代入法解二元一次方程组教案
七年级数学下册《代入法解二元一次方程组》优秀教学案例
(五)作业小结
1. 布置适量的课后作业,要求学生运用代入法解决实际问题,巩固所学知识。
2. 布置一道拓展题,鼓励学生在课后进行思考,提高他们的问题解决能力。
3. 要求学生撰写学习心得,反思自己在学习代入法过程中的收获和不足,为下一节课的学习做好准备。
3. 强调代入法的关键点:选择合适的方程和未知数进行代入,以及如何将问题简化为求解一个一元一次方程。
4. 示例讲解,逐步展示代入法的解题过程,让学生跟随教师一起完成解题。
(三)学生小组讨论
1. 将学生分成小组,要求他们共同探讨代入法的应用,并尝试解决实际问题。
2. 给每个小组分配不同的问题,鼓励他们在讨论中分享自己的想法,学会倾听他人的意见。
4. 反思与评价助力学生自我成长
案例中,教师引导学生进行课堂小结和课后反思,帮助他们总结经验、发现不足。同时,合理的评价体系促使学生全面认识自己的学习过程和结果,为他们的自我成长提供有力支持。
5. 作业小结实现知识的巩固与拓展
本案例在作业布置上注重知识巩固与拓展,让学生在实际问题中运用所学,提高问题解决能力。同时,拓展题的设置激发学生的求知欲,促使他们在课后继续深入探究数学知识。
2. 问题导向促进思维发展
案例中,以问题为导向的教学策略促使学生主动思考、积极探索。通过设计富有启发性的问题,引导学生逐步深入探讨代入法的原理和应用,培养他们的逻辑思维和数学推理能力。
3. 小组合作提高学生团队协作能力
本案例注重小组合作学习,让学生在交流、讨论中共同解决问题。这种教学策略不仅有助于提高学生的团队合作意识,还能培养他们的沟通能力、批判性思维和自我评价能力。
用代入法解二元一次方程组教案
用代入法解二元一次方程组教案一、教学目标1.能够运用代入法解二元一次方程组。
2.理解代入法的基本思想和具体操作方法。
3.通过解题提高学生的运算和推理能力。
二、教学过程1.引入:老师将题目写在黑板上,让学生回忆一下上一节课学的解二元一次方程组的方法,看能否解出来。
2.呈现:(1)2某+y=5;(2)某-y=1;3.讲解:教师在黑板上教学,给出代入法解二元一次方程组的基本思想和具体操作方法。
(1)假设得到方程组的一个解(某1,y1),用其中一个方程将某1或y1代入另一方程中,得到一个关于某或y的一元方程,求出某或y的值。
(2)将上面求出的某或y的值代入已知方程中,求出同步的另一个变量值。
在这道题目中,我们可以先用第二个方程式求出某的值,再将某值代入第一个方程式求出y的值。
4.举例:(1)2某+y=5;(2)某-y=1;解:我们可以先将第二个方程式变形为某=y+1,然后将某值代入第一个方程式得到2(y+1)+y=5,得到y的值为1、将y值带入某=y+1得到某=2、所以(某,y)=(2,1)。
5.练习:请解下面的方程组:(1)某+y=4;(2)某-y=2;解:将第二个方程式变形为某=y+2,然后将某值代入第一个方程式得到(y+2)+y=4,解出y的值为1、将y值带入某=y+2得到某=3、所以(某,y)=(3,1)。
6.归纳:通过以上例子,我们发现代入法解二元一次方程组的方法是比较简单和易学的。
三、作业老师布置以下作业:请解下面的方程组:(1)3某-2y=5;(2)2某+4y=10;解:将第一个方程式变形为y=(3某-5)/2,然后将y值代入第二个方程式得到2某+4((3某-5)/2)=10,解出某的值为2、将某值带入y=(3某-5)/2得到y=-1、所以(某,y)=(2,-1)。
代入法解二元一次方程组教学设计
代入法解二元一次方程组教学设计3.怎样解二元一次方程组呢?上面的解方程组的基本思路是什么?基本步骤有哪些?②2x+ (22-x) =40 解得把得…叙述解题过程小组讨论解决问题活动6:解决问题【自主学习】1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一【课后练习】1、用代人法解方程组⎩⎨⎧=+-=7y 3x 23x y ①②,把____代人____,可以消去未知数______,方程变为:2、若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。
3、若⎩⎨⎧-=-=+⎩⎨⎧-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。
4、已知方程组⎩⎨⎧=-=-1y 7x 45y x 3的解也是方程组⎩⎨⎧==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。
5、已知x=1和x=2都满足关于x 的方程x 2+px+q=0,则p=_____,q=________ 。
6、方程组{1y 2x 11y -x 2+==的解是( )A.⎩⎨⎧==0y 0xB.⎩⎨⎧==37y xC.⎩⎨⎧==73y xD.⎩⎨⎧-===37y x7、若2a y+5b 3x 与-4a 2x b 2-4y 是同类项,则a=______,b=_______。
8、用代入法解下列方程组①⎩⎨⎧=-=+34532y x y x ②⎩⎨⎧=-+=-0133553y x y x9、如果(5a-7b+3)2+53+-b a =0,求a 与b 的值。
【课后反思】七年级的学生具有强烈的好奇心和求知欲,在半年的中学数学学习中,通过多次的数学实践活动,已经基本上掌握了主动探索、共同研究、合作学习的方法,所以可以引导他们利用已经学习过的知识来探究并解决新问题。
并且在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,并学习了二元一次方程组的相关概念这为本节的学习奠定了基础。
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
2.教师讲解代入消元法的步骤和技巧,让学生理解并掌握解题方法。例如,讲解如何选择合适的方程进行代入,如何化简方程,如何求解未知数等。
3.教师对学生的学习情况进行评价,给予肯定和鼓励。例如,对学生在解决问题过程中的表现进行表扬,增强学生的自信心。
(五)作业小结
1.教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。例如,提供一些综合性的练习题,让学生在解决实际问题的过程中,运用代入消元法。
2.教师要求学生在作业中反思学习过程,总结经验教训。例如,让学生在作业中写一篇反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施。
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一、案例背景
在我国基础教育课程改革的大背景下,人教版七年级数学教材第八章第二节《代入消元法解二元一次方程组》的教学显得尤为重要。这一节内容是学生继一元一次方程之后,首次接触二元一次方程组,是培养学生逻辑思维、抽象思维的关键时期。同时,代入消元法是解决二元一次方程组的常用方法之一,对于学生掌握解方程组的技巧,培养解决实际问题的能力具有重要意义。
4.反思与评价培养学生的自我学习能力:本节课教师在课后引导学生进行反思,总结经验教训。通过让学生写反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施,培养学生自我学习的能力。
5.作业小结巩固知识:本节课教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。同时,教师要求学生在作业中反思学习过程,总结经验教训。这种作业小结的方式既巩固了所学知识,又提高了学生的自我学习能力。
代入法解二元一次方程组(教案)
代入法解二元一次方程组(教案) 8.2消元——解二元一次方程组第一课时:代入法解二元一次方程教学目标:1.能够用代入消元法解简单的二元一次方程组;2.初步理解解二元一次方程组的思想是“消元”;3.在探究代入消元法的过程中体会化归思想。
教学重难点:1.教学重点:用代入法解简单的二元一次方程组;2.教学难点:将“二元”转化为“一元”,消元思想。
教学方法:引导发现、练法相结合教具准备:多媒体设备教学过程:一)复旧知,引入新课1.判断下列式子是否为二元一次方程:① xy + 3 = 0② x - y = 2③ x² + x = 10④ 1/x + y = -3⑤ x + 3y = -22.判断下列式子是否为二元一次方程组:x + 3y = 102x + z = -1ab = -12a + b = 15m + n = -13m - n = -23t + s = 1s = 11t3.已知二元一次方程 x - y = 2,如何用 x 表示 y?如何用 y 表示 x?将含 x 的项和常数项移到方程的右边,含 y 的项移到方程的左边,再将 y 的系数化为 1.①用 x 表示 y:x - y = 2②用 y 表示 x:x - y = 2y = 2 - xy = -2 + x练:课本 P93 练1将下列方程改写为含 x 的式子表示 y 的形式:1)2x - y = 32)3x + y - 1 = 0二)层层递进,探索新知探究:(回顾引例)解法一:设这个队胜了 x 场,负了 y 场。
由题意得:2x + y = 16y = 4解法二:设这个队胜了 x 场,则负了 (10-x) 场。
由题意得:2x + (10 - x) = 16x = 6问题:1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?2)我们可以把方程②中的 y 替换为 10-x 吗?怎么换?3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?4)另一个未知数 y 的值如何求?5)上述过程中,我们是如何消元的?解答:1)一元一次方程可以从二元一次方程组中得到;2)可以,将 y 的值用 10-x 替换;3)二元一次方程组转换为一元一次方程,可以解出 x 的值,还需求 y 的值;4)将 x 的值带入方程中,求出 y 的值;5)通过替换 y 的值,将二元一次方程组转换为一元一次方程,实现消元。
用代入消元法解二元一次方程组教案
用代入消元法解二元一次方程组教案用代入消元法解二元一次方程组教案利用代入消元法解二元一次方程教案〔北师大版新课标实验教材八年级上册〕一、教学目的1、知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、过程与方法运用代入消元法解二元一次方程;理解解二元一次方程时的“消元”思想,初步体会“化未知为”的化归思想。
3、情感、态度、价值观在学生理解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“”和化复杂问题为简单问题的化归思想。
感受学习数学的乐趣,进步学习数学的热情;培养学生合作交流,自主探究的`好习惯。
二、教学重、难点1、教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、教学难点“消元”的思想;“化未知为”的化归思想。
三、教学设计1、复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。
下面请同学们回忆一下它们分别是怎样定义的?〔同学们说,说不完的老师利用ppt进展展示〕我们知道:合适一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。
那么,我们能不能求出它的解呢?要怎样求呢?2、新课讲解〔1〕来看我们课本上的例子:上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
...........(1)?x?y?1.......... ?x?1?2(y?1)........ ....(2)?如今要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?〔学生讨论,老师巡视指导〕通过同学们的讨论我们已经有理解题思想。
首先,由方程〔1〕将x视为数解出y=x-2,由于方程组中一样的字母表示同一未知数,所以可以用x-2代替方程〔2〕中的y,即将y=x-2代入方程〔2〕。
解二元一次方程组的代入消元法案例教案
解二元一次方程组的代入消元法案例教案一、教学目标1.学生能够掌握代入消元法解二元一次方程组的基本流程和方法。
2.能够运用代入消元法解决实际问题。
二、教学重难点1.学生掌握解二元一次方程组的基本概念和代入消元法的原理。
2.学生能够理解把一个方程中的一个变量用另一个方程的式子表示后带入第一个方程,从而消去某一个变量的方法。
3.学生能够灵活运用代入消元法解决课本和实际应用问题。
三、教学过程1.教师引入请学生回忆一下一元一次方程的解法——消元法和代数法。
介绍本节课将学习的二元一次方程组的解法——代入消元法。
2.课堂讲授2.1.什么是二元一次方程组?二元一次方程组就是两个含有变量的一次方程,例如:$ ax+by=c $$ dx+ey=f $其中,$a,b,c,d,e,f$ 均为常数。
上面的方程可表示为:$$\left\{\begin{array}{lr}ax+by=c\\dx+ey=f\end{array}\right.$$2.2.什么是代入消元法?代入消元法是解二元一次方程组的一种方法,它的基本思想是:将一个方程中的某一个变量用另一个方程的式子表示后带入第一个方程,从而消去这个变量,得到只含有另一个变量的方程,然后解出这个变量的值,再带入到另一个方程中求出另一个变量的值。
例如:$$\left\{\begin{array}{lr}2x+y=5 \text{(1)}\\3x-2y=-1 \text{(2)}\end{array}\right.$$选取第一个方程解出 y:$y=5-2x$将该式子代入第二个方程:$3x-2(5-2x)=-1$解方程得到:$x=-1$,$y=7$因此,方程组的解为:$(-1,7)$。
2.3.代入消元法的步骤代入消元法的具体步骤如下:(1) 选取一个方程,求出某一个变量的值。
(2) 将该变量的值代入到另一个方程中,求出另一个变量的值。
(3) 将两个变量的值代入到方程组中,验证得出的结果是否正确,并写出方程组的解。
七年级数学上册《二元一次方程组的解法代入消元法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握二元一次方程组的定义及其解的概念。
2.学会使用代入消元法解决二元一次方程组问题,并能够熟练运用。
3.能够运用代入消元法解决实际生活中的问题,培养数学建模和数学运算的能力。
4.通过对二元一次方程组的求解,使学生掌握消元思想的运用,提高学生的逻辑思维和问题解决能力。
(三)情感态度与价值观
1.培养学生对待数学学科的积极态度,激发学生的学习兴趣,增强学生的自信心。
2.通过解决实际问题,让学生感受到数学与现实生活的密切联系,体会数学学习的意义和价值。
3.培养生严谨、认真、踏实的科学态度,树立正确的价值观,认识到解决问题需要耐心和毅力。
4.在小组合作学习中,培养学生的团队协作意识和沟通能力,使学生学会尊重他人,善于倾听他人的意见。
d.通过典型例题的讲解,引导学生总结代入消元法的步骤和技巧,培养学生的问题解决能力。
2.针对重点和难点,设计以下教学活动:
a.让学生进行小组合作,共同探究代入消元法的应用,培养团队协作能力和交流沟通能力。
b.设计梯度性练习题,由浅入深,让学生在解答过程中逐步掌握代入消元法,提高解题能力。
c.教师在课堂中关注学生的个体差异,针对不同学生的需求提供个性化指导,帮助学生克服学习困难。
4.针对学生的个体差异,提供有针对性的辅导,使每个学生都能在课堂上有所收获。
(五)总结归纳
1.让学生回顾本节课所学的内容,总结代入消元法的步骤和技巧。
2.教师对本节课的重点和难点进行梳理,强调学生在解题过程中应注意的问题。
3.鼓励学生提出自己在学习过程中的困惑和疑问,组织学生共同讨论,共同解决问题。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
代入法解二元一次方程组教学案
(3)两个未知数如何去掉一个,变为一个未知数?(用x代替y,或者用y代替x)
(4)按照你们小用x代替y,或者用y代替x都能求出方程的解,比较两种方法,那种简单?
(6)如何检验最后得出的答案是否准确?
指导学生自读课本,找出相应的知识点:代入消元法。
按照学生的认知规律,从学习的难点入手,逐步引导学生用已有的知识经验,分析问题,找出解决问题的途径。在此基础上并通过比较得出最佳答案,并通过教师的引导,让学生认识到检验的重要性,养成良好的学习习惯。
这部分知识介绍很简单,学生完全可以自己读懂,由此可以培养学生良好的自学意识与习惯。
有了前面的分析与铺垫,课本中的两个例题,学生完全有能力去尝试独立完成。因此,将他们放手交给学生,让他们觉得新知识并没有那么难,从而树立学好数学的信心。
2、学生归纳总结解方程组的基本思路及主要步骤。
3、解答练习,通过订正反馈,找出问题,认识并加深印象,避免出错。两名学生板演后讲评。
学生积极回顾,说出自己的收获。
学生认真思考,独立解答,同桌互相批改。
学生独立完成。
第1题为用代入法解二元一次方程组打下基础;第2题既复习了上节课的重点,又为本节课的新授做了铺垫。
教学重点
会用代入法解二元一次方程组
教学难点
如何灵活的“消元”,把“二元”转化为“一元”
教与学策略
通过观察—思考—讨论—猜测—验证—运用反馈解决重难点
课前准备(教具、活动准备等)
投影仪、课件
教学过程
教学步骤
教师活动
学生活动
设计意图
一、创设情境,导入新课
二、探索新知,解决问题
三、阅读课本,认识新知
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
8.2.1代入消元法解二元一次方程组教案
-难点突破:
-解释为什么选择含有某个变量的方程作为代入方程更有利于简化计算,如何判断哪个方程更容易解出一个变量。
-在代入过程中,如何处理复杂的运算,如分配律、合并同类项等,以及如何检查每一步的运算是否正确。
-对于一些特殊情况的方程组,如系数较大或较小,如何调整策略以避免计算错误。
8.2.1代入消元法解二元一次方程组教案
一、教学内容
本节课选自八年级数学下册教材第8章第2节,主题为“8.2.1代入消元法解二元一次方程组”。教学内容主要包括以下部分:
1.代入消元法的概念及原理;
2.如何选择代入方程和消去方程;
3.按照代入消元法解二元一次方程组的步骤进行求解;
4.通过实际例题,让学生掌握代入消元法的运用;
三、教学难点与重点
1.教学重点
-核心内容:代入消元法的步骤及其在解二元一次方程组中的应用。
-重点讲解:
-代入消元法的原理和步骤,包括如何从方程组中选取一个方程解出一个变量,然后将这个解代入另一个方程中消去该变量。
-通过具体的例题,展示代入消元法的具体操作流程。
-总结在什么情况下使用代入消元法更有效,以及如何避免在代入过程中出现的常见错误。
2.发展学生的数学建模素养:学会将现实问题转化为数学问题,构建方程模型,并运用代入消元法进行求解,培养学生将数学应用于实际情境的能力;
3.增强学生的运算能力:在代入消元法的运算过程中,提高学生的计算速度和准确性,培养他们熟练运用运算规则解决数学问题的能力;
4.培养学生的团队合作意识:通过小组讨论和合作完成练习题,让学生学会倾听他人意见,交流解题思路,共同解决问题。
举例:对于方程组:
(完整版)代入法解二元一次方程组教案
《代入法解二元一次方程组》教案教学目标1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.教学重点和难点重点:用代入法解二元一次方程组.难点:代入消元法的基本思想.课堂教学过程设计一、从学生原有的认知结构提出问题1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考) 教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?(4)能否由方程组中的方程②求解该问题呢?(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y 用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得 x=30.将x=30代入方程③,得y=20.即鸡有30只,兔有20只.本节课,我们来学习二元一次方程组的解法.二、讲授新课例1 解方程组分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2 解方程组分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)2(8-3y)+5y=-21,-y=-37,所以y=37.(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.(本题可由一名学生口述,教师板书完成)三、课堂练习(投影)用代入法解下列方程组:四、师生共同小结在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.五、作业用代入法解下列方程组:5.x+3y=3x+2y=7.。
(完整版)代入法解二元一次方程组教案
《代入法解二元一次方程组》讲课设计讲课目的1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想表现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的讲课过程中,逐渐浸透朴实的辩证唯心主义思想.讲课要点和难点要点:用代入法解二元一次方程组.难点:代入消元法的基本思想.讲堂讲课过程设计一、从学生原有的认知构造提出问题1.谁能造一个二元一次方程组?为何你造的方程组是二元一次方程组?2.谁能知道上述方程组 ( 指学生提出的方程组 ) 的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:( 投影 )一个农民有若干只鸡和兔子,它们共有50 个头和 140 只脚,问鸡和兔子各有多少?设农民有 x 只鸡, y 只兔,则获得二元一次方程组关于列出的这个二元一次方程组,我们如何求出它的解呢?( 学生思虑 )教师指引并提出问题:若设有x 只鸡,则兔子就有 (50-x) 只,依题意,得2x+4(50-x)= 140进而可解得, x=30,50-x=20 ,使问题得解.问题:从上边一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步指引学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系能否同样?(4)能否由方程组中的方程②求解该问题呢?(5)如何使方程②中含有的两个未知数变成只含有一个未知数呢?( 以上问题,要修业生独立思虑,想出消元的方法)联合学生的回答,教师作出解说.由方程①可得 y=50-x ③,即兔子数 y 用鸡数 x 的代数式 50-x 表示,因为方程②中的y 与方程①中的y 都表示兔子的只数,故可以把方程②中的y 用(50-x) 来代换,即把方程③代入方程②中,得2x+4(50-x)=140 ,解得x=30 .将x=30 代入方程③,得 y=20.即鸡有 30 只,兔有 20 只.本节课,我们来学习二元一次方程组的解法.二、解说新课例 1解方程组解析:若此方程组有解,则这两个方程中同一个未知数就应取同样的值.因此,方程②中的 y 即可用方程①中的表示 y 的代数式来取代.解:把①代入②,得3x+2(1-x)=5 ,3x+2-2x=5 ,所以x=3 .把x=3 代入①,得 y=-2 .( 此题应以教师解说为主,并板书,同时教师在最后应提示学生,与解一元一次方程同样,要判断运算的结果能否正确,需查验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边能否相等.查验可以口算,也可以在底稿纸上验算)教师解说完例 1 后,联合板书,就此题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为何能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简单?在学生回答完上述问题的基础上,教师指出:这类经过代入消去一个未知数,使二元方程转变成一元方程,进而方程组得以求解的方法叫做代入消元法,简称代入法.例 2解方程组解析:例 1 是用 y=1-x 直接代入②的.例 2 的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数) ,所以不可以直接代入.为此,我们需要想方法创办条件,把一个方程变形为用含x 的代数式表示 y( 或含 y 的代数式表示 x) .那么采用哪个方程变形较简单呢?经过察看,发现方程②中x 的系数为 1,所以,可先将方程②变形,用含有y 的代数式表示 x,再代入方程①求解.解:由②,得x=8-3y ,③把③代入①,得 ( 问:能否代入②中? )2(8-3y)+5y=-21 ,-y=-37 ,所以y=37 .( 问:此题解完了吗?把y=37 代入哪个方程求x 较简单? )把 y=37 代入③,得x= 8-3 ×37,所以x=-103 .( 此题可由一名学生口述,教师板书达成)三、讲堂练习 ( 投影 )用代入法解以下方程组:四、师生共同小结在与学生共同回首了本节课所学内容的基础上,教师重视指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即便“代入”成为可能.而代入的目的就是为了消元,使二元方程转变成一元方程,进而使问题最后获得解决.五、作业用代入法解以下方程组:5.x+3y=3x+2y=7.。
代入法解二元一次方程组教案
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
数学教案-用代入法解二元一次方程组
数学教案-用代入法解二元一次方程组一、教学目标1.掌握代入法解二元一次方程组的基本步骤;2.理解代入法解二元一次方程组的原理和思想;3.能够独立运用代入法解决实际问题。
二、教学内容1.代入法解二元一次方程组的定义和原理;2.代入法解二元一次方程组的基本步骤;3.代入法解二元一次方程组的简单实例;4.代入法解二元一次方程组的应用实例。
三、教学过程1. 导入与引入教师可以通过提问的方式导入教学内容,引发学生对代入法解二元一次方程组的兴趣。
例如:在生活中遇到过同时解决两个未知数的问题吗?这种情况在数学中叫做什么?2. 理解代入法解二元一次方程组的原理和思想通过讲解和示例,帮助学生理解代入法解二元一次方程组的原理和思想。
可以通过以下步骤进行讲解:(1)提醒学生方程组是由两个方程组成的,可以通过找到一个未知数的值,再代入另一个方程求解另一个未知数的值;(2)通过实例展示代入法解二元一次方程组的步骤:假设已知一方程求解一个未知数的值,再代入另一个方程,求解另一个未知数的值;(3)理解代入法解二元一次方程组的思想:通过依次代入方程,从而找到满足所有方程的解。
3. 代入法解二元一次方程组的基本步骤教师通过示例引导学生熟悉代入法解二元一次方程组的基本步骤,可以按照以下步骤进行演示:(1)给出一个二元一次方程组;(2)根据其中一个方程,求解一个未知数的值;(3)将求得的未知数值代入另一个方程,求解另一个未知数的值;(4)验证所求的解是否满足原方程组。
4. 代入法解二元一次方程组的简单实例教师通过多个简单实例引导学生运用代入法解决二元一次方程组。
可以设计以下实例:(1)例子1:求解方程组$$ \\begin{cases} 2x + y = 8 \\\\ x - y = 2 \\end{cases} $$求解过程: - 从第二个方程中解出x,得x=y+2; - 将x的值代入第一个方程,得到2(y+2)+y=8; - 化简得3y=4,解得 $y = \\frac{4}{3}$; - 将y的值代入第二个方程,得到 $x - \\frac{4}{3} = 2$; - 化简得 $x = \\frac{10}{3}$; -验证所求解是否满足原方程组。
解二元一次方程组教案(优秀6篇)
解二元一次方程组教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!解二元一次方程组教案(优秀6篇)作为一名教师,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。
解二元一次方程组教案优秀9篇
解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。
设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《代入法解二元一次方程组》教案
教学目标
1.使学生会用代入消元法解二元一次方程组;
2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;
3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.
教学重点和难点
重点:用代入法解二元一次方程组.
难点:代入消元法的基本思想.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?
2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?
3.上节课我们提出了鸡兔同笼问题:(投影)
一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?
设农民有x只鸡,y只兔,则得到二元一次方程组
对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考) 教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140
从而可解得,x=30,50-x=20,使问题得解.
问题:从上面一元一次方程解法过程中,你能得出二元一次方程组
串问题,进一步引导学生找出它的解法)
(1)在一元一次方程解法中,列方程时所用的等量关系是什么?
(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?
(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量
关系是否相同?
(4)能否由方程组中的方程②求解该问题呢?
(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?
(以上问题,要求学生独立思考,想出消元的方法)
结合学生的回答,教师作出讲解.
由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y 用(50-x)来代换,即把方程③代入方程②中,得
2x+4(50-x)=140,
解得 x=30.
将x=30代入方程③,得y=20.
即鸡有30只,兔有20只.
本节课,我们来学习二元一次方程组的解法.
二、讲授新课
例1 解方程组
分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.
解:把①代入②,得
3x+2(1-x)=5,
3x+2-2x=5,
所
以
x=3.
把x=3代入①,得y=-2.
(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)
教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:
1.方程①代入哪一个方程?其目的是什么?
2.为什么能代入?
3.只求出一个未知数的值,方程组解完了吗?
4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?
在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.
例2 解方程组
分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变
形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.
解:由②,得
x=8-3y,
③
把③代入①,得(问:能否代入②中?)
2(8-3y)+5y=-21,
-y=-37,
所
以
y=37.
(问:本题解完了吗?把y=37代入哪个方程求x较简单?)
把y=37代入③,得
x= 8-3×37,
所
以
x=-103.
(本题可由一名学生口述,教师板书完成)
三、课堂练习(投影)
用代入法解下列方程组:
四、师生共同小结
在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.
五、作业
用代入法解下列方程组:
5.x+3y=3x+2y=7.。