核心素养导向的高级中学数学课例分析研究与实践(样例)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核心素养导向的高中数学课例研究与实践

--以《直线与平面垂直的判定》为例

高中数学核心素养是指通过学习高中数学的知识与技能、思想与方法而习得的让学生终身受益的重要观念,学生解决问题时所需要的综合性能力与必备品格.《普通高中数学课程标准(征求意见稿)》(以下简称新《课程标准》)的最大亮点是建构了核心素养体系,给出了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六大数学核心素养,并以核心素养统领学业质量标准研制、教材编写、教学实施、考试评价等.

关注“核心素养”的培养是目前我国基础教育理论研究和实践变革的重大趋势.核心素养的研究应加强将理念落实于教学实践的研究,冲破长久以来横亘在专家的“理论研究”和教师的“实际教学”之间的阻隔,将教育理念落实于课堂教学行为,关注学生的总体素质塑造.理念的落实最终是发生在课堂上的,作为一线的数学教师,更应关注:发展学生的核心素养,数学教学该怎么做?如何在课堂上有效的发展学生的“核心素养”?实践表明,“课例”是理念转化为实践的最有效的中介,好的课例可以为教师提供理论与实践相结合的载体,为教师的教学实践提供有效的抓手.

一、核心素养导向的课例研究的关键问题

课例研究是一种集专业培训、课堂观察、教师参与、改良过程、合作研究等多种研究方式于一体的研究平台,指的是教师系统合作,改善课堂教学,分享教学策略,共享教学资源的研究过程.一般采取“上课→说课→评课→反思→重新设计课例→整合形成新的课例”的流程对课堂教学展开循环式改进研究,强调教师合作与反思.

基于核心素养导向的课例研究必然要求研究者要转变视角,与时俱进,特别是要关注以下三个关键问题。

1.基于核心素养导向的课例研究的基本框架.

核心素养导向的课例研究是基于《课程标准》,立足课堂,实现教材、教学、考试、评价一致性的研究.

经过研究与实践,我们设计并形成了如下的课例研究的基本框架:

研究的重点与难点:通过具体的课堂教学课例研究,落实培养学生数学学科核心素养,改进教学,立德树人.

课例研究的每一环节需要基于如下原则展开:在“确立研究主题”环节做到教学合一;在“规划教学设计”环节做到因学设教;在“实施课堂观察”环节做到以学观教;在“开展课后研讨”环节做到以学论教;在“形成研究报告”环节做到以学改教。

2.基于核心素养导向的教学目标的制定.

新《课程标准》指出“数学核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成的.”同时,在“学业质量标准”中将六大核心素养各划分为三个水平层次.”核心素养的提出,对教学下一步的发展,有了更明确的指向,深化了教学目标的内涵.核心素养的形成,需要通过每一节课的有效学习来实现.因此,核心素养导向的课例研究首先要明确核心素养发展的具体目标;其次要界定体现高中数学核心素养不同层面的教学内容;再次要将高中数学的六大核心素养的要求具体化为每一节课的可操作性教学目标. 3.基于核心素养导向课例研究维度及要点解析.

新《课程标准》指出“高中数学教学活动要树立以发展学生数学核心素养为导向的教学意识,创设有利于学生数学核心素养发展的教学情境,启发学生思考,引导学生把握数学内容的本质.提倡独立思考、合作交流等多种学习方式,养成良好的学习习惯.重视数学建模活动和数学探究活动,促进学生应用能力和创新意识的发展.注重信息技术与课程内容的整合,提高教学的实效性.不断引导学生感悟数学的科学价值、应用价值、文化价值和审美价值.”

我们认为,在基于核心素养导向的课例研究过程中,应关注以下研究维度及要点解析:

二、核心素养导向的高中数学课例举例

课题:人教A版必修2第二章第三节《直线与平面垂直的判定》(第1课时)1.教学目标与内容

2.教学方式

本节课采用师生、生生合作交流和以学生为主体的探究式学习展开教学.核心素养方面尤其侧重于数学抽象、逻辑推理及直观想象等核心素养的培养,主要引导学生通过自主学习与合作探究,实现在熟悉的生活情境中抽象出直线与平面垂直的定义以及判定方法.通过合作交流,明确线面垂直的判定实质内涵,从而达到灵活应用定理解决相关数学问题.

3.教学过程

学思想和方法?

(4)本节课你还有哪些问题?培养学生认真总

结的学习习惯.

以及定理

应用.

辑地表达与交流的

目的.

5.布置作业,自主探究

必做题:课本P67练习1:

如图1,在三棱锥V-ABC中,

VA=VC,AB=BC,求证:VB⊥AC.

选做题:如图2,SA⊥平面

ABC,AB⊥BC,过A作SB的

垂线,垂足为E,过E作SC的

垂线,垂足为F.求证:AF⊥SC.

通过训练,

巩固本课所学知

识,感悟其中蕴

涵的转化数学思

想,增强学生的

应用意识.

必做题在例

题的基础上,应

用了直线与平面

垂直的意义;选

做题进一步巩固

直线与平面垂直

的判定定理.

必做

题巩固学

生学习的

基础知识,

为学生必

要完成的

作业;选做

题可在学

生学有余

力的情况

下继续钻

研.

通过对题目条

件和结果的分析,

探索论证的思路,

选择合适的证明方

法,并用准确的线

面垂直的定义和判

定完成论证过程.

4.教学收获与反思

收获:(1)从直线与平面的位置关系中,选择最特殊的相交关系引出课题,并伴以学生的动手操作、举例、想象和语言描述.注意知识的系统与联系,强调学生生活经验的作用,容易使学生回忆起“直线与平面平行”的学习中形成的经验,从而达到在熟悉的情境中,发现图形的关系抽象概括出直线与平面垂直的定义;(2)在教学过程中,不断的设置疑问,不仅是为了拓展加深对定理的认识,更重要的是培养了学生空间观念与思维的严谨性,培养了学生逻辑推理等数学核心素养;(3)通过观察实例,动手操作,让学生更清楚地看到线面垂直的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学.借助几何直观和空间想象感知事物的形态与变化,利用图形理解和解决数学问题,有助于直观想象素养的培养;从图形与图形关系中,抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,用数学语言予以表征,有助于数学抽象素养的培养.

反思:(1)在复习回顾过程中,教师首先提出了一个问题:问直线和平面有几种位置关系.我们研究了直线和平面平行,直线在平面内是平面几何的内容,今天我们来研究直线

相关文档
最新文档