数,那么( )A.这两个加数同为正数B.这两个加数的符号不同C.这两个加数同为负数D.这两个加数中有一个为零3. 笑笑超市一周内各天的盈亏情况如下:(盈余为正,亏损为负,单位:元):132,-12,-105,127,-87,137,98,则一周总的盈亏情况是( )A.盈了B.亏了C.不盈不亏D.以上都不对4. 下列运算过程正确的是()A.(-3)+(-4)=-3+-4=…B.(-3)+(-4)=-3+4=…C.(-3)-(-4)=-3+4=…D.(-3)-(-4)=-3-4=…5. 如果室内温度为21℃,室外温度为-7℃,那么室外的温度比室内的温度低()A.-28℃B.-14℃C.14℃D.28℃6. 汽车从A地出发向南行驶了48千米后到达B地,又从B地向北行驶20千米到达C地,则A地与C地的距离是( )A.68千米B.28千米C.48千米D.20千米7. x<0, y>0时,则x, x+y, x-y,y中最小的数是 ( )A x Bx-y C x+y D y8.|x-1|+|y+3|=0, 则y-x-12的值是()A -412B -212 C -112 D 1129. 在正整数中,前50个偶数和减去50个奇数和的差是 ( )A 50B -50C 100D -10010. 在1,—1,—2这三个数中,任意两数之和的最大值是 ( )A 1 B 0 C -1 D -3二、填空题11.计算:(-0.9)+(-2.7)=, 3.8-(+7)=.12. 已知两数为 556和-823,这两个数的相反数的和是,两数和的绝对值是. 13. 绝对值不小于5的所有正整数的和为.14.若m ,n 互为相反数,则|m-1+n|=.15.已知x.y ,z 三个有理数之和为0,若x=812,y=-512,则z=.16. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于。
七年级上册有理数加减法练习题
七年级上册有理数加减法练习题一填空:1已知两数为52和-86,这两个数的相反数的和是,两数和的绝对值是 .2. 绝对值不大于5的所有正整数的和为.3. 若m,n互为相反数,则|m-1+n|= .114. 已知x.y,z三个有理数之和为0,若x=8,y=-5,则z= .25. 已知m是6的相反数,n比m的相反数小2,则m-n 等于。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 ..?12的绝对值的相反数与3的相反数的和为______________。
3 二计算:1.+.+1.16+4.2.7+ .1211?.? 323⑴-⑵ ??1313?⑶ 0???3.85?⑷+1.7+++ ⑸ -3-4+19-11+2⑹ ?1.43.6?5.2??4.3?1.5?⑺ ?2??4??7??5?7?112.5??1??2221131844 +-5-.三分析计算题:1. 某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?2. 将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.3某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:生产量最多的一天比生产量最少的一天多生产多少辆?本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?4某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7到晚上6时,出租车在什么位置。
若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?5.钟面上有1,2,3,…,11,12共12个数字.试在这些数前标上正,负号,使它们的和为0.在解题的过程中,你能总结什么规律?用文字叙述出来。
最新人教版初中七年级上册数学《有理数加减混合运算》练习题
第一章 有理数1.3 有理数的加减法1.3. 2 有理数的减法第2课时 有理数的加减混合运算1.⎪⎭⎫ ⎝⎛+121与⎪⎭⎫ ⎝⎛-41的和的符号是________,和是________,和的绝对值是________,差的符号是________,差是________,差的绝对值是________.2.把(-8)-(-1)+(+3)-(-2)转化为只含有加法的算式:____________________.3.把(+3)-(-2)+(-4)-(+5)写成省略括号的代数和的形式为:_________________.4.-3,+4,-7的代数和比它们的绝对值的和小( )A .-8B .-14C .20D .-205.7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律与结合律6.若0<b ,则b a -,a ,b a +的大小关系是( )A .b a a b a +<<-B .b a b a a +<-<C .a b a b a <-<+D .b a a b a -<<+7.41-的相反数与绝对值等于41的数的和应等于( )A .21B .0C .21-D .21或0. 8.计算:(1)()()3.3463.3416+-+---;(2)()()227103-+---+----;(3)21416132-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---; (4)4-3.8-[(-2.5-1.2+4)-6.9].(5)326543210-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛---; (6)()212115.2212--+---;(7) 13-[26-(-21)+(-18)]; (8)[1.4-(-3.6+5.2)-4.3]-(-1.5);(9)()()⎪⎭⎫ ⎝⎛-+-+--⎪⎭⎫ ⎝⎛++-54512549; (10)⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-43573.875.141343125.2.9.用计算器计算:(1)-24+3.2-16-3.5+0.3; (2)(-2.4)-(-4.7)-(+O.5)+(-3.2);(3)3250-(-2563)+560-(+7820);(4)(-73.45)+23.36-(-86.32)-98.31.10.一种零件,标明直径的要求是04.003.050+-φ,这种零件的合格品最大的直径是多少?最少的直径是多少?如果直径是49.8,合格吗?11.七名学生的体重,以48.0 kg为标准,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生 1 2 3 4 5 6 7与标准体-3.O +1.5 +O.8 -0.5 +0.2 +1.2 +O.5 重之差/kg(1)最接近标准体重的学生体重是多少?(2)最高体重与最低体重相差多少?(3)求七名学生的平均体重;(4)按体重的轻重排列时,恰好居中的是哪个学生?后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析
北师大版(2024)七年级上册《2.2有理数的加减运算2》2024年同步练习卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的结果等于()A.12B.C.6D.2.下列算式正确的是()A. B.C. D.3.下列算式正确的是()A. B.C. D.4.把统一为加法运算,正确的是()A. B.C. D.5.若,则括号内的数是()A.13B.3C.D.6.甲、乙两人用简便方法进行计算的过程如下所示,下列判断正确的是()甲:乙:A.甲、乙都正确B.甲、乙都不正确C.只有甲正确D.只有乙正确7.能与相加得0的数是()A. B. C. D.8.某同学在计算时,误将看成了,从而算得的结果是5,则正确结果是()A.13B.C.9D.二、填空题:本题共4小题,每小题3分,共12分。
9.已知甲地的海拔高度是300m ,乙地的海拔高度是,那么甲地比乙地高______.10.若a 的相反数是,b 的绝对值是4,则______.11.若a 是绝对值最小的数,b 是最大的负整数,则______.12.如图所示,某勘探小组测得E点的海拔为20m,F点的海拔为以海平面为基准,则E点比F点高______三、计算题:本大题共1小题,共6分。
13.计算;四、解答题:本题共10小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题8分计算:;;15.本小题8分计算:;;;;;16.本小题8分计算:;;;以地面为基准,A处高,B处高,C处高处比B处高多少米?处和C处哪个地方高?高多少米?处和C处哪个地方低?低多少米?18.本小题8分列式计算:减的差与的和;与的和减的差.19.本小题8分计算.;20.本小题8分计算:;;;;;;;;21.本小题8分某商店去年四个季度盈亏情况如下盈利为正数,亏损为负数:68万元,万元,万元,145万元.问:盈利最多的季度与最少的季度相差多少?全年盈亏情况如何?用简便方法计算:;23.本小题8分已知,若,,求的值;若,求的值.答案和解析1.【答案】C【解析】【分析】根据减去一个数等于加上这个数相反数,可得答案.本题考查了有理数的加法,先转化成加法,再进行加法运算.【解答】解:原式故选2.【答案】B【解析】解:,故选项A错误;B.,故选项B正确;C.,故选项C错误;D.,故选项D错误.故选:根据有理数的减法运算法则解答即可.本题考查了有理数的减法运算,熟练掌握有理数的减法运算法则是解题的关键.3.【答案】D【解析】解:,此选项的计算错误,故此选项不符合题意;B.,此选项的计算错误,故此选项不符合题意;C.,此选项的计算错误,故此选项不符合题意;D.,,,此选项的计算正确,故此选项符合题意;故选:各个选项均根据有理数的加减法则和绝对值是性质,进行计算,然后根据计算结果进行判断即可.本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.4.【答案】B【解析】解:原式,故选:根据有理数的减法法则即可求得答案.本题考查有理数的减法,熟练掌握相关运算法则是解题的关键.5.【答案】A【解析】解:;故选:根据有理数的加法即可算出答案.本题考查的有理数的加法运算,解题关键是掌握有理数的加法法则.6.【答案】D【解析】解:甲的计算错误,正确过程如下:;乙的计算过程正确:原式,故选:分别根据甲乙两人的计算过程,结合加法的运算律,根据有理数的加减混合运算的法则进行判断即可.本题考查了有理数的加减混合运算,运用运算律简化运算,掌握加法运算律是解题的关键.7.【答案】B【解析】解:一个数能与相加得0,这个数是的相反数,即故选:根据相反数的定义列式求解即可.本题主要考查了相反数的应用,理解和为零的两个数互为相反数是解答本题的本题的关键.8.【答案】B【解析】解:由题意,得,,故选:根据题意,得出,求出N的值,然后再计算出正确结果即可.本题考查了有理数的加法运算和减法运算,熟练掌握有理数的加法运算法则和减法运算法则是解题的关键.9.【答案】360m【解析】解:根据题意,得,故答案为:根据甲地比乙地高列式计算.本题主要考查了有理数的加法,掌握有理数的加法运算法则,符号的确定是解题关键.10.【答案】7或【解析】解:的相反数是,的绝对值是4,当,时,则,当,时,故答案为:7或先根据相反数和绝对值的定义求得a、b的值,最后相加即可.本题主要考查的是求代数式的值,求得a、b的值是解题的关键.11.【答案】1【解析】解:若a是绝对值最小的数,b是最大的负整数,则,,故答案为:根据绝对值都是非负数,可得绝对值最小的数,根据相反数,可得一个负数的相反数.本题考查了绝对值,根据定义解题是解题关键.12.【答案】40【解析】解:,答:E点比F点高故答案为:根据题意,列出,再根据有理数的减法运算法则计算即可.本题考查了有理数的减法运算,正负数,熟练掌握有理数的减法运算法则是解题的关键.13.【答案】解:;【解析】根据有理数加减运算法则、去绝对值法则计算出结果即可.本题考查了有理数加减运算、去绝对值,做题关键是要掌握有理数加减运算法则、去绝对值法则.14.【答案】解:;;【解析】先把式子省略括号和加号,再加减;先把式子省略括号和加号,再把分数化为小数,最后利用加法的交换律和结合律;先把部分分数化为小数,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.15.【答案】解:;;;;;【解析】根据有理数减法法则:减去一个数,等于加上这个数的相反数.即:,依此计算即可求解.考查了有理数减法.①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号减号变加号;二是减数的性质符号减数变相反数16.【答案】;;;【解析】利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算.本题考查了有理数的减法运算,解题的关键是掌握有理数的减法法则.17.【答案】解:答:A处比B处高19m;,处比C处高,答:B处比C处高15m;,处比A处低,答:C处比A处低【解析】分别列式,再根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了正负数的意义,大小比较,有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.18.【答案】解:;【解析】根据题意列出式子再进行计算即可;根据题意列出式子再进行计算即可.本题考查有理式的加减法,掌握运算法则是解题的关键.19.【答案】解:;【解析】先把式子化为省略加号和括号的形式,再把正数、负数分别相加;先把式子化为省略加号和括号的形式,再把分母相同的分数分别相加.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.20.【答案】解:原式;原式;原式;原式;原式;原式;原式;原式;原式【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的减法,正确掌握相关运算法则是解题关键.21.【答案】解:由题意知,盈利最多的季度盈利了145万元,最少的季度盈利了万元,万元;由题意,,,万元答:盈利最多的季度与最少的季度相差285万元;全年亏损22万元.【解析】由题意知,盈利最多的季度为145万元,盈利最少的季度为万元,盈利最多的季度钱数-盈利最少的季度钱数,即为所求;四个季度的盈利额相加,结果为正则盈利,结果为负则亏损.本题主要考查了正数和负数,掌握正负数表示一对相反意义的量,用正数表示其中一种意义的量,另一种量用负数表示.22.【答案】解:;【解析】先把分数化为小数,再利用加法的交换律和结合律;先把减法转化为加法,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.23.【答案】解:,,,,,,,;,,,,或,,当,时,,当,时,,的值为或【解析】先根据已知条件,求出x,y值,再根据,,求出;由中求出的x,y值,根据,取值进行计算即可.本题主要考查了有理数的加减法,解题关键是熟练掌握有理数的加减法则.。
有理数的加减法练习题
1.3有理数的加减法 一、填空题。
1、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。
2、若a =6,b =-2,c =-4,并且a -b +(-c)-(-d)=1,则d 的值是_________。
3、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
4、1 ―3 +5―7 +9―11+…+97―99= 。
二、选择题。
1、已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c2、两个非零有理数的和为正数,那么这两个有理数为( )A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数。
3、下列各式与c b a +-的值相等的是( )A .()()c b a -+-+B .()()c b a +-+-C .()()c b a --+-D .()()c b a ---- 4、下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为O ,则这两个数都为OD .若两个数的和为正数,则这两个数中至少有一个为正数 5、把6-(+3)-(-7)+(-2)写成省略括号的形式为( )A .-6+3-7-2B .6+3-7-2C .6-3+7-2D .6-3-7-2 6、算式-4-5不能读作( )A .-4与5的差B .-4与-5的和C .-4与-5的差D .-4减去5的差7、-7,-12,+2的和比它们的绝对值的和小( )A .-38B .-4C .4D .38 8、计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-3 三、计算题(能用简单方法的必须用简单方法)。
七年级有理数的加减法混合运算
七年级有理数的加减法混合运算一、有理数加减法混合运算的概念1. 有理数的加法法则- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0),如3+( - 3)=0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如5+( - 3)=+(5 - 3)=2,( - 5)+3=-(5 - 3)=-2。
- 一个数同0相加,仍得这个数,如0 + 5=5。
2. 有理数的减法法则- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如5-3 =5+( - 3)=2,5-( - 3)=5+3 = 8。
3. 有理数加减法混合运算的顺序- 没有括号时,按照从左到右的顺序依次计算。
例如:3 - 5+2=(3 - 5)+2=-2 + 2=0。
- 有括号时,先算括号里面的。
例如:(3 - 5)+(2 - 1)=(-2)+1=-1。
二、有理数加减法混合运算的技巧- 将互为相反数的数相加,或者将和为整数的数相加。
例如:1+( -1)+2+3=(1+( - 1))+2 + 3=0+2+3 = 5;2.5+3.5+( - 1)=6+( - 1)=5。
2. 同号结合法- 把正数与正数相加,负数与负数相加,最后再把结果相加。
例如:3+2+( - 5)+( - 1)=(3 + 2)+(( - 5)+( - 1))=5+( - 6)=-1。
3. 拆分法- 对于带分数,可以将其拆分为整数部分和分数部分分别进行计算。
例如:2(1)/(3)+(-3(1)/(3))=(2 +(1)/(3))+(( - 3)-(1)/(3))=(2+( - 3))+((1)/(3)-(1)/(3))=-1+0=-1。
三、有理数加减法混合运算的例题1. 计算1 - 2+3 - 4+5 - 6+·s+99 - 100- 解法:- 可以将相邻的两项结合起来,(1 - 2)+(3 - 4)+(5 - 6)+·s+(99 - 100)。
人教版七年级数学上册1.3有理数的加减法 练习题
人教版七年级数学上册:1.3有理数的加减法测试题(一)一、选择题1.计算(-3)+5的结果等于()A.2B.-2C.8D.-82.比-2小1的数是()A.-1B.-3C.1D.33.计算(-20)+17的结果是()A.-3B.3C.-2017D.20174.比-1小2015的数是()A.-2014B.2016C.-2016D.20145.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.A.1个B.2个C.3个D.4个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个7.算式-3-5不能读作()A.-3与-5的差B.-3与5的差C.3的相反数与5的差D.-3减去58.一个数减去2等于-3,则这个数是()A.-5B.-1C.1D.59.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是()A.19,7,14B.11,20,19C.14,7,19D.7,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是()A.3,8,9,10B.10,7,3,12C.9,7,4,11D.9,6,5,1111.与-3的差为0的数是()A.3B.-3C.-D.二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于-3.5且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)5.6+4.4+(-8.1)(2)(-7)+(-4)+(+9)+(-5)(3)+(-)+(4)5(5)(-9)+15(6)(-18)+(+53)+(-53.6)+(+18)+(-100)人教版七年级数学上册:1.3有理数的加减法测试题答案和解析【答案】1.A2.B3.A4.C5.B6.A7.A 8.B 9.C 10.C 11.B12.713.855514.415.-316.-117.518.解:(1)5.6+4.4+(-8.1)=10-8.1=1.9;(2)(-7)+(-4)+(+9)+(-5)=-7-4+9-5=-16+9=-7;(3)+(-)+=(-)+(--)+=0-1+=-;(4)5=(5+4)+(-5-)=10-6=4;(5)(-9)+15=(-9-15)+[(15-3)-22.5]=-25+[12.5-22.5]=-25-10=-35;(6)(-18)+(+53)+(-53.6)+(+18)+(-100)=(-18+18)+(+53-53.6)+(-100)=0+0-100=-100.【解析】1. 解:(-3)+5=5-3=2.故选:A.依据有理数的加法法则计算即可.本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. 解:-2-1=-3,故选:B.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是列出算式.3. 解:原式=-(20-17)=-3,故选A原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.4. 解:根据题意得:-1-2015=-2016,故选C根据题意列出算式,利用有理数的减法法则计算即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5. 解:①互为相反数的两个数相加和为0,所以两个有理数的和可能等于零,说法正确;②一个数同0相加,仍得这个数,所以两个有理数的和可能等于其中一个加数,说法正确;③两个有理数的和为正数时,可能这两个数都是正数;可能一正一负;还可能一个是正数,一个是0;所以原说法错误;④两个有理数的和为负数时,这两个数不能都是正数,所以原说法错误;故选B.有理数的加法法则:同号两数相加,取相同的符号,并把它们的绝对值相加;绝对值不等的异号两数相加,取绝对值较大的数的符号作为结果的符号,再用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0;一个数同0相加,仍得这个数.根据这个法则进行解答即可.本题考查了有理数的加法法则,是基础知识要熟练掌握.6. 解:①2-(-2)=2+2=4,故本小题错误;②(-3)-(+3)=-3-3=-6,故本小题错误;③(-3)-|-3|=-3-3=-6,故本小题错误;④0-(-1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选A.根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.7. 解:-3-5不能读作:-3与-5的差.故选A.根据有理数的减法运算的读法解答.本题考查了有理数的减法,是基础题,熟记并理解有理数的减法与加法的意义是解题的关键.8. 解:由题意,得:-3+2=-1,∴这个数是-1,故选B.根据加法是减法的逆运算,将两数相加即可.本题主要考查有理数的减法,解决此题时,可以运用其逆运算计算.9. 解:如图,设①、②、③三处对应的数依次是x,y,z,则,解得.故选C.设①、②、③三处对应的数依次是x、y和z,根据每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,列方程组求解.本题考查的是有理数的加法,解题关键是能够根据题意列出三元一次方程组,并且能熟练运用消元法解方程组,难度一般.10. 解:设a、b、c、d为这4个数,且a>b>c>d,则有,解得:a=11,b=9,c=7,d=4.故选C.设出4个数,按照题意列出方程组,即可得出结论.本题考查的有理数的加法,解题的关键是按大小顺序设出4个数,联立方程组得出结论.11. 解:根据题意得:0+(-3)=-3,则与-3的差为0的数是-3,故选B.根据差与减数之和确定出被减数即可.此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.12. 解:原式=+(8-1)=7,故答案为:7原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.13. 解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n-1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n-1)n]=+{(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+[(n-1)•n•(n+1)-(n-2)•(n-1)•n]}=+[(n-1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为 8555.根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.14. 解:大于-3.5且小于4的整数是-3、-2、-1、0、1、2、3、4,∴大于-3.5且小于4的整数的和为:-3-2-1+0+1+2+3+4=4.故答案为4.先找出符合条件的整数,然后把它们相加即可.此题考查了有理数的加法,解题时正确写出符合条件的整数是关键.15. 解:原式=-(9-6)=-3,故答案为:-3.根据有理数的加法,可得答案.本题考查了有理数的加法,熟记有理数的加法是解题关键.16. 解:比1小2的数是1-2=1+(-2)=-1.关键是理解题中“小”的意思,根据法则,列式计算.本题主要考查了有理数的减法的应用.17. 解:7+(-2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.18.(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.。
七年级有理数的加减法计算题练习
A、 B、 C、 D、
17、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是()
A、m>m-n>m+nB、m+n>m>m-n
C、m-n>m+n>mD、m-n>m>m+n
18、若 ,则下列各式中正确的是( )
A、 B、 C、 D、
19、如果a、b是有理数,则下列各式子成立的是( )
A、如果a<0,b<0,那么a+b>0 B、如果a>0,b<0,那么a+b>0
C、如果a>0,b<0,那么a+b<0 D、如果a<0,b>0,且︱a︱>︱b︱,那么a+b<0
二、填空题:20、已知 .
21、三个连续整数,中间一个数是a,则这三个数的和是___________.
22、若 , ,且 , ,则 =________.
一、选择题:
1、若 是有理数,则 的值( )A、可能是正数B、一定是正数
C、不可能是负数D、可能是正数,也可能是负数
2、若 的值为( )A、正数B、负数C、0D、非正数
3、如果 , ()A、互为相反数B、m= n,且n≥0C、相等且都不小于0D、m是n的绝对值
4、下列等式成立的是()
A、 B、 =0C、 D、 - =0
33、下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).
城市
东京
巴黎
纽约
芝加哥
时差(时)
+1
-7
-13
-14
(1)如果现在时间是北京时间上午8∶30,那么现在的纽约时间是多少?东京时间是多少?小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?
23、当 时, 、 、 中最大的是_______,最小的是_______.
七年级数学上册有理数加减练习含答案
七年级数学上册有理数加减练习含答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】七年级数学上册:有理数的加减法测试题一、选择题1.计算(-3)+5的结果等于()2.比-2小1的数是()3.计算(-20)+17的结果是()4.比-1小2015的数是()5.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.个个个个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()个个个个7.算式-3-5不能读作()与-5的差与5的差的相反数与5的差减去58.一个数减去2等于-3,则这个数是()9.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是(),7,14,20,19,7,19,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是( ),8,9,10,7,3,12,7,4,11,6,5,1111.与-3的差为0的数是( )13D.13二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)++()(2)(-7)+(-4)+(+9)+(-5)(3)14+(-23)+56+(−14)+(−13)(4)535+(−523)+425+(−13)(5)(-9512)+1534+(−314)+(−22.5)+(−15712)(6)(-1845)+(+5335)+()+(+1845)+(-100)七年级数学上册:有理数的加减法 测试题18.解:(1);(2)-7;;(4)4;(5)-35;(6)(-100.(3)16。
初一有理数加减法试题
11.-0.2的相反数是(),倒数是()。
12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是()℃。
13.紧接在奇数a后面的三个偶数是()。
14.绝对值不大于4的负整数是()。
15、若a<0,b>0,|a|>|b|,则a+b ()0。
(填“>”或“=”或“<”号)16在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。
一、选择题:(每题3分,共30分)1.-12+11-8+39=(-12-8)+(11+39)是应用了()A、加法交换律B、加法结合律C、加法交换律和结合律D、乘法分配律2.将6-(+3)-(-7)+(-2)改写成省略加号的和应是( )A、-6-3+7-2B、6-3-7-2C、6-3+7-2D、6+3-7-23.若|x|=3,|y|=7,则x-y的值是()A、±4B、±10C、-4或-10D、±4,±104.若a×b<0,必有()A、a>0,b<0B、a<0,b>0C、a、b同号D、a、b异号5.如果两个有理数的和是正数,积是负数,那么这两个有理数()A、都是正数B、绝对值大的那个数正数,另一个是负数C、都是负数D、绝对值大的那个数负数,另一个是正数6.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A、文具店B、玩具店C、文具店西边40米D、玩具店东边-60米7.已知有理数、在数轴上的位置如图• • •所示,那么在①a>0,②-b<0,③a-b>0,④a+b>0四个关系式中,正确的有()A、4个B、3个C、2个D、1个四、在下列横线上,直接填写结果:(每题2分,共12分)17.-2+3= -27+(-51)= -18-34=-24-(-17)= -14×5= -18×(-2)=五、计算(写出计算过程):19.(-6)-(-7)+(-5)-(+9) —(—)30.20.32.(-5)×(-3 )-15×1 +〔-( 2)×24〕有理数的加减混合运算1.选择题:(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是()A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是()A.-10 B.-9 C.8 D.-23(3)-7,-12,+2的代数和比它们的绝对值的和小( ) A .-38 B .-4 C .4 D .381.绝对值小于3.5的整数个数有( ) A .8 B .7 C .6 D .52.在-(-8),|-1|,-|0|, 这四个数中负数有( ) A .4个 B .3个 C .2个 D .1个3.保留3个有效数字得近似数41.0的数是( ) A .41.12 B .41.05 C .40.95 D .40.94 4.下列说法中正确的是( )A .正整数和负整数统称为整数B .最小的整数是0C .任何负数都小于它的相反数D .有理数的绝对值是正数 二.填空题(每题3分,共30分)5.节约500元记为+500元,那么-100元表示_______. 6.|-6|= ___,-|-5|的相反数是____; 的倒数_____. 7.若 ,则 ___;若 ,则 ___;若 ,则 ____.8.绝对值小于3的非负整数的和为_________,积为__________。
初一上册数学有理数的加减法试题及答案
初一上册数学有理数的加减法试题及答案一、选择题(共26小题)1.计算(﹣3)+(﹣9)的结果等于( )A.12B.﹣12C.6D.﹣6【考点】有理数的加法.【分析】根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.【解答】解:(﹣3)+(﹣9)=﹣12;故选B.【点评】本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.计算:﹣2+1的结果是( )A.1B.﹣1C.3D.﹣3【考点】有理数的加法.【分析】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以﹣2+1=﹣1.【解答】解:﹣2+1=﹣1.故选B.【点评】此题主要考查了有理数的加法法则:符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.﹣2+3的值是( )A.﹣5B.5C.﹣1D.1【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进行计算即可.故选:D.【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则.4.计算(+2)+(﹣3)所得的结果是( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【分析】运用有理数的加法法则直接计算.【解答】解:原式=﹣(3﹣2)=﹣1.故选B.【点评】解此题关键是记住加法法则进行计算.5.气温由﹣1℃上升2℃后是( )A.﹣1℃B.1℃C.2℃D.3℃【考点】有理数的加法.【分析】根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.【解答】解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.6.计算﹣2+3的结果是( )A.﹣5B.1C.﹣1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.故选B.【点评】此题考查了有理数的加法法则,熟练掌握运算法则是解本题的关键.7.计算:5+(﹣2)=( )A.3B.﹣3C.7D.﹣7【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:5+(﹣2)=+(5﹣2)=3.故选A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.8.计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣4【考点】有理数的加法;绝对值.【分析】首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.【解答】解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.【点评】此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.9.下面的数中,与﹣2的和为0的是( )A.2B.﹣2C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.10.比﹣1大1的数是( )A.2B.1C.0D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.11.计算(﹣2)+(﹣3)的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.﹣3+(﹣5)的结果是( )A.﹣2B.﹣8C.8D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.13.计算:﹣2+3=( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.14.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7【考点】有理数的加法.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.15.计算﹣2+3的结果是( )A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加的法则进行计算即可.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.【点评】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.16.若( )﹣(﹣2)=3,则括号内的数是( )A.﹣1B.1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3,故选:B.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.17.计算:|﹣5+3|的结果是( )A.﹣2B.2C.﹣8D.8【考点】有理数的加法;绝对值.【分析】先计算﹣5+3,再求绝对值即可.【解答】解:原式=|﹣2|=2.故选B.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.18.计算﹣3+(﹣1)的结果是( )A.2B.﹣2C.4D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.19.计算(﹣3)+(﹣9)的结果是( )A.﹣12B.﹣6C.+6D.12【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.20.计算3+(﹣3)的结果是( )A.6B.﹣6C.1D.0【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:∵3与﹣3互为相反数,且互为相反数的两数和为0.∴3+(﹣3)=0.故选D.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.21.计算2﹣3的结果为( )A.﹣1B.﹣2C.1D.2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:2﹣3=2+(﹣3)=﹣1,故选:A.【点评】本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.22.若等式0□1=﹣1成立,则□内的运算符号为( )A.+B.﹣C.×D.÷【考点】有理数的减法;有理数的加法;有理数的乘法;有理数的除法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:∵0﹣1=﹣1,∴□内的运算符号为﹣.故选B.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.23.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.24.已知a>b且a+b=0,则( )A.a<0B.b>0C.b≤0D.a>0【考点】有理数的加法.【专题】计算题.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【点评】此题考查了有理数的加法,熟练掌握互为相反数两数的性质是解本题的关键.25.计算:﹣3+4的结果等于( )A.7B.﹣7C.1D.﹣1【考点】有理数的加法.【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.【解答】解:﹣3+4=1.故选:C.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.26.计算﹣2+1的结果是( )A.﹣3B.﹣1C.3D.1【考点】有理数的加法.【分析】异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣2+1=﹣1,故选B【点评】此题考查有理数的加法,关键是根据异号两数相加的法则计算.二、填空题(共4小题)27.计算:|﹣2|+2= 4 .【考点】有理数的加法;绝对值.【分析】先计算|﹣2|,再加上2即可.【解答】解:原式=2+2=4.故答案为4.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.28.计算:﹣10+(+6)= ﹣4 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.29.计算:﹣2+(﹣3)= ﹣5 .【考点】有理数的加法.【专题】计算题.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.30.计算:﹣9+3= ﹣6 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:﹣9+3=﹣(9﹣3)=﹣6.故答案为:﹣6.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.初一数学学习方法一、注重学习内容的衔接1.初一数学是在小学数学的基础上进行拓展和提高的。
七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)
七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.在0、-3、-3.14,π中,最大的有理数的是( )A .0B .3-C . 3.14-D .π2.某市某年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃3.下列各式结果等于3的是( )A .(﹣2)﹣(﹣9)+(+3)﹣(﹣1)B .0﹣1+2﹣3+4﹣5C .4.5﹣2.3+2.5﹣3.7+2D .﹣2﹣(﹣7)+(﹣6)+0+(+3)4.在+1,﹣2,﹣1这三个数中,任取两个数相加,所得的和最大的是( )A .-1B .1C .0D .-35.绝对值不大于3的所有整数的和是( )A .0B .―1C .1D .66.数轴上点A 表示-3,点B 表示1,则表示A 、B 两点间的距离的算式是( )A .-3+1B .-3-1C .1-(-3)D .1-37.如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①a >0,b <0;②a ﹣b <0;③a+b >0;④|a|﹣|b|>0,其中正确的有( )A .1B .2C .3D .08.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成11,11=10﹣1;198写成202,202=200﹣2;7683写成12323,12323=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算5231﹣3241=( )A .1990B .2068C .2134D .3024二、填空题: 9.计算: ()()14103-+--= .10.珠穆朗玛峰的海拔为8848.86 m ,吐鲁番盆地的海拔为-155 m ,珠穆朗玛峰的海拔比吐鲁番盆地的海拔高 m.11.若140a b -++=,则b a += .12.如果四个有理数之和是12,其中三个数是-9,+8,-2,则第四个数是 。
七年级有理数加减法练习题(有答案)
七年级有理数加减法练习题(有答案)七年级有理数加减法练习题1一、填空题1、若,,且,则 =2、已知 =3, =2,且ab0,则a-b= 。
3、若互为相反数,互为倒数,则4、下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .5、在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如右图所示,则图中阴影部分的面积是。
6、符号“”表示一种运算,它对一些数的运算结果如下:(1) ,,,,…(2) ,,,,…利用以上规律计算: .二、选择题7、将6-(+3)-(-7)+(-2)写成省略加号的和的形式为 ( )A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-28、若b0,则 a-b、a、a+b的大小关系是( )A.a-baa+b p="" b.aa-ba+b=""C.a+ba-ba p="" d.a+baa-b=""9、两个数相加,如果和为负数,则这两个数( )A.必定都为负B.总是一正一负C.可以都为正D.至少有一个负数10、已知、互为相反数,且,则的值为( )A.2B.2或3C.4D.2或411、如果表示有理数,那么的值……………………………………………( )A、可能是负数B、必定是正数C、不可能是负数D、可能是负数也可能是正数12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cmB.74cmC.75cmD.76cm13、若a0bc,a+b+c=1,M= ,N= ,P= ,则M、N、P之间的大小关系是()A、MNPB、NPMC、PMND、MPN14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,则15次后共有纸片( )A.30张B.15张C.16张D.以上答案都不对15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有( )A.1个B.2个C.3个D.4个16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的'方法是()A. 买甲站的B. 买乙站的C. 买两站的都可以D. 先买甲站的1罐,以后再买乙站的三、简答题四、17、月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况 (超产记为正、减产记为负):星期一二三四五六日增减(1) 根据记录的数据可知该厂星期五生产汽车辆;(2) 产量最多的一天比产量最少的一天多生产汽车辆;(3) 根据记录的数据可知该厂本周实际生产汽车辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是元.18、对于有理数ab6,定义运算“”,a ~b=ab-a-b-2.(1)计算(-2) 3的值;(2)填空:4 (-2)_______(-2) 4(填“”“=”或“”);(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“”是否满足交换律?请说明理由.19、探索性问题数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级有理数的加减法计算题练习
1、加法计算
(1) (-6)+(-8)= (2) (-4)+2.5= (3) (-7)+(+7)= (4) (-7)+(+4)=
(5) (+2.5)+(-1.5)= (6) 0+(-2)= (7) -3+2= (8)(+3)+(+2)=
(9)-7-4= (10) (-4)+6= (11) ()31-+= (12)
()a a +-=
2、减法计算
(1) (-3)-(-4)= (2) (-5)-10= (3) 9-(-21)= (4) 1.3-(-2.7)=
(5) 6.38-(-2.62)= (6)-2.5-4.5= (7) 13-(-17)= (8)(-13)-(-17)=
(9) (-13)-17= (10) 0-6= (11) 0-(-3)= (12) -4-2=
(13) (-1.8)-(+4.5)= (14) 1143
⎛⎫⎛⎫--- ⎪ ⎪⎝
⎭⎝
⎭
= (15) 1( 6.25)34⎛⎫
--- ⎪⎝⎭
=
3、加减混合计算题
(1) 4+5-11; (2) 24-(-16)+(-25)-15 (3) -7.2+3.9-8.4+12
(4) -3-5+7 (5) -26+43-34+17-48 (6) 91.26-293+8.74+191
(7) 12-(-18)+(-7)-15 (8) )15()41()26()83(++-+++-
(9) )2.0(3.1)9.0()7.0()8.1(-++-+++- (10) (-40)-(+28)-(-19)+(-24)
(11) (+4.7)-(-8.9)-(+7.5)+(-6) (12) -6-8-2+3.54-4.72+16.46-5.28
4、加减混合计算题:
(1)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪
⎝
⎭⎝
⎭⎝
⎭⎝
⎭
(2) (-1.5)+134⎛
⎫+ ⎪⎝⎭
+(+3.75)+
142⎛⎫- ⎪⎝⎭
(3)()⎪⎭
⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-41153141325 (4) 222348312131355⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(5) )75.1(321432323+-⎪⎭⎫
⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛- (6) 711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
(7) ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝
⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-411433212411211 (8) 151.225 3.4( 1.2)66⎛⎫⎛⎫-+------ ⎪ ⎪⎝⎭⎝⎭
(9)
11111223
89910+++
+⨯⨯⨯⨯ (10) 11
11
1335
979999101
++
+
+
⨯⨯⨯⨯
一、选择题:
1、若m 是有理数,则||m m +的值( )A 、可能是正数 B 、一定是正数
C 、不可能是负数
D 、可能是正数,也可能是负数
2、若m m m <-0,则||的值为( ) A 、正数 B 、负数 C 、0 D 、非正数
3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数 B 、 m =±n ,且n ≥0
C 、相等且都不小于0
D 、m 是n 的绝对值 4、下列等式成立的是( )
A 、0=-+a a
B 、a a --=0
C 、0=--a a
D 、a --a =0
5、若230a b -++=,则a b +的值是( )A 、5 B 、1 C 、-1 D 、-5
6、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( )
A.-3 B.-9 C.-3或-9 D.3或9
7、两个数的差为负数,这两个数 ( )
A 、都是负数
B 、两个数一正一负
C 、减数大于被减数
D 、减数小于被减数 6、负数a 与它相反数的差的绝对值等于( )
A 、 0
B 、a 的2倍
C 、-a 的2倍
D 、不能确定 8、下列语句中,正确的是( )
A 、两个有理数的差一定小于被减数
B 、两个有理数的和一定比这两个有理数的差大
C 、绝对值相等的两数之差为零
D 、零减去一个有理数等于这个有理数的相反数 9、对于下列说法中正确的个数( )
①两个有理数的和为正数时,这两个数都是正数 ②两个有理数的和为负数时,这两个数都是负数
③两个有理数的和,可能是其中的一个加数 ④两个有理数的和可能等于0 A 、1 B 、2 C 、3 D 、4
10、有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A 、a +
=0 B 、+>0 C 、-<0 D 、-b >0
11、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +c B 、a -b +c =a +b +c
C 、a +b -c =a +(-b )=(-c )
D 、a +b -c =a +b +(-c ) 12、若0a b c d <<<<,则以下四个结论中,正确的是( ) A 、a b c d +++一定是正数 B 、c d a b +--可能是负数 C 、d c a b ---一定是正数 D 、c d a b ---一定是正数
13、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( ) A 、被减数a 为正数,减数b 为负数 B 、a 与b 均为正数,切被减数a 大于减数b C 、a 与b 两数均为负数,且减数 b 的绝对值大 D 、以上答案都可能
14、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( ) A 、-b <-a <b <a B 、-a <b <a <-b C 、b <-a <-b <a D 、b <-a <a <-b
15、下列结论不正确的是( )
A 、若0a <,0b >,则0a b -<
B 、若0a >,0b <,则0a b ->
C 、若0a <,0b <,则()0a b -->
D 、若0a <,0b <,且a b >,则0a b -<
16、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )
A 、x
B 、x y +
C 、x y -
D 、y
17、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( ) A 、m >m -n >m +n B 、m +n >m >m -n C 、m -n >m +n >m D 、m -n >m >m +n 18、若a b >>00,,则下列各式中正确的是( ) A 、a b ->0 B 、a b -<0 C 、a b -=0 D 、--<a b 0 19、如果 a 、b 是有理数,则下列各式子成立的是( )
A 、如果a <0,b <0,那么a +b >0
B 、如果a >0,b <0,那么a +b >0
C 、如果a >0,b <0,那么a +b <0
D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <0
二、填空题:20、已知的值是那么y x y x +==,2
13,6 . 21、 三个连续整数,中间一个数是a ,则这三个数的和是___________. 22、若8a =,3b =,且0a >,0b <,则a b -=________.
23、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______. 24、若0a <,那么()a a --等于___________.
25、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是 .
26、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数
记为a n ,若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
(1)计算:a 2= ,a 3= ,a 4= ; (2)根据以上计算的结果,请写出a 2009- a 2011= .
27、 若||||a b a b =-=312,,且、异号,则a b -=___________. 28、用“>”或“<”号填空:有理数a ,b ,c 在数轴上对应的点如图:
则a +b +c ______0;|a |______|b |;a -b +c ______0;a +c ___b ;
c-b___a;
29、如果|a|=4,|b|=2,且|a+b|=a+b,则a-b的值是.
30、观察下列的排列规律,其中(●是实心球,○是空心球)
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2011个球上,共有实心球个.
31、分别输入-1,-2,按图所示的程序运算,则输出的结果依次
三、解答题:
32、一个小吃店去超市买10袋面粉,这10袋面粉的重量分别为:24.8千克,25.1
千克,24.3千克,24.6千克,25.5千克,25.3千克,24.9千克,25.0千克24.7千克,25.1千克,你能很快就求出这10袋面粉的总重量吗?
33、下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)
(1)
多少?小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?。