刚体的定轴转动定律

合集下载

5-刚体的定轴转动

5-刚体的定轴转动

L1 L2
刚体定轴转动的角动量 L=?
z
v
ri mi
O
刚体 定轴
L Li mirivi
m iri(ri) ( miri2)
J M=0的原因,可能
1)F=0(不受外力) 2)外力作用于转轴上 3)外力作用线通过转轴
4)外力作用线与转轴平行
刚体定轴转动的角动量守恒
L1 L2
J11J22
位置,求它由此下摆角时的角速度。
解:如图建立坐标
x
杆受到的重力矩为:
O
M = gxd g m xdm
X
dm
据质心x定 d= m 义 mCx MmgxC
xc
1l 2
cos
M1mgclos
2
dmg
MJJdJ d d J d M dJd
dt d dt d
0 1 2mc go lds 0 Jd
mglsin
端点 o 且与桌面垂直的固定光滑轴转动,另有 一水平运动的质量 m2为的小滑块,从侧面垂直 与杆的另一端 A 相碰撞,设碰撞时间极短,已知 小滑块在碰撞前后的速度分别为 v1 和 v2 ,方 向如图所示,求碰撞后从细杆开始转动到停止 转动过程所需时间,(已知杆绕点 o 的转动惯 量 J= ml2/ 3 )
dLR J2J0m0d2 其中 Jo 12moR2
J J1J2 1 3m LL 21 2m oR 2m o(LR )2
2.对薄平板刚体的正交轴定理
z
Jz miri2
yi
xi
ri
y
m i(x2y2) m ix 2 m iy 2
x
Δmi
Jz JxJy
z
应用
例:已知圆盘

刚体定轴转动定律

刚体定轴转动定律
角称为角坐标(或角位置)。 角坐标为标量。但可有正负。
o
P
x
2.角位移
描写刚体位置变化的物理量。
角坐标的增量:
称为刚体的角位移
y v2 p v1
P
3.角速度
R
x
描写刚体转动快慢和方向
的物理量。
角速度 lim d
t0 t dt 方向:满足右手定则,沿刚体转动方向右旋大拇指指向。
角速度是矢量,但对于刚体定轴 转动角速度的方向只有两个,在表 示角速度时只用角速度的正负数值 就可表示角速度的方向,不必用矢 量表示。
11mb 2
例4、半径为 R 质量为 M 的 圆环,绕垂直于圆环平面的 质心轴转动,求转动惯量J。
解: J R2dm MR 2
M o R dm
例5、半径为 R 质量为 M 的圆盘,绕垂直于圆盘 平面的质心轴转动,求转动惯量 J。
解:分割圆盘为圆环
dm
M
R2
2
rdr
J r2dm
M
dr
R
0
t 细杆绕一端的转动惯量
J 1 ml 2 3
摩擦阻力
t
例8、质量为 m1 和m2 两个物体, 跨在定滑轮上 m2 放在光滑的桌 面上,滑轮半径为 R,质量为 M,求:m1 下落的加速度,和 绳子的张力 T1、T2。
解:m1 g T1 m1a (1)
T2 m2a
b)作圆周运动的质点的角动量 L= r m v
c)角动量是描述转动状态的物理量;
P L
d)质点的角动量又称为动量矩。
or
dL
d (r mv)
dr
mv
r
d (mv)
r
F
dt

刚体定轴转动定律

刚体定轴转动定律
力学 -大学物理
第六讲 刚体定轴转动定律
01 刚体定轴转动定律
02 刚体定轴转动定律的应用
第六讲 刚体定轴转动定律_20160225 XCH
01 / 22
力学 -大学物理
01 刚体定轴转动定律
1 2 刚体定轴转动的动能定理 Md d ( J ) 2
Md J d
d dt d dt
第六讲 刚体定轴转动定律_20160225 XCH
力学 -大学物理
—— 将两次实验的结果代入
M J 2h m1g R ( m1 R 2 ) t 2 1 m g M ( m J ) 2h 2 2 2 2 R R t 2
—— 两式相减消去M’得到
d d M J dt dt

M J
—— 刚体定轴转动定律
第六讲 刚体定轴转动定律_20160225 XCH
力学 -大学物理
02 刚体定轴转动定律的应用
1) 确定研究的对象 —— 刚体和质点 2) 分析对象受力和对转轴的力矩 —— 选取转轴正方向 3) 应用刚体定轴转动定律、牛顿定律、刚体动能定理 机械能守恒定律、质心运动定理 列出刚体和质点的运动方程 4) 查明线量和角量的运动学关系 5) 联合求解方程得到:力、力矩、加速度、速度 角加速度、角速度、转动惯量
第六讲 刚体定轴转动定律_20160225 XCH
力学 -大学物理
物体的运动方程 轮轴的转动方程 运动学关系
mg R
mg a J m 2 r
1 2 1 mg 2 S at t 2 2 m J / r2
2 gt J mr 2 ( 1) —— 转动惯量 2S
第六讲 刚体定轴转动定律_20160225 XCH

刚体定轴转动定律公式

刚体定轴转动定律公式

刚体定轴转动定律公式刚体定轴转动定律是描述刚体绕定轴做转动运动的数学公式。

本文将详细介绍刚体定轴转动定律的公式及相关参考内容。

1.刚体定轴转动定律公式1.1角位移公式刚体绕定轴做转动运动时,它的每一个质点都有一个角位移,角位移是一个标量,用Δθ表示。

角位移与刚体绕定轴转动的弧长有关,它们之间的关系可以用以下公式表示:Δθ = Δl / r其中,Δl表示弧长的长度,r表示刚体绕定轴的半径。

1.2角速度公式角速度是描述刚体绕定轴的旋转速度的物理量,用ω表示,角速度是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。

角速度与角位移之间的关系可以用以下公式表示:ω = Δθ / Δt其中,Δt表示时间间隔。

1.3角加速度公式角加速度是描述刚体绕定轴转动加速度的物理量,用α表示,角加速度是一个矢量,它的方向也垂直于刚体绕定轴的平面,符号和方向由右手定则确定。

角加速度与角速度之间的关系可以用以下公式表示:α = Δω / Δt其中,Δt表示时间间隔。

1.4力矩公式力矩是描述外力对刚体绕定轴转动影响的物理量,用M表示,力矩是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。

力矩与角加速度之间的关系可以用以下公式表示:M = I α其中,I表示刚体绕定轴的转动惯量,α表示角加速度。

2.参考内容2.1转动惯量的定义转动惯量是描述刚体绕定轴转动惯性的物理量,用I表示,它反映了刚体对于绕定轴转动的惯性大小。

转动惯量的计算方法取决于刚体的形状和密度分布。

常见的刚体的转动惯量计算公式:(1)矩形薄板绕转轴的转动惯量Izz = 1/12m(a²+b²)其中,m表示薄板的质量,a和b表示薄板的长和宽。

(2)圆环绕轴的转动惯量Izz = mr²其中,m表示圆环的质量,r表示圆环的半径。

2.2角动量的定义角动量是描述刚体绕定轴转动动量的物理量,用L表示,它反映了刚体绕定轴转动的惯性大小和角速度大小。

大学物理Ⅰ刚体定轴转动的转动定律

大学物理Ⅰ刚体定轴转动的转动定律
第五章 刚体的定轴转动
5.1刚体运动的描述
一.刚体
刚体:在外力作用下,形状和大小都不发生变 化的物体 . (任意两质点间距离保持不变的特殊质点 组)
(1)刚体的运动
刚体的运动形式:平动、转动 .
平动:若刚体中所有点 的运动轨迹都保持完全相同, 或者说刚体内任意两点间的 连线总是平行于它们的初始 位置间的连线 .
F F11 F
其中F11对转轴的力 矩为零,故 F 对转轴的力矩
M zk r F
z
k F11
F
O r
F
M z rF sin
2)合力矩等于各分 力矩的 矢量和 M M1 M2 M3
第五章 刚体的定轴转动
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
O
rj
d ri
i
j
Fji Fij
M
rdf
l
grdr
0
1 gl 2
2
1 mgl
2
dm dl
dm ds
dm dV
其中、、分别
为质量的线密度、 面密度和体密度。
线分布
面分布
体分布
第五章 刚体的定轴转动
m 例1 一质量为 、长为 l 的均匀细长棒,求通过棒中
心并与棒垂直的轴的转动惯量 .
O
Or
l 2 O´ dr l 2
O´ dr l
r 解 设棒的线密度为 ,取一距离转轴 OO´ 为 处的质
fi
第五章 刚体的定轴转动
M i外 M i内 miri2
i
i
i
Mi内 0
i
M i外 ( miri2 )
i
i
z
O rj

2.91刚体的定轴转动力矩 转动定律 转动惯量

2.91刚体的定轴转动力矩 转动定律 转动惯量
Fi 0 , M i 0
M r F
d
P

F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律

t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i

ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1

[理学]第5章 刚体的定轴转动_OK

[理学]第5章 刚体的定轴转动_OK

J 2
x 2dm l x2dx 1 ml 2
0
3
o
dx
dm
17 x
图(2)
记住几个典型的转动惯量:
*圆环(通过中心轴)………………… J = mR2
*圆盘、圆柱(通过中心轴)………… J 1 mR2 2
*细棒(端点垂直轴)…………………J A
1 3
m L2
*细棒(质心垂直轴)…………………J c
滑轮的角速度.
解:两重物加速度大小a相同,滑轮角加速度为
隔离物体分析力方向如图
由牛顿第二定律: m1g-T1=m1a T2-m2g=m2a
转动定律: (T1-T2)r=Jb 且有: a=rb
T1 T1 a m1 m1g
r T2
m2 T2 a
m2g
解方程组得:
m1 m2 gr m1 m2 r 2 J
转动平面: 取垂直于转轴 的平面为参考系, 称转动平面。,
转轴
Z 转动方向
vi
Δmi
转动平面
P
o θ
x
op r
2.定轴转动的角量描述
1.角位置θ
6
2.角位移
3.角速度: d 角速度是矢量 。dt
单位:rad/s
Zω 转动方向
v
方向与转动方向成 右手螺旋法则。
P点线速度 v r

o θ 转动平面 op r
第五章 刚体的定轴转动
转轴
1
一、力矩
复习
M rF
1. 大小:M = rFsinθ
2.方向:由右手螺旋定则确定。
Z F// F
O r F⊥ p
注意:上式中F指的是与转轴垂直平面(转动平面)上的力,

第五章 刚体的定轴转动

第五章 刚体的定轴转动
单位: 单位:rad / s 角速度
刚体定轴转动
ω
v 的方向按右手螺旋法则确定. 的方向按右手螺旋法则确定.
在定轴转动中, 在定轴转动中,角速度的方向 沿转轴方向. 沿转轴方向.
角加速度α 角加速度
v ω
2
ω dω d θ = = 2 α = lim t →0 t dt dt
单位: 单位:rad /s 2 角加速度也是矢量, 角加速度也是矢量,方向与角速度增量 的极限方向相同,在定轴转动中, 与 同向 的极限方向相同,在定轴转动中,α与ω同向 或反向. 或反向. 刚体的转动其转轴是可以改变的, 刚体的转动其转轴是可以改变的,为反映瞬时轴的方 向及其变化情况,引入角速度矢量和角加速度矢量. 向及其变化情况,引入角速度矢量和角加速度矢量. 注意 退化为代数量. :定轴转动时, ω,α退化为代数量. 定轴转动时, 退化为代数量
刚体的一般运动都可认为是平动和转动的结合. 刚体的一般运动都可认为是平动和转动的结合.
1. 用角量描述转动 (1) 角位移 θ : ) 时间内刚体转动角度. 在 t 时间内刚体转动角度. 单位: 单位:rad (2)角速度 ω : )
z θ
B A
θ dθ ω = lim = t →0 t dt

r2
转动惯量的定义: 转动惯量的定义:
J = ∑mi ri
2
对质量连续分布的刚体, 对质量连续分布的刚体,上式可写成积分形式
J = ∫ r dm
2
dm—质元的质量 质元的质量 r—质元到转轴的距离 质元到转轴的距离
线分布 dm = λdx 面分布 dm = σds 体分布 dm = ρdV
λ 是质量的线密度
F iz
ri = roi sinθ

刚体的定轴转动和转动定律

刚体的定轴转动和转动定律

受力: F Ft Fn
力矩:M r (Ft Fn )
r Ft rFt k
M F r ma r
z
M
Ft F
O r m
Fn
mr2
at r
即: M mr 2
3 – 2 力矩 转动定律 转动惯量
2、刚体转动定律
质元 m j 受力为:
右手螺旋定则
第三章 刚体的转动

3– 1 刚体的定轴转动
4、角加速度(矢量)
第三章 刚体的转动
大小: d
dt
方向: 若 2 > 1 则 与角速度同向, 若 2 < 1 则 与角速度反向。
3– 1 刚体的定轴转动
第三章 刚体的转动
二、匀变速转动公式
匀变速转动:转动的角加速度为恒量的运动。
J R 2π r3dr π R4 所以 J 1 mR2
0
2
2
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
例3 :质量为m、高为h、半径为r的均匀圆柱体,求其对 圆柱中心的转动轴的转动惯量?
解:dm dV 2 r h dr
其中:

m V
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
三 转动惯量 J mjrj2 , J r 2dm
1、物理意义:
j
描述刚体转动过程中转动惯性大小的物理量.( 转动
惯量的大小取决于刚体的质量、形状及转轴的位置 .)
2、转动惯量的计算方法:
1)质量离散分布刚体的转动惯量:
J mjrj2 m1r12 m2r22
对质量面分布的刚体: dm dS

刚体定轴转动的转动定律

刚体定轴转动的转动定律

R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M

T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R

2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m

R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?

刚体定轴转动的转动定律力矩PPT

刚体定轴转动的转动定律力矩PPT

求 θ角及着陆滑行时的速度多大?
解 引力场(有心力)
v0
系统的机械能守恒
质点的动量矩守恒
m r0
v R
OM
m 1 2m v v 0 r 00 2s iGπ n r0 M) ( 1 2 m m m vv 2 R GRMm vv0r0R sin4v0sin
sin14123RGv0M 21/2
1/2
LZ Δmiviri Δmiri2 JZ
i
i
LZJZ(所有质元对 Z 轴的动量矩之和)
2. 刚体定轴转动的动量矩定理
对定轴转动刚体,Jz 为常量。
dLZ dt
JZ
d
dt
dLZ dt
Mz
M zd t d L z d J
动量矩定理 微分形式
t1 t2M zd t 1 2d JJ2 J1(动量矩定理积分形式)
0tm1m 1m 2m 21 2 gmtr
3.2.2 刚体定轴转动的动能定理
1. 刚体定轴转动的动能
Δ m 1 ,Δ m 2 ,,Δ m k ,,Δ m N r 1 ,r 2 ,,r k ,,r N v 1 , v 2 , , v k , , v N
Δmk 的动能为
Ek 12Δmkvk212Δmkrk22
F FF Fn
2)力对点的力矩
Mo
M O r F
F
大小 M OrF sin
O . r
指向由右螺旋法则确定 力对定轴力矩的矢量形式
z
F//
F
M Z r F
(力对轴的力矩只有两个指向)
r
A
FF
2. 刚体定轴转动的转动定律
第 k个质元 F k f k m k a k

第03章 刚体定轴转动01-转动定律

第03章 刚体定轴转动01-转动定律

作用于刚体内每一质元上的内力矩的矢量和为零,即
fr 0
i i i
14
F r
i i
i
为作用于刚体内每一质元上的外力矩的矢量和。
M Fi ri
i
定义:刚体的转动惯量J (moment of interia) 则有:
2 m r ii i
M J
即:
M J
刚体定轴转动的转动定律:刚体定轴转动的角加速度与它所 受的合外力矩成正比 ,与刚体的转动惯量成反比。 —— 刚体定轴转动的基本动力学规律。
dm 2 π r dr
P
3 2
圆环对轴的转动惯量
dJ r dm 2π r dr R 3 J 2π r dr π R 4 0 2 1 2 而 m π R 所以 J mR 2
圆盘对P 轴的转动惯量
R
R
O O
r dr
1 J P mR 2 mR 2 2
19
15
三、转动惯量
J mi ri
i
2
物理意义:刚体转动惯性的量度。 对于质量离散分布刚体的转动惯量
J mi ri 2 m1r12 m2r22
i
质量连续分布刚体的转动惯量
J lim
mi 0
2 2 m r r i i dm i
P1 y
P2
23
(3)如图所示,不计绳子的质量,滑轮的质量与半径分别为M
和R,滑轮与绳间只滚不滑,不计滑轮与轴间的摩擦力。 且 m1 m2 。 求重物释放后,物体的加速度和绳的张力。 A
m1 FN m1 FT1
O
C
取坐标如图
M

3-3刚体定轴转动定律

3-3刚体定轴转动定律

o
解:分析:杆在运动过程中 分析: 受到变力矩作用! 受到变力矩作用!则其角加 速度为变值, 速度为变值,由 求β 要用 积分
θ l ,m
v mg
ω
l 设杆在某一位置时, 设杆在某一位置时, M = mg ⋅ cosθ 2
刚体的转动
刚体定轴转动定律
由转动定律, 由转动定律,
l dω dθ mg ⋅ cosθ = Jα = J ⋅ 2 dt dθ l dω mg ⋅ cosθ = Jω o 2 dθ θ l ,m
′ 切向 Fit + Fit = ∆mi ⋅ at = ∆mi ⋅ ri ⋅ β
乘以
ri
′ Fit ⋅ ri + Fit ⋅ ri
= ∆mi ⋅ ri ⋅ β
2
刚体的转动
刚体定轴转动定律
′ ∑ Fit ⋅ ri + ∑ Fit ⋅ ri
′ it i
对刚体
= ∑(∆mi ⋅ ri ) ⋅ β
2
it
∑F ⋅ r = 0 ∑F
v v M = Jβ
刚体的转动
刚体定轴转动定律
设刚体绕定轴oz转动 设刚体绕定轴oz转动 oz 任取一质元 ∆mi ,其绕轴作 半径为 r 的圆周运动
v v′ 受力分析: 受力分析: 外力F 内力F i i
由牛顿第二定律
z v v Βιβλιοθήκη i Fi′ov ri ∆mi
v v′ v Fi + Fi = ∆mi ⋅ a
(为什么?) 为什么?)
⋅ ri = M
M = ∑(∆mi ⋅ ri ) ⋅ β
2
2
M = J ⋅β
其中
J = ∑∆mi ⋅ ri — 转动惯量

第三章 刚体定轴转动基本定律

第三章  刚体定轴转动基本定律
B
此时角加速度
θ
A
mg
又由 得
β=
dω dω dθ dω = =ω dt dθ dt dθ
βdθ = ω dω
图例3 -9
两边取积分,并代入始、末条件,得
∫ βdθ = ∫ ω dω
0
π 2 0
ω
3g 1 2 2 [ − cos θ ] 0 = ω −0 2l 2 ω = 3g l
π
解法二:棒由竖直位置运动到地面,重力矩所做的功为
dL = rυdm = m rυdr 2l
2l


2L 图例3 -1 0
整个杆对圆孔的动量矩为
L=
∫ dL = ∫ 2l rυdr
0 0
2l
m
= mυl
设小钉穿入后杆做定轴转动的角速度为ω,在此过程中杆对轴的动量矩守恒,即
mυl = Iω = 1 m(2l ) 2 ω 3 3υ 4l
7

ω =
在杆定轴转动时,距轴为 r,长为 dr 的一小段杆受到的向心力为
rF = Iβ rF I= β
O . F
当悬挂 m 时,设下落 2m 时速度为υ,且此时圆盘转动的 角速度为ω,因只有重力做功,系统的机械能守恒。
mgh = υ = rω 1 1 mυ 2 + Iω 2 2 2
O.
由以上各式可得
υ2 = 2mgh F m+ rβ 2 × 1 × 9 .8 × 2 = 13.5 1+ 0 .3 × 5
小球与细杆系统在碰撞前后动量矩守恒设细杆逆时针转动为动量矩正方向碰撞后细杆获得角速度为则细杆转动中受到平面的摩擦力矩以o为原点沿杆长方向建ox处取长度dx的一小段杆则杆转动时dx受到摩擦力为dxdmgdf方向如图该力的力矩为dmxdf整个杆受到的摩擦力矩为gmlxdx设开始转动后t秒停下则由动量矩定理df图315dx17所以mgmg

3-2 刚体的定轴转动定理

3-2 刚体的定轴转动定理
光滑水平轴,因而可以在竖直平面内转动。 光滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平 位置,求它由此下摆θ角时的角加速度和角速度。 位置,求它由此下摆θ角时的角加速度和角速度。 解:棒下摆为加速过程,外 棒下摆为加速过程, 的力矩。 力矩为重力对O 的力矩。 棒 上取质元dm,当棒处在下摆θ 当棒处在下摆θ 上取质元 当棒处在下摆 重力矩为: 角时,重力矩为:
一个质量为M、半径为R的定滑轮 例1、一个质量为 、半径为 的定滑轮 (当作均匀圆盘)上面绕有细绳,绳的一 当作均匀圆盘)上面绕有细绳, 端固定在滑轮边上,另一端挂一质量为m的 定轴O 端固定在滑轮边上,另一端挂一质量为 的 定轴 物体而下垂。忽略轴处摩擦,求物体m由静 物体而下垂。忽略轴处摩擦,求物体 由静 止下落高度h时的速度和此时滑轮的角速度 时的速度和此时滑轮的角速度。 止下落高度 时的速度和此时滑轮的角速度。 · m t R 绳 v0=0 h
R
角加速度为常量,且与 的方向相反, 角加速度为常量,且与ω0的方向相反,表明圆盘作匀减速转动
ω = ω 0 + αt
当圆盘停止转动时, 当圆盘停止转动时,ω=0,则得 ,
t=
− ω0
α
3 Rω 0 = 4 µg
二、刚体定轴转动的转动定律的应用 题目类型 1.已知转动惯量和力矩,求角加速度; 已知转动惯量和力矩, 已知转动惯量和力矩 求角加速度; 2.已知转动惯量和角加速度,求力矩; 已知转动惯量和角加速度, 已知转动惯量和角加速度 求力矩; 3.已知力矩和角加速度,求转动惯量。 已知力矩和角加速度, 已知力矩和角加速度 求转动惯量。 解题步骤 1.确定研究对象; 确定研究对象; 确定研究对象 2.受力分析; 受力分析; 受力分析 3.选择参考系与坐标系; 选择参考系与坐标系; 选择参考系与坐标系 4.列运动方程; 列运动方程; 列运动方程 5.解方程; 解方程; 解方程 6.必要时进行讨论。 必要时进行讨论。 必要时进行讨论

刚体定轴转动定律

刚体定轴转动定律
于 180°的夹角 θ 转向 F 时,拇指所指的方向就是力矩的方向。
可见,力矩的方向与转轴的方向平行,只有两个可能的方向,因此,可用 M 的正负表示力矩的方向。 一般可按力矩的作用来判断其正负:由转轴 Oz 正向俯视,若力矩的作用使刚体逆时针转动,则力矩为 正,否则为负。
刚体定轴转动定律 1.1 力矩
可加性
• 对同一转轴而言,刚体各部分转动惯量之 和等于整个刚体的转动惯量。
平行轴定理
• 设有两个彼此平行的转轴,一个通过刚体 的质心,另一个不通过质心。两平行轴之 间的距离为d,刚体的质量为m。
如果此刚体对通过质心转轴的转动惯量为 Jc ,则对另一 转轴的转动惯量 J 为 J Jc md 2
刚体定轴转动定律
刚体定轴转动定律Βιβλιοθήκη , ,,,
例题讲解 2
如图所示,一轻绳跨过一轴承光滑的定滑轮。绳两边分别悬有质量为 m1 和 m2 的两个物体 A,B。已知 m1
小于 m2 ,滑轮可看作质量均匀分布的等厚圆盘,其质量为 m,半径为 r,设绳与滑轮间无相对滑动。求:① 物
体的加速度;② 滑轮的角加速度;③ 绳的张力。
i 1
n
用 M 表示,即 M (Δmiri2 ) β
i 1
n
n
式中的 (Δmiri2 ) 称为转动惯量,用 J 表示,即 J (Δmiri2 )
i 1
i 1
于是,式可写为 M Jβ
刚体定轴转动定律 1.2 转动定律
转动定律:刚体定轴转动时,刚体的角加速度与刚体所受的合外力矩成正比,与刚体的转动惯量 成反比。
r 2 dm
Ω
式中 r ——质元 dm 到转轴的距离(m)。 在国际单位制中,转动惯量的单位为 kg m2 。

刚体的定轴转动定律

刚体的定轴转动定律
3 0 R

m π R
2

2
πR
4
所以
1 2 I mR 2
例题、均匀分布的质量为m、半径为R的球体绕其直径做定 轴转动的转动惯量。
Z
R z
2
2
dz
z
R
x
例 有两个半径相同、质量相等的细圆环A和B, A环的质量均匀分布,B环的质量分布不均匀, 它们对通过环心且垂直于环面的轴的转动惯量 分别为IA和IB,则:【 】 (A)A环的转动惯量大于B环的转动惯量; (B)A环的转动惯量小于B环的转动惯量; (C)两个圆环的转动惯量相等; (D)无法判断。
I mi ri m r m r
2 2 11 2 2 2 i

r
dm
质量连续分布刚体的转动惯量
I r dm
2
dm
:质量元
计算转动惯量: m a
m a
m
m
m
m a
m
m
y
2 3a 2 2 2a 2
a a
2 a 2
a
x
2 2 2 2 2 2 I m( a) m( 2a) m( 3a) 2 2 2
I mi ri 2
i
转动惯量
转动惯量是刚体转动惯性大小的量度,转动 惯量大,则刚体的转动惯性大;转动惯量小, 则刚体的转动惯性小。 转动惯量一般与两个因素有关: (1)转动轴的位置; (2)转动刚体的质量;

r2 m2 m1
m3
r3
r4
r1
ri
r5
m4
mi
m5
质量离散分布系统的转动惯量
m2 m1 g M r / r m2 m1 g M / r

刚体定轴转动定律

刚体定轴转动定律

F ma
(2) 列方程: 对于刚体:定轴转动定律 M J
线量与角量的关系:at R
(3) 解方程.
例题. 一轻绳跨过一轴承光滑的定滑轮,滑轮可视为
圆 盘 , 绳 的 两 端 分 别 悬 有 质 量 为 m1 和 m2 的 物 块 , 且 m1<m2. 设滑轮的质量为M,半径为R,绳与轮之间无 相对滑动,求物块的加速度和绳中张力.
本次课所讲知识点是刚体力学这部分内容的重点, 希望大家课后好好复习,多多练习,熟练掌握。
切向分量式: Fit fit miait
ait ri Fit fit miri
ri
作圆周运动. z
o
f Fit
i fit
ri mi
Fir
Fi
上式两端同乘以ri再对所有质点求和:
Fit ri fit ri miri2
i
i
i
合外力矩M 内力矩之和 =0 转动惯量J
M J
刚体所受的对某一固定转轴的合外力矩等于刚体 对此转轴的转动惯量与刚体在此合外力矩作用下所 获得的角加速度的乘积.
二、 刚体定轴转动定律与牛顿第二定律的比较
定律方程
牛顿第二定律 F ma
促使运动状态发 生变化的因素
合外力:F
阻碍运动状态发 生变化的因素
产生的物理量
质量:m
加速度:a
刚体定轴转动定律
M J
合外力矩:M
ห้องสมุดไป่ตู้转动惯量:J
角加速度:
三、 刚体定轴转动定律的应用
解题思路:
(1) 受力分析;
对于质点:牛顿第二定律
刚体定轴转动定律
一、 刚体定轴转动定律的证明
刚体可看成是由n个质点组成的连续质点系.

刚体的定轴转动定律

刚体的定轴转动定律

r
F F
其中,d为转轴到力的作用线的垂直距离,称为力臂 3.若作用于刚体的力与转轴既不平行也不垂直时, 可将力分解为平行和垂直于轴的两个分力,再计算
二、定轴转动定律
质点系的角动量定理: dL 对于刚体,这一关系照 M 样成立,因刚体也是一 dt 个质点系。
Z
但对定轴转动,比如刚体绕Z轴运动, 就只要考虑沿Z轴方向的分量。

J M1

t
解: 以刚体为研究对象 ,以M0的方向为轴的正方向,则:
M 0 M 1 J M 0 a
d dt M 0 a J
J
M 0 a dt J

d
dt J
0
M 0 a
at J
0

1 a
M 0 (1 e
)
例4 设一细杆的质量为m,长为L,一端支以枢轴而能 自由旋转,设此杆自水平静止释放。求: 1)当杆与铅直方向成角时的角加速度: 2)当杆过铅直位置时的角速度: 已知:m,L 求:,,N 解:以杆为研究对象 建立OXYZ坐标系
N
M
抵消
T2 T1 ' m g T ' 3 2
T1
r
已知: 1 , m2 , m3 , r m 求: a1 , a2 , T1 , T2 解:以 m1 , m2 , m3 为研究 对象。 受力分析:m1 m1 g.T1 '
m1
m1 g
a1
m2
m2 g
m2 m2 g.T2 ' m3 m3 g , N, T1 , T2
a+
m1g - T= m1a….(1) (2m1 m2 )r T’r=J…(2) m1m2 g 2m1 g T a 2 …(3) J mr / 2 2m m 2m m

力矩_刚体定轴转动定律

力矩_刚体定轴转动定律

m2
m1
1 2
m
r
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,

T1
T2
2m1m2 m2 m1
g
a m2 m1 g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测量
重力加速度g的简单装置。因为在已知m1、 m2 、r和 J的情况下,能通过实验测出物体1和2的加速度a,
再通过加速度把g算出来。在实验中可使两物体的m1 和m2相近,从而使它们的加速度a和速度v都较小, 这样就能角精确地测出a来。
注 (1)在定轴动问题中 ,如不加说明,所指的力矩 是指力在转动平面内的分力 对转轴的力矩。
力矩
(2) M Z rF2 sin F2d
d r s是in转轴到力作用线
F1 F
的距离,称为力臂。
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
rF2ຫໍສະໝຸດ (4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
的质量dm=rddre,所受到的阻力矩是rdmg 。
定轴转动定律
此处e是盘的厚度。圆盘所受阻力矩就是
M rdmg g rreddr
ge02
d
R
0
r
2dr
2 geR3
3
因m=eR2,代入得
M
2 mgR
3
根据定轴转动定律,阻力矩使圆盘减速,即
获得负的角加速度.
定轴转动定律
2 mgR J 1 mR2 d
N
firi sin i 0
i1
定轴转动定律
得到:
N
Firi
sin i
N
(mi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体的定轴转动定律
一、前言
刚体的定轴转动定律是物理学中的重要概念之一,它描述了刚体在绕固定轴进行运动时的物理规律。

本文将从定义、公式、特点和应用四个方面来全面介绍刚体的定轴转动定律。

二、定义
刚体的定轴转动指的是一个刚体在绕一个固定轴进行旋转运动时,其各个部分都沿着圆周运动,且旋转轴不发生移动。

而刚体的定轴转动定律则是描述这种运动状态下物理量之间关系的规律。

三、公式
1. 角加速度公式
角加速度指的是角速度随时间变化率,通常用符号α表示。

根据牛顿第二定律和角动量守恒原理,可以得到以下公式:
Iα = τ
其中,I表示刚体绕固定轴旋转时所具有的惯性矩,τ表示作用在刚体上的扭矩。

2. 角位移公式
角位移指的是一个物体在绕某一点旋转时所经过的角度变化量,通常用θ表示。

根据定义可以得到以下公式:
θ = s / r
其中,s表示弧长,r表示绕定轴旋转的半径。

3. 角速度公式
角速度指的是一个物体在绕某一点旋转时所具有的单位时间内经过的角度变化量,通常用符号ω表示。

根据定义可以得到以下公式:
ω = Δθ / Δt
其中,Δθ表示角位移变化量,Δt表示时间变化量。

4. 动能公式
刚体绕定轴旋转时所具有的动能可以通过以下公式计算:
E = 1/2 Iω²
其中,I表示刚体绕固定轴旋转时所具有的惯性矩,ω表示角速度。

四、特点
1. 惯性矩与扭矩之间存在直接关系。

根据牛顿第二定律和角动量守恒原理可以得到Iα = τ这一公式,表明惯性矩与扭矩之间存在直接关系。

当扭矩增大时,刚体的角加速度也会增大;当惯性矩增大时,则需要更大的扭矩来产生相同大小的角加速度。

2. 角加速度与扭矩之间存在反比关系。

根据Iα = τ这一公式可以看出,当惯性矩不变时,角加速度与扭矩之间存在反比关系。

也就是说,当扭矩增大时,角加速度会减小;当扭矩减小时,角加速度会增大。

3. 角速度与角位移之间存在直接关系。

根据定义可以得到ω = Δθ / Δt这一公式,表明角速度与角位移之间存在直接关系。

当刚体绕定轴旋转的半径越大时,其每单位时间内所经过的弧长也就越长,因此角速度也会随之增大。

4. 动能与惯性矩、角速度之间存在直接关系。

根据E = 1/2 Iω²这一公式可以看出,动能与惯性矩、角速度之间存在
直接关系。

当刚体的惯性矩或者角速度增大时,其动能也会随之增大。

五、应用
1. 汽车转弯
在汽车转弯时,车辆需要绕着一个固定轴进行旋转运动。

此时通过刚
体的定轴转动定律可以计算出所需要的扭矩大小和方向,并相应地进
行调整。

2. 飞行器姿态控制
在飞行器飞行过程中需要保持稳定的姿态。

通过刚体的定轴转动定律
可以计算出所需要的扭矩大小和方向,并相应地进行调整,从而达到
稳定的飞行状态。

3. 摆锤运动
在摆锤运动中,摆锤需要绕着一个固定轴进行旋转运动。

通过刚体的
定轴转动定律可以计算出摆锤所具有的角加速度、角速度和动能等物
理量,从而更好地理解这一运动过程。

六、总结
刚体的定轴转动定律是物理学中非常重要的概念之一。

通过对其定义、公式、特点和应用的介绍,可以更好地理解刚体在绕固定轴进行旋转
运动时所遵循的物理规律。

同时,在实际应用中也可以通过这些知识来进行相关问题的计算和分析。

相关文档
最新文档