九年级上册数学圆基础练习卷附答案学生版

合集下载

人教版九年级上册数学 圆 几何综合单元测试卷附答案

人教版九年级上册数学 圆 几何综合单元测试卷附答案

人教版九年级上册数学圆几何综合单元测试卷附答案一、初三数学圆易错题压轴题(难)1.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC ;(2)连接OD∵DE 为⊙O 的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C ∴ED=EC ;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=, ∵B B ∠=∠, ∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽, ∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4,∴DF=CD •sin60°=23CF=2,在Rt △GDF 中,22(23)537+=,∴12PD PC PD PG DG -=-≤, 当点P 在DG 的延长线上时,12PD PC -的值最大, ∴最大值为:37DG =【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.5.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•s in∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM =∠EOH ,∠BMP =∠OHP ∴PM =PB∴PM +PH =PB +OP∴HM =OB =5在Rt △OBF 中,根据勾股定理可得BF =4∴BC =8,sin ∠OBC =35∵∠A +∠ABO =∠DEB +∠ABO =90°∴∠AKB +∠CKB =90°∴OK ⊥ACAC =2CK ,CK =BC •sin ∠OBC =245∴AC =485【点睛】 此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.6.四边形ABCD 的对角线交于点E ,有AE =EC ,BE =ED ,以AB 为直径的O 过点E .(1)求证:四边形ABCD 是菱形.(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π-【解析】试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案.试题解析:(1)AE =EC ,BE =ED∴ABCD 四边形为平行四边形∵90AB AEB ∠∴=︒是直径∴ABCD 平行四边形是菱形(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于QCF 切O 于点F∴90OFC ∠=︒∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒∴3090EOB EQO ∠∠=︒=︒ ∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.7.四边形ABCD 内接于⊙O ,AC 为对角线,∠ACB =∠ACD(1)如图1,求证:AB =AD ;(2)如图2,点E 在AB 弧上,DE 交AC 于点F ,连接BE ,BE =DF ,求证:DF =DC ;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(3)70【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN =9, ∴12×(5+2FN )×FN =9, ∴FN =2,∴DM =2,DH =4,∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC , ∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC , ∴△GEH ∽△CHD , ∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE∴BC【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.8.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB .(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)3(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∴∠A=∠OBD ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD , ∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°, ∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H , ∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO , ∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=22EB OB =, ∵OB=2,∴EB =2 ,∵OE 过圆心,OE ⊥BC ,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.9.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)24105MN =. 【解析】【分析】(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =,∴,OM AC ON FD ⊥⊥,∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=6∴HK=166m +, ∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT ,∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴, ∵OS ⊥MN∴∠OSG=∠GKH=90°,GH ∥OS∴∠HGK=∠GOS∴△HGK ∽△GOS , ∴OS GK OG GH=,∴OS =∴MG =∴24105MN=;【点睛】本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)33PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。

九年级数学上册 圆 几何综合单元测试卷附答案

九年级数学上册 圆 几何综合单元测试卷附答案

九年级数学上册圆几何综合单元测试卷附答案一、初三数学圆易错题压轴题(难)1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==2.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似3.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题4.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.⑴求证:AC是⊙D的切线.⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD= 时,四边形BDEF为菱形;②当AB= 时,△CDE为等腰三角形.【答案】(1)见解析;(2)①30°,②2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴DC=2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,BC=1+2∴()222++=+,解得x=2+1(12)1x x∴当AB=2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.5.已知:AB为⊙O直径,弦CD⊥AB,垂足为H,点E为⊙O上一点,AE BE=,BE与CD交于点F.(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 . 【解析】 【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解; (2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径 ∴90AEB =︒∠∵AE BE = ∴AE BE = ∴45B ∠=︒ 又∵CD AB ⊥于H∴45HFB ∠=︒ ∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒ ∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆ ∴CG CB =同理()CBE CGE SAS ∆≅∆ ∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB = ∴CM CB = ∵HB HF =∴45HBF HFB ∠=∠=︒ ∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,, ∴CM CB CN == 则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+ ∴45M MGC α∠=∠=︒+ ∴()CMG CNG AAS ∆≅∆ ∵CMG ∆面积为6 ∴6CANGANSS-=设2122BH NH x OA OB x AN x ====+=+,, 则()CGT BCH AAS ∆≅∆ ∴C BH x ==∴6AN CH AN TH ⋅-⋅= ∴1(22)62x CT +⋅= 解得:2x = ∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC == 【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.6.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =5,∴BH=BC•cos∠ABC=25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=42;综上所述,①当BC=3CE时,m=22或42.②如图4,过F作FG⊥HE于点G,∵CH⊥AB,HB=HD,∴CB =CD , ∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHDEFH SS =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH =22FG HG +=22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF =22FG EG +=22(5)k k +=26k ,∴FHDEFH SS =26k =26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==,延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.8.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是813132+,最小值是813132-. 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF 的面积有最大和最小值,取AB 的中点G ,连接FG ,DE ,证明△FAG ~△EAD ,进而证明点F 在以G 为圆心1为半径的圆上运动,过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小,分别求出△ACD 的面积和△ACF 的面积的最小值即可得出四边形ADCF 的面积的最小值;②当F 在F 2时,四边形ADCF 的面积有最大值,在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF 的面积的最大值.【详解】解:(1)连接线段OP 交⊙C 于A ,点A 即为所求,如图1所示;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ',∴CO +PQ ≤CQ '+P 'Q ',又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短.在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值. 如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3, 又∵AD =9,∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 313BC BAC AC ∠=== 在Rt △ACH 中,313913sin 31313GH AG BAC =•∠=⨯=,∴11913113F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯⨯-=; ∴四边形ADCF 面积最小值是:273138131327--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵229131F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22132AC F H +•=⨯⨯+=; ∴四边形ADCF 面积最大值是273138131327+++=; 综上所述,四边形ADCF 面积最大值是81313+,最小值是81313-. 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】 (1)2222DP m AO =+=+,8BP AB AP m =-=- (2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒ ∴2AO OH =∴22m m +=解得4m =情况2:与BC相切时,Rt BON ∆中,∵60B ∠=︒ ∴3cos 2ON B OB ==即32282mm =- 解得32348m =-(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒,∴3cos30cos30FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553102AC BC EP AB ⨯===.在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF .在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762 【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 322)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:3l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:3l y x b =+上的点到⊙O 的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O的最小值为11则418m -≥⎧≤,解得:4m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O11;点T 到⊙O11则2222(1)114218m m ⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m -≤≤--或22177m -≤≤(舍去) 故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。

初中数学九年级上册《圆》基础典型练习题(整理含答案)

初中数学九年级上册《圆》基础典型练习题(整理含答案)

圆一、认认真真,书写快乐1.圆内接五边形各边相等,各边所对的圆心角的度数是 .2.如图1,在⊙O 中,AB AC =,∠B =70°,则∠C = .3.在半径为2的⊙O 中,弦AB 的长为则弦AB 所对的圆心角∠AOB 的度数是 .4.若⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,且∠BOD =48°,则∠BAC = .5.如图2所示,弦AB 过圆心O ,∠A =30°,⊙O 的半径长为CD ⊥AB 于E ,则CD 的长为 .二、仔仔细细,记录自信6.下列图形中对称轴最多的是( )A .圆B .正方形C .等腰三角形D .线段7.在同圆或等圆中,如果圆心角∠BOA 等于另一圆心角∠COD 的2倍,则下列式子中能成立的是( )A .AB =2CD B .2AB CD =C .2AB CD < D .AB CD =8.下列语句中,正确的有( )①相等的圆心角所对的弦相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个9.如图3,已知圆心角∠AOB =100°,则圆周角∠ACB 的度数为( )A .100°B .80°C .50°D .40°10.已知:如图4,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()A.30°B.40°C.50°D.60°三、平心静气,展示智慧11.如图5,AB是⊙O的直径,AC、CD、DE、EF、FB都是⊙O的弦,且AC=CD=DE=EF=FB,求∠AOC与∠COF的度数.12.如图6,一座圆弧形的拱桥,它所在圆的半径为10米,某天通过拱桥的水面宽度AB为16米,现有一小帆船高出水面的高度是3.5米,问小船能否从拱桥下通过?13.如图7,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.参考答案:一、1.722.70 3.90 4.48 5.6 二、6.A 7.B 8.A 9.C 10.D三、11.解:因为AC DC DE EF FB ====,所以180536AOC COD DOE EOF FOB =====÷=∠∠∠∠∠, 所以336108COF AOC ==⨯=∠∠.12.先算出拱桥高出水面的高度为4米,4 3.5>,因此可以通过.13.解:因为AB CD =,所以AB CD =.所以AB AD CD AD -=-,即BD CA =,所以BD CA =.在AEC △与DEB △中,BD CA =,ACE DBE =∠∠,AEC DEB =∠∠, 所以AEC DEB △≌△.(2)点B 与点C 关于直线OE 对称.理由略.。

2021年人教版九年级数学上册《圆》单元基础测试卷(含答案)

2021年人教版九年级数学上册《圆》单元基础测试卷(含答案)

2021年人教版九年级数学上册《圆》单元基础测试卷一、选择题1.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.82.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.123.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心4.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为()A.10cmB.16cmC.24cmD.26cm5.如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A.100°B.110°C.120°D.130°6.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )A.54° B.64° C.27° D.37°7.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.20°D.28°8.如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,点P在AC的延长线上,PD是⊙O的切线,延长BC交PD于点E.则下列说法不正确的是()A.∠ADC=∠PDOB.∠DCE=∠DABC.∠1=∠BD.∠PCD=∠PDA9.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C半径为()A.2.6B.2.5C.2.4D.2.311.若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A.π B.2π C.3π D.6π12.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高A.10cmB.15cmC.10cmD.20cm二、填空题13.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米.14.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=_____°.15.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC,若∠BOC与∠BAC互补,则弦BC 的长为_________.16.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB= .17.若AB=4cm,则过点A、B且半径为3cm的圆有______个.18.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4,以点A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分面积为.19.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB 为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.21.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.22.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.23.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.24.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.25.如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.(1)求证:DE是⊙O的切线;(2)若AB=10,求线段OG的长.26.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.答案解析1.D.2.C3.D4.C.5.C6.C.7.B8.C9.B10.D.11.C.12.D13.答案为:8.14.答案为:35.15.答案为:2;16.答案为:30°.17.答案为:两.18.答案为:4﹣π.19.答案:(1)0.1 (2)0.1或0.7.20.解:(1)∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.21.解:(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.22.解:(1)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+42=(r+2)2,解得:r=3,答:⊙O半径的长是3.23.(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.24.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.25.解:(1)连接OD,∵OA=OD,∴∠OAD=∠ODA,由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,∴∠ODA=∠EAD,∴OD∥AE,∴∠ODE=90°,∴DE与⊙O相切;(2)∵将△AHD沿AD翻折得到△AED,∴∠OAD=∠EAD=30°,∴∠OAC=60°,∵OA=OD,∴△OAC是等边三角形,∴∠AOG=60°,∵∠OAD=30°,∴∠AGO=90°,∴OG=2.5.26.(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,。

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

圆单元检测(基础)(学生版)

圆单元检测(基础)(学生版)

基础卷第三章圆注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江苏盐城初三一模)下列说法正确的是()A.相等的圆心角所对的弧相等B.三角形的内心到三角形三个顶点距离相等C.等弧所对的弦相等D.圆的切线垂直于半径2.(2020·江苏洪泽初三期中)如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为()A.160o B.120o C.100o D.80o3.(2020·湖北初三月考)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.43π﹣3B.43π﹣23C.π﹣3D.23π﹣34.(2020·江苏丹徒初三期中)如图,在平面直角坐标系中,⊙P 的圆心坐标是(-3,a)(a >3),半径为3,函数y=-x 的图像被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .32+C .32D .33+5.(2020·云南盈江·初三学业考试)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积1S 来近似估计⊙O 的面积S ,设⊙O 的半径为1,则1S S -的值为()( 3.14π≈)A .0B .0.14C .0.5D .16.(2020.江苏省初三期末)如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧¼AMB 上一点,则∠APB 的度数为()A .45°B .30°C .75°D .60°7.(2020·江苏建邺·初三月考)如图,AB 、BC 、CD 、DA 都是⊙O 的切线.已知AD =3,BC =6,则AB +CD 的值是()A .3B .6C .9D .128.(2020•南召县初三)如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE =OB ,∠AOC =84°,则∠E 等于()A .42°B .28°C .21°D .20°9.(2020•黄石)如图,点A 、B 、C 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E ,若∠DCE =40°,则∠ACB 的度数为()A .140°B .70°C .110°D .80°10.(2020·湖南永州·中考真题)如图,已知,PA PB 是O 的两条切线,A ,B 为切点,线段OP 交O 于点M .给出下列四种说法:①PA PB =;②OP AB ⊥;③四边形OAPB 有外接圆;④M 是AOP 外接圆的圆心,其中正确说法的个数是()A .1B .2C .3D .411.(2019·新疆初三期末)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤12、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2020·江苏初三期末)平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___确定一个圆.(填“能”或“不能”)14.(2020·湖北黄石·初三三模)已知⊙O和⊙O'的半径分别为5cm和7cm,且⊙O和⊙O'相切,则圆心距OO'为15.(2019•浙江初三模拟)如图,已知半⊙O的直径AB为3,弦AC与弦BD交于点E,OD⊥AC,垂足为点F,AC=BD,则弦AC的长为.16.(2020·甘肃张掖初三一模)如图,两个同心圆,大圆半径为5cm ,小圆的半径为3cm ,若大圆的弦AB 与小圆相交,则弦AB 的取值范围是_____.17.(2020·江苏丹徒初三期中)如图,在圆O 的内接四边形ABCD 中,AB=AD ,∠C=110°,若点E 在弧AD 上,∠E 的度数为____.18.(2020·江苏丹阳初三期中)如图,点(6,0)A m +、(0,)(0)B m m >分别在x 轴、y 轴上,直线y x =与以AB 为直径的圆交于点C ,则点C 的坐标为____.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2020·贵州紫云初三期末)如图,在ABC ∆中,90C =∠,AB 的中点O .(1)求证:,,A B C 三点在以O 为圆心的圆上;(2)若90ADB ∠=o ,求证:,,,A B C D 四点在以O 为圆心的圆上.20.(2020·全国单元测试)等边三角形ABC 的边长为1厘米,面积为0.43平方厘米.以点A 为圆心,AC 长为半径在三角形外画弧,交BA 的延长线于点D ,形成扇形CAD ;以点B 为圆心,BD 长为半径画弧,交CB 的延长线于点E ,形成扇形DBE ;以点C 为圆心,CE 长为半径画弧,交AC 的延长线于点F ,形成扇形ECF .(1)求所得的图形CDEFC 的周长;(结果保留π)(2)照此规律画至第十个扇形,求所围成的图形的面积以及所画出的所有弧长的和.(结果保留π)21.(2019·云南初三)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交AC于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是AC的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.22.(2019·南京民办求真中学初三月考)已知:如图,在Rt△ABC中,∠C=90°,Rt△ABC的内切圆⊙O,切点分别为点D、E、F,(1)若AC=3,BC=4,求△ABC的内切圆半径;(2)当AD=5,BD=7时,求△ABC的面积;(3)当AD=m,BD=n时,直接写出求△ABC的面积(用含m,n的式子表示)为.23、如图,AB、CD是⊙O中两条互相垂直的弦,垂足为点E,且AE=CE,点F是BC的中点,延长FE交AD于点G,已知AE=1,BE=3,OE=.(1)求证:△AED≌△CEB;(2)求证:FG⊥AD;(3)若一条直线l到圆心O的距离d=,试判断直线l是否是圆O的切线,并说明理由.24、如图,⊙O是△ABC的外接圆,AB为直径,过点O作OD∥BC,交AC于点D.(1)求∠ADO的度数;(2)延长DO交⊙O于点E,过E作⊙O的切线,交CB延长线于点F,连接DF交OB于点G.①试判断四边形CDEF 的形状,并说明理由;②若BG=2,AD=3,求四边形CDEF的面积.25.(2020·嘉峪关市第六中学初三期末)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.26.(2020·山东初三)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=32,ACBC=34,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.。

最新人教版九年级初三数学上册《圆》同步练习题含答案

最新人教版九年级初三数学上册《圆》同步练习题含答案

九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D.2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C ,若AB=2,∠P=30°,求AP 的长(结果保留根号).已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A.18.求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. O EDCB A20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E .(1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).参考答案1.C2.B .3.B .4.A5.B .6.D .7.B .8.B .9.310.24π.11.4π.12.4.13.1.14 15.3π.16.17.18.证明:(1)∵AB 为⊙O 的直径∴∠D=90°, ∠A+∠ABD=90° ∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC ⊥AB∴BC 是⊙O 的切线19.∵OC ∥AD ,∠D=90°,BD=6∴OC ⊥BD∴BE=12BD=3 ∵O 是AB 的中点∴AD=2EO -∵BC ⊥AB ,OC ⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =•∵CE=4, ∴94OE =∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析.21.(1)证明见解析;(2)⊙O的半径为7.5.22.(1)证明见试题解析;(2)2π.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。

九年级上册数学圆基础练习卷附答案学生版

九年级上册数学圆基础练习卷附答案学生版

九年级上册数学圆基础练习卷附答案一、单选题(共22题;共44分)1.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°2.若正六边形的边长为6,则其外接圆半径为()A. 3B. 3 √2C. 3 √3D. 63.边长为1的正六边形的内切圆的半径为( ).A. 2B. 1C.D.4.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A. π2+12B. π−14C. π4+12D. π4−125.如图,正方形ABCD的边AB=1,BD̂和AĈ都是以1为半径的圆弧,则无阴影两部分的面积之差是()A. π2−1 B. 1﹣π4C. π3﹣1 D. 1﹣π66.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3cmC. 2cmD. 1cm7.已知圆心角为120°的扇形的弧长为12π,那么此扇形的半径为().A. 12B. 18C. 36D. 458.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A. B. C. D. 3a9.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()B. πC. 2πD. 4πA. π210.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为()A. B. C. π D.11.如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A. 2﹣π3 B. 2﹣π6C. 4﹣π3D. 4﹣π612.如图,矩形ABCD中,AB=9,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是()A. 252π B. 13π C. 272π D. 14π13.已知⊙O的半径是4,点P到圆心O的距离OP=3,则点P与⊙O的位置关系是()A. 点P在⊙O外B. 点P在⊙O上C. 点P在⊙O内D. 不能确定14.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A. 点P在⊙O外B. 点P在⊙O上C. 点P在⊙O内D. 不确定15.若一个点到圆上的点的最小距离为4cm,最大距离为10cm,则该圆的半径是()A. 7cmB. 3cmC. 3cm或7cmD. 6cm或14cm16.如图,在5x5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A. 点PB. 点QC. 点RD. 点M17.如图,⊙O是△ABC的内切圆,则点O是△ABC的()A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点18.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A. 25°B. 50°C. 60°D. 80°19.如图,点A、B、C是圆O上的三点,且四边形OABC是平行四边形,OD⊥AB交圆O于点D,则∠OAD 等于( )A. 72.5°B. 75°C. 80°D. 60°20.如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A. 30°B. 35°C. 45°D. 70°21.如图,⊙O是ΔABC的外接圆,∠ACO=45°,则∠B的度数为()A. 30°B. 35°C. 45°D. 60°22.圆内接四边形ABCD中,若∠A∶∠B∶∠C=1∶2∶3,则∠D的度数是()A. 45°B. 60°C. 90°D. 135°二、填空题(共15题;共15分)23.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为________ cm2.(结果保留π)24.正六边形的中心角等于 ________度.25.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.26.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为 ________cm2.27.如图,在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1−S2=________。

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)一、单选题(共12题;共24分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A. πr2B. πr2C. πr2D. πr22.若⊙O的半径为6,点P在⊙O内,则OP的长可能是()A. 5B. 6C. 7D. 83.如图,A、B、C三点在⊙O上,∠AOB=80º,则∠ACB的大小()`A. 40ºB. 60ºC. 80ºD. 100º4.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A. =B. >C. <D. 不能确定5.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是():A. 相交B. 相离C. 内切D. 外切7.两圆的半径分别是5cm和4cm,圆心距为7cm,则两圆的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.如图,某公园的一座石拱桥是圆弧形(劣弧),拱的半径为13米,拱高CD为8米,则拱桥的跨度AB 的长为())A. 20米B. 24米C. 28米D. 24米9.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A. 10B. 12C. 16D. 2010.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A. B. 2 C. 2 D. 311.(2017•葫芦岛)如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是())A. 30°B. 35°C. 45°D. 70°12.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A. 6个B. 8个C. 10个D. 12个二、填空题(共6题;共20分)13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB =________°.14.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①________;②________.不同点:①________;②________.!15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有 ________条弦,它们分别是 ________16.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、综合题(共5题;共56分)19.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.》(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.如图,在半径为2的⊙O中,弦AB长为2.、(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.21.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD 的延长线交于点P,使∠PED=∠C.^(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.;22.(2017•安顺)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.`答案一、单选题1.B2. A3. A4.D5. B6. C7. A8. B9. C 10.C 11.B 12. C二、填空题13.4414.都是轴对称图形;都有外接圆和内切圆;内角和不同;对角线的条数不同15.三;AE,DC,AD.16.17.618.三、综合题19. (1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)解:∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.20.(1)解:过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD= AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD= = .即点O到AB的距离为.(2)解:如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA= (360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.21.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF=﹣2=.22.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD= BC= ,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD= = ,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE= OB=2 ,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2× ×2×2 ﹣=4 ﹣π23.(1)90;直径所对的圆周角是直角(2)解:△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴= = =∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=。

(人教版)九年级上册数学《圆》测试题(含答案)

(人教版)九年级上册数学《圆》测试题(含答案)

第二十四章圆整章综合水平测试题一选择题(每小题 3 分,共 30 分)1. 下列命题中,假命题是()A. 两条弧的长度相等,它们是等弧B. 等弧所对的圆周角相等C. 直径所对的圆周角是直角D.一条弧所对的圆心角等于它所对圆周角的 2 倍.2.若圆的一条弦把圆分成度数的比为 1 :3 的两段弧,则劣弧所对的圆周角等于()A .45B。

90C。

135D。

2703.已知正六边形的周长是12a ,则该正六边形的半径是()A 6a B. 4a C. 2a D. 3 a24.如图 1,圆与圆的位置关系是()A. 外离 B 相切 C.相交 D. 内含图1图25.如图 2,A, B, C , D , E的半径都是 1,顺次连结这些圆心得到五边形ABCDE ,则图中的阴影部分面积之和为()A.3C. 25 B. D.226.过O 内一点N的最长弦为6,最短的弦长为4,那么 ON 的长为()A 3 B.2 C. 5 D. 37.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1 , S2 , S3,则下列关系成立的是()A .S1S2S3,B。

S1S2S3C.S1S2S3D。

S2S3S18.平行四边形的四个顶点在同一个圆上,则该平行四边形一定是(A. 正方形 B 菱形 C.矩形)D. 等腰梯形9.在半径等于5cm的圆内有长为5 3cm 的弦,则此弦所对的圆周角为()A. 120B30或 120 C. 60 D 60或 12010.已知01、O2、O3两两外切,且半径分别为2cm 、 3cm、 10cm,则O1O2O3的形状是()A 锐角三角形 B. 直角三角形 C 钝角三角形 D.等腰直角三角形.二、填空题(每小题 3 分,共 30 分)11.如图 3,已知 AB 为O 的直径, AB CD ,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来._____________.图3图4图512.如图 4,AB 是O 的直径,C为圆上一点, A 60 , OD BC , D为垂足,且OD=10,则 AB=_______,BC=_______.13.如图 5,已知O 中,AB BC ,且 AB : AMC 3: 4 ,则AOC______.14.如图 6,在条件 : ①COA AOD60 ;②AC=AD=OA;③点E分别是AO、CD的中点;④ OA CD ,且ACO 60 中,能推出四边形OCAD是菱形的条件有_______个 .图6图715.为了改善市区人民的生活环境 , 某市建设污水管网工程 , 某圆柱型水管的直径为100cm ,截面如图7 所示 , 若管内的污水的面宽AB 60cm ,则污水的最大深度为______.16.O 的直径为 11cm ,圆心到一直线的距离为 5cm,那么这条直线和圆的位置关系是_______;若圆心到一直线的距离为 5.5cm,那么这条直线和圆的位置关系是_______;17.若两圆相切 ,圆心距为8cm ,其中一个圆的半径为12cm,则另一个圆的半径为 _____.18.正五边形的一个中心角的度数是 ________,19.已知O1和o2的半径分别为 2 和 3,如果它们既不相交又不相切,那么它们的圆心距 d 的取值范围是________.20 已知在同一平面内圆锥两母线在顶点处最大的夹角为60 ,母线长为8,则圆锥的侧面积为 ______.三 .解答题(共60 分)21.( 6 分)如图8,已知ABC 中, C 90 ,AC=3,BC=4,已点C为圆心作 C ,半径为 r .当 r 取什么值时点(1)、B在C外?, A(2)当r取什么值时 ,点 A 在C内,点B在 C 外?图 822.( 6 分)如图9,两个同心圆,作一直线交大圆于A、 B,交小圆于C、 D, AC 与 BD 有何关系?请说明理由.图 923(. 6 分)如图 10,PA、PB 是O的两条切线, A 、B 是切点,AC 是O的直径,BAC35 ,求 P的度数.图 1024.( 8 分)如图11,P 是O 的直径AB上的一点,PC AB ,PC交O 于C,OCP的平分线交O 于D,当点P 在半径OA(不包括O 点和A点)上移动时,试探究AD与 BD的大小关系.图 1125( 8 分) .如图 12,O 的半径OA=5,点C是弦AB上的一点,且 OC AB ,OC=BC.求 AB 的长.图 1226(. 8 分)如图 13,O 的直径AB和弦CD相交于点E,已知AE=1,EB=5,DEB 60 ,求 CD 的长.图 1327.( 8 分)现有边长为a的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做一个形状为正八边形的风筝?(10分)如图14,已知一底面半径为r ,母线长为3r的圆锥,在地面圆周上有一蚂蚁位28于 A 点,它从 A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长 .图 14.备用题1.如图 1,交于点 E,你认为ABC 中,AB=AC,BD是ABC 的平分线,A、B、D三点的圆与AD=CE 吗?如果不能,请举反例;如果AD=CE ,请说明理由.BC相图1图22.如图 2,在直角梯形 ABCD 中, AB ∥ CD ,以 AD 为直径的圆切 BC 于 E,谅解 OB、OC,试探究 OB 与 OC 有何位置关系?参考答案一 .1A2A3C4A5B6C7B8C9D10B二 .11.CE=DE,AC AD,BC BD ;12.40, 203;13. 144;14. 4;15. 90;16.相交、相切;17. 4cm或16cm; 18.72 ;19. d5或0 d 1;20.32 .三 .21,r 3 , 3 r 4 ;所以22.AC=BD.AE-CE=BE-DE理由:作 OE,即 AC=BD.AB 于E,(如图1)由垂径定理得AE=BE , CE=DE ,(图1)图 223. 因为BAC35 ,所以 AOB18035 2 110,因为 PA、PB 是O的切线,所以PAO PBO 90 ,所以P360PAO PBOAOB = 70 .24.AD BD.理由如图2,延长CP 交O 于E,延长CO 交O 于F,因为PCD FCD,所以DE DF因为直径AB CE ,所以AE AC因为AOC BOF ,所以AC BF,所以AE BF,所以AE DE BF DF,即AD BD.25. 因为OC AB ,所以AC=BC,又OC=BC ,所以OC=AC=BC设OC=AC=BC=x ,在Rt AOC 中,x2x252解得 x 52 ,所以AB 2 x5 2 . 226.作OF CD 于F,(如图3)则CF=EF,连结DO ,在 Rt OEF 中,OEF DEB60,EOF30OE=OA-AE=1 AB2AE312, EF1 OE2122 1,所以OF OE 2EF 222123所以DF OD 2OF 2323 6 ,所以CD 2DF 2 6 .图 3图 4图 527.如图 4,将正方形花布的四个角各截去一个全等的直角三角形,设DF=GC= x,则 EF2x,因为, EF=FG ,所以2x a 2x,解得x2 2 a2因此,应从正方形花布的四个角各截去一个全等的直角边为22a 的等腰直角三2角形 .28.圆锥的侧面展开图如图 5 所示,则线段AA 的长为最短路径设扇形的圆心角为n ,则2r n 3r,解得 n 120 180作 OC AA,AOC60,AOC 30 ,因为 OA3r , 所以 OC 3r ,由勾股定理求得 AC33r ,22所以 AA 3 3r ,即蚂蚁从 A 点出发沿圆锥面爬行一周后又回到原出发点的最短路径长为 3 3r .备用题 .1.连结 DE ,(如图 6)因为 BD 是ABC 的平分线,所以ABD EBD ,所以因为 AB=AC ,所以ABC C ,因为CDE ABC所以C CDE ,所以CE=DE,所以AD=CE.AD=DE,图6如图72.连结 OE,(如图 7)由切线性质及切线长定理可得:Rt AOB Rt EOB ,R t C O D R t C O所以AOB EOB , COD COE所以BOE1AOD1COE180 90 22即BOC90 ,所以OB OC .。

初三圆基础测试题及答案

初三圆基础测试题及答案

初三圆基础测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,则圆的周长为()A. 2πrB. πrC. 4πrD. 2r答案:A2. 圆的直径为d,则圆的面积为()A. πdB. πd²C. πr²D. πr答案:C3. 圆心角为90°的扇形面积是所在圆面积的()A. 1/4B. 1/2C. 1/3D. 2/3答案:A4. 已知圆的半径为r,圆心到弦的距离为d,弦长为l,则弦心距d与半径r和弦长l之间的关系是()A. d² + l² = r²B. d² + (l/2)² = r²C. d² = r² - (l/2)²D. d² = r² + (l/2)²答案:C5. 圆的周长和直径的比值是()B. 2πC. 4πD. 1/π答案:B6. 圆的半径扩大2倍,则圆的面积扩大()A. 2倍B. 4倍C. 8倍D. 16倍答案:C7. 圆的半径为r,圆心到圆上任意一点的距离为()A. rB. 2rD. 0答案:A8. 圆的半径为r,直径为d,则d与r的关系是()A. d = 2rB. d = r/2C. d = rD. d = 2πr答案:A9. 圆的周长公式为()A. C = πrB. C = 2πrC. C = 4πrD. C = πr²答案:B10. 圆的面积公式为()A. S = πrB. S = 2πrC. S = πr²D. S = 4πr答案:C二、填空题(每题2分,共20分)11. 圆的周长公式为C = ________。

答案:2πr12. 圆的面积公式为S = ________。

答案:πr²13. 圆的直径是半径的_______倍。

答案:214. 圆的半径是直径的_______倍。

答案:1/215. 圆心角为180°的扇形面积是所在圆面积的_______。

初三上数学圆基础练习题及答案

初三上数学圆基础练习题及答案

初三上数学圆基础练习题及答案一、选择题1. 单选题1) 圆心角的度数是()A. 90°B. 180°C. 360°D. 270°2) 以下不是圆内角的是()A. 直角B. 钝角C. 锐角D. 平角3) 圆的弧长等于圆心角的度数时,这个圆的半径长为()A. 1B. πC. 2D. 2π4) 若AB是圆的直径,角ACB为90°,则AC为()A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积5) 若半径为r的圆的面积为2π,那么此圆的周长是()A. 2πrB. πr²C. 2πr²D. 4πr2. 填空题1) 圆的周长公式是 ______________。

2) 圆的面积公式是 ______________。

3) 圆的直径是 ______________ 的两倍。

4) 若圆的半径是5,则它的直径是 ______________。

5) 若圆的半径是r,则它的弧长是 ______________。

二、解答题1. 简答题请简述以下概念:1) 圆心角2) 弧长3) 圆内角4) 圆的周长5) 圆的面积2. 计算题1) 已知圆的半径为4cm,计算它的周长和面积。

2) 已知圆的半径为3cm,计算它的弧长。

3) 已知圆的半径为2.5cm,计算它的圆心角度数。

4) 考察一个圆的半径,若圆的面积是25π,则求这个圆的半径。

三、答案选择题答案:1. B2. A3. B4. A5. A解答题答案:1. 简答题答案:1) 圆心角:以圆心为顶点的角。

2) 弧长:圆上的一段弧的长度。

3) 圆内角:位于圆内部的角。

4) 圆的周长:圆的边界长度。

5) 圆的面积:圆所围成的平面内的面积。

2. 计算题答案:1) 周长:2πr = 2π × 4 = 8π (cm)。

面积:πr² = π × 4² = 16π (cm²)。

九年级上册圆 几何综合单元测试卷(含答案解析)

九年级上册圆 几何综合单元测试卷(含答案解析)

九年级上册圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.2.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分 题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围; (2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明; (2)当,时,求的面积. 【答案】题甲(1)(2)(3)题乙:(1)BD 是切线;证明所以OB ⊥BD ,BD 是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似3.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大4.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE=13 OEOC=,∴设OE=x,OC=3x,∵BC=8,∴CE=4,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+42=9x2,∴x2(负值已舍去),∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点, ∴AO :OF=BD :DM=2, 又∵BD=DC , ∴DM=CM , ∴FM 为中位线, ∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.5.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,∴12EA2+12CF2=12EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴12S△ABC=12S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形CHMO=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG :BH =9:8, 设BG =9k ,BH =8k , ∴CH =3+k , ∵AG =3, ∴AE =32,∴CF =2(k+3),EF =2(8k ﹣3), ∵EA 2+CF 2=EF 2,∴222(32)[2(3)][2(83)]k k ++=-, 整理得:7k 2﹣6k ﹣1=0, 解得:k 1=﹣17(舍去),k 2=1. ∴AB =12, ∴AO =22AB =62, ∴⊙O 的半径为62. 【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.6.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)10 . 【解析】 【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径 ∴90AEB =︒∠∵AE BE = ∴AE BE = ∴45B ∠=︒ 又∵CD AB ⊥于H∴45HFB ∠=︒ ∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒ ∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆ ∴CG CB =同理()CBE CGE SAS ∆≅∆ ∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.7.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或2;②262【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =5,∴BH=BC•cos∠ABC=25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=42;综上所述,①当BC=3CE时,m=22或42.②如图4,过F作FG⊥HE于点G,∵CH⊥AB,HB=HD,∴CB =CD , ∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHDEFH SS =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH =22FG HG +=22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF =22FG EG +=22(5)k k +=26k ,∴FHDEFH SS =26k =26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.8.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)24105MN =. 【解析】【分析】(1)由垂径定理即可证明;(2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.【详解】解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =, ∴,OM AC ON FD ⊥⊥,∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=66m +∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∵BR ⊥MN∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT ,∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴, ∵OS ⊥MN∴∠OSG=∠GKH=90°,GH ∥OS∴∠HGK=∠GOS∴△HGK ∽△GOS ,OG GH∴310OS =, ∴222410MG OM OG =-=, ∴2410MN =; 【点睛】 本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.9.如图,在O 中,AB 为直径,过点A 的直线l 与O 相交于点C ,D 是弦CA 延长线上一点,BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F ,G 是BF 的中点,过点G 作MN AE ,与AF ,EB 的延长线分别交于点M ,N .(1)求证:MN 是O 的切线; (2)若24AE =,18AM =. ①求O 的半径;②连接MC ,求tan MCD ∠的值. 【答案】(1)见解析;(2)①13;②2741 【解析】【分析】(1)如图1,连接 GO 、GA ,先根据角平分线的定义证明∠MAE=12(∠BAC+∠BAD )=90°,由圆周角定理和同圆的半径相等得∠OGA=∠FAG ,则OG ∥AM ,所以∠MGO=180-∠M=90,从而得结论;(2)①延长GO 交AE 于点P ,证明四边形 MGPA 为矩形,得GP=MA=18,∠GPA=90°,设OA=OG=r ,则OP=18-r ,根据勾股定理列方程解出即可;②如图3,过M 作MH ⊥l ,连接BC ,延长NE 交l 于I ,连接GO 交延长交AE 于P ,tan ∠MAH=tan ∠ABE=tan ∠BIA=125,BI=2BE=20,根据三角函数计算MH ,AH ,CI 的长,最后计算MH 和HC 的长,代入tan ∠MCD=MH HC,可得结论. 【详解】(1)证明:如图1,连接GO ,GA ,∵BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F , ∴1()902MAE BAC BAD ∠=∠+∠=︒. ∵MN AE ,∴18090M MAE ∠=︒-∠=︒.∵G 是BF 的中点,∴FG BG =,∴FAG BAG ∠=∠.∵OA OG =,∴OGA BAG ∠=∠,∴OGA FAG ∠=∠,∴OG AM ∥,∴18090MGO M ∠=︒-∠=︒.∵OG 为O 半径, ∴MN 是O 的切线.(2)解:①如图2,连接GO 并延长交AE 于点P ,∵90MGO M MAE ∠=∠=∠=︒,∴四边形MGPA 为矩形,∴18GP MA ==,90GPA ∠=︒,即OP AE ⊥,∴1122AP AE ==. 设OA OG r ==,则18OP r =-,在Rt OAP △中,∵222OA OP AP =+,∴222(18)12r r =-+,解得:13r =,故O 的半径是13.②如图3,过M 作MH l ⊥,连接BC ,延长NE 交l 于I ,连接GO 并延长交AE 于P ,由①知:13OG =,18PG =,∴5OP =.∵AB 是O 的直径,∴90AEB AEI ∠=∠=︒.∵BAE EAC ∠=∠,∴ABE AIB ∠=∠,∵AM NI ∥,∴MAH BIA ABE ∠=∠=∠,∴12tan tan tan 5MAH ABE BIA ∠=∠=∠=,220BI BE ==. ∵12cos 13HM AMH AM ∠==,5sin 13AH AMH AM ∠==,5sin 13CI CBI BI ∠==, ∴181********MH ⨯==,185901313AH ⨯==,5100201313CI =⨯=, ∴100238261313AC AI CI =-=-=, ∴23890328131313HC AH AC =+=+=, ∴21627tan 32841MH MCD HC ∠===. 【点睛】 本题考查了切线的判定,圆周角定理,解直角三角形,勾股定理,矩形的性质和判定,正确作出辅助线是解题的关键.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=;(3)656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形, ∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6, 即565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。

部编数学九年级上册第24章圆(基础卷)(解析版)含答案

部编数学九年级上册第24章圆(基础卷)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第24章圆(基础卷)一.选择题(每小题3分,共24分)1.已知AB=12 cm,过A,B两点画半径为8 cm的圆,则能画的圆的个数为( )A.0个B.1个C.2个D.无数个【答案】C【解析】分别以A、B为圆心,以8cm为半径画弧,两弧交于C、D,如下图,得以C为圆心,以8cm为半径的圆经过点A和点B,以D为圆心,以8cm为半径的圆经过点A和点B,即能画的圆的个数是2个.故选:C.2.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B C.D.6【答案】C【解析】解:连接OC,∵AB是⊙O的直径,弦CD⊥AB,BE=5,AE=1,∴CD=2CE,∠OEC=90°,AB=AE+BE=6,∴OC=OA=3,∴OE=OA-AE=3-1=2,在Rt△COE中,由勾股定理得:CE===∴CD=2CE=3.下列语句不正确的有( )个.①直径是弦;②优弧一定大于劣弧;③长度相等的弧是等弧;④半圆是弧.A .1B .2C .3D .4【答案】B【解析】解:①直径是弦,①正确;②在同圆或等圆中,优弧大于劣弧,②错误;③在同圆或等圆中,长度相等的弧是等弧,③错误;④半圆是弧,④正确;故不正确的有2个.故选:B .4.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =8,则△PCD 的周长为( )A .8B .12C .16D .20【答案】C 【解析】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC +CD +PD =PC +CE +DE +PD =PA +AC +PD +BD =PA +PB =8+8=16,即△PCD 的周长为16.故选:C .5.如图,边长为2的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的EF 上时,弧BC 的长度等于( )A .6pB .23pC .3pD .4p【解析】解:连接AC ,∵菱形ABCD 中,AB =BC ,又AC =AB ,∴AB =BC =AC ,即△ABC 是等边三角形.∴∠BAC =60°,又∵AB =2,∴»60221803BC l p p ´==故选B .6.如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A .25°B .35°C .40°D .50°【答案】C 【解析】»»AC AC =Q ,∠ABC =25°,250AOC ABC \Ð=Ð=°,Q AB 是⊙O 的直径,\90PAO Ð=°,9040P AOC \Ð=°-Ð=°.故选C .7.如图,AB 是O e 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交O e 于点E ,若4CE =,则图中阴影部分的面积为( )A .2pB .C .24p -D .2p -【答案】C 【解析】解:如图,连接OE ,OC ,过点O 作OF ⊥CE 于点F ,则114222EF CE ==´=,由旋转得,,AC AD =∴∠ADC ACD =Ð,∵∠30,A °=∴∠1(18030)752ADC ACD °°°=Ð=´-=,∴∠2150AOE ACD °=Ð=,∴∠30,EOD °=又∠75,OED EOD ODC °+Ð=Ð=∴∠75753045,OED EOD °°°°=-Ð=-=∴∠45,EOF OEF °=Ð=∴2OF EF ==∴OE ===∵OE OC =∴∠OEC °=Ð90°=∴42=EOFEOF S S S D -´阴影扇形2 4.p =-故选:C .8.如图,矩形ABCD 是由边长为1的五个小正方形拼成,O 是第2个小正方形的中心,将矩形ABCD 绕O 点逆时针旋转90°得矩形A B C D ¢¢¢¢,现用一个最小的圆覆盖这个图形,则这个圆的半径是( )A B C D 【答案】C 【解析】作线段BC 、A D ¢¢的垂直平分线MH 、NH ,两线的交点为H 点,连接BH ,如图,∵MH 、NH 为线段BC 、A D ¢¢的垂直平分线,∴BM =12BC =52,A N ¢=12A D ¢¢=52,∴HM =A N ¢-1=53122-=,∴BH ==故选:C .二.填空题(每小题2分,共16分)9.如图所示,O 为△ABC 的外心,若∠BAC =70°,则∠OBC =____.【答案】20°【解析】连接OC∵∠BAC =70°,∴∠BOC =140°∵OB=OC ,∴∠OBC =(180°-∠BOC )÷2,∴∠OBC =20°10.如图,从一个腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,则此扇形的弧长为______cm.【答案】20p【解析】解:过O 作OE ⊥AB 于E ,∵OA =OB =60cm ,∠AOB =120°,∴∠A =∠B =30°,∴OE =12OA =30cm ,∴弧CD 的长=1203020180p p ´=(cm),故答案为:20p .11.如图,AB 是⊙O 的直径,CD 为⊙O 的弦,CD ⊥AB 于点E ,已知AB =10,CD =8,则OE =______.【答案】3【解析】解:连接OC ,如图所示:∴152OC AB ==,∵CD ⊥AB ,∴142CE DE CD ===,在Rt △OCE 中,∠CEO =90°,OC =5,CE =4,∴OE ,故答案为:3.12.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠ADC =130°,连接AC ,则∠BAC 的度数为___________.【答案】40°【解析】解:∵四边形ABCD 内接与⊙O ,∠ADC =130°,∴∠B =180°-∠ADC =180°-130°=50°,∵AB 为直径,∴∠ACB =90°,∴∠CAB =90°-∠B =90°-50°=40°,故答案为:40°.13.如图,AC 、AD 为正六边形ABCDEF 的两条对角线,若该正六边形的边长为2,则△ACD 的周长为 _____.【答案】6【解析】解:∵正六边形ABCDEF,∴∠B=∠BCD(62)1806°-´==120°,AB=BC,∴∠ACB=∠BCA=30°,∴∠ACD=120°﹣30°=90°,由对称性可得,AD是正六边形的对称轴,∴∠ADC=∠ADE12=∠CDE=60°,在Rt△ACD中,CD=2,∠ADC=60°,∴AD=2CD=4,AC==∴△ACD的周长为AC+CD+AD=2+4=6,故答案为:+6.14.如图所示,O为△ABC的外心,若∠BAC=70°,则∠OBC=____.【答案】20°【解析】连接OC∵∠BAC=70°,∴∠BOC=140°∵OB=OC,∴∠OBC=(180°-∠BOC)÷2,∴∠OBC=20°15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.【答案】112-34p 【解析】解:设切点分别为D 、E 、F ,连接OD 、OE 、OF ,∵⊙O 为Rt △ABC 的内切圆,∴AE =AF 、BD =BF 、CD =CE ,OD ⊥BC ,OE ⊥AC ,∵∠C =90°,∴四边形CDOE 为正方形,∴∠EOF+∠FOD =360°-90°=270°,设⊙O 的半径为x ,则CD =CE =x ,AE =AF =4-x ,BD =BF =3-x ,∴4-x +3-x =5,解得x =1,∴S 阴影=S △ABC -( S 扇形EOF + S 扇形DOF )- S 正方形CDOE =12×3×4-2270113602p ´-×1×1=112-34p .故答案为:112-34p .16.如图,在四边形ABCD 中,,,AD BC AB BC O ^P e 是四边形ABCD 的内切圆,,CD BC 分别切O e 于F ,E 两点,若3,6AD BC ==,则EF 的长是【解析】连接OC ,与EF 相交于点M ,作DG ⊥BC 于点G ,连接OE ,设AD 与圆的切点为H ,如图,∵,,AD BC AB BC DG BC ^^∥, ∴四边形ABGD 是矩形,∴BG =AD =3,CG =BC -BG =6-3=3,∵点E 、F 、H 是切点,∴DF =DH ,CF =CE ,OC 平分∠ECF ,∴△ECF 是等腰三角形,OC 是EF 的垂直平分线,∴EM =FM ,设圆O 半径为R ,则BE =R ,DG =2R ,∴CE =CF =6-R ,DF =DH =3-R ,∵222DG CG CD +=,∴()()()22223[36]R R R +=-+-解得:R =2,∴CE =6-2=4,∴OC ==∵1122OEC S OE CE OC EM =×=×V ,∴OE CE EM OC ×==∴22EF EM ==三.解答题(共60分)17.(6分)如图,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE .点C 为»AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC ,求证:CD =CE .【答案】见解析【解析】证明:∵,OA OB AD BE ==,∴OA AD OB BE -=-,即OD OE =,在ODC △和OEC △中,OD OE DOC EOC OC OC =ìïÐ=Ðíï=î,∴()SAS ODC OEC @V V ,∴CD CE =.18.(8分)已知:如图,AB 为O e 的直径,AB AC =,O e 交BC 于D ,DE AC ^于E .(1)请判断DE 与O e 的位置关系,并证明.(2)连接AD ,若O e 的半径为2.5,3AD =,求DE 的长.e相切,【解析】(1)DE与O19.(8分)如图,AB为⊙O的直径,点C是AB右侧半圆上的一个动点,点D是AB左侧半圆的中点,DE 是⊙O的切线,切点为D,连接CD交AB于点P,点Q为射线DE上一动点,连接AD,AC,BQ,PQ.(1)当PQ∥AD时,求证:△DPQ≌△PDA.(2)若⊙O的半径为2,请填空:①当四边形BPDQ为正方形时,DQ=;②当∠BAC=时,四边形ADQP为菱形.【答案】(1)见解析;(2)①2;②22.5°【解析】(1)证明:连接OD,∵点D 为的中点,∵DE 是⊙O 的切线,又∵PQ ∥AD ,∴∵四边形BPDQ 是正方形,∵DE 是⊙O 的切线,20.(8分)如图,ABC V 中,40BAC Ð=°,AB AC =,过点A ,C ,B 的弧的半径为6,点P 在»AC 上.PC AB ∥,切线PD 交OC 的延长线于点D .(1)求»BC的长;(2)求D Ð的度数.B 为6,∴6OB =,∴»BC 的长为80681803p p ×´=,∴»BC 的长为83p .(2)如图,连接OP 80BOC Ð=°,∴OCB ÐPC AB ∥,∴PCA Ð=21.(10分)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,过点D 作AD 的垂线交AB 于点E .(1)请画出△ADE 的外接圆⊙O (尺规作图,不写作法,保留作图痕迹);(2)求证:BC 是⊙O 的切线;(3)过点D作DF⊥AE于点F,延长DF交⊙O于点G,若DG=8,EF=2.求⊙O的半径.【答案】(1)见解析;(2)见解析;(3)5【解析】(1)解:如图1所示,⊙O即为所求;(3)证明:如图2,连接OD,∵AD平分∠CAB,∴∠CAD=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠C=90°,∴OD⊥BC,∵OD为⊙O的半径,∴BC是⊙O的切线;22.(10分)如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).∠OCP ,∴∠ACO =∠BCP ;23.(10分)如图,AB 为⊙O 的直径,C 为圆上的一点,D 为劣弧»BC的中点,过点D 作⊙O 的切线与AC 的延长线交于点P ,与AB 的延长线交于点F ,AD 与BC 交于点E .(1)求证:BC PF ∥;(2)若⊙O DE =1,求AE 的长度;(3)在(2)的条件下,求DCP V 的面积.【解析】(1)解:证明:如图,连接,为劣弧BC的中点,CD BD \=,,又Q PF 为⊙O 的切线,OD PF \⊥,//BC PF \;(2)解:如图,连接OD CD BD DCE \=Ð=Ð,21(CD DE AD x \=×=´+(3)解:如图,设OD 与中,4cos 25AD DAB AB Ð===OA OD =Q ,EDH DAB \Ð=Ð,cos cos EDH DAB \Ð=Ð=,又1DE =Q ,252555DH DE \=´=,OH OD DH \=-=OH BC ^Q ,CH BH \=AB Q 为⊙O 的直径,90ACB \Ð=°,由(1)可知OD PD ^,OH BC ^,\四边形HDPC 为矩形,CP DH \==DP CH =114225DCP HDPC S S \===V 矩形.。

九年级 圆的基础测试题 参考答案

九年级 圆的基础测试题 参考答案

九年级上册 圆的基础测试题一、选择题:(每题2分,共20分)1.有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是…………………………………………………………………()(A)①③ (B)①③④ (C)①④ (D)①2.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )(A)140° (B)125° (C)130° (D)110°3.如果正多边形的一个外角等于60°,那么它的边数为…………………………( )(A)4 (B)5 (C)6 (D)74.如图,AB是⊙O的弦,点C是弦AB上一点,且BC︰CA=2︰1,连结OC并延长交⊙O于D,又DC=2厘米,OC=3厘米,则圆心O到AB的距离为…………( )(A)厘米 (B)厘米 (C)2厘米 (D)3厘米5.等边三角形的周长为18,则它的内切圆半径是………………………………( )(A)6 (B)3 (C) (D)6.如图,⊙O的弦AB、CD相交于点P,PA=4厘米,PB=3厘米,PC =6厘米,EA切⊙O于点A,AE与CD的延长线交于点E,AE=2厘米,则PE的长为( )(A)4厘米 (B)3厘米 (C)厘米 (D)厘米7.一个扇形的弧长为20π 厘米,面积是240π 厘米2,则扇形的圆心角是……………( )(A)120° (B)150° (C)210° (D)240° 8.两圆半径之比为2︰3,当两圆内切时,圆心距是4厘米,当两圆外切时,圆心距为( )(A)5厘米 (B)11厘米 (C)14厘米 (D)20厘米9.一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆周角是……( )(A)60° (B)90° (C)120° (D)180°10.如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,则S1与S2的关系是………………………( )(A)S1>S2 (B)S1<S2 (C)S1=S2 (D)S1≥S2二、填空题(每题2分,共20分)11.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB =2,则O1O2=______.12.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____.13.如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点,且与BC切于点B,与AC交于D,连结BD,若BC=-1,则AC=______.14.用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮(不计接缝) 厘米2(不取近似值).15、已知两圆的半径分别为3和7,圆心距为5,则这两个圆的公切线有_____条.16.如图,以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8 cm,BD=2 cm,则四边形ACDB的面积为______.17.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10 cm,则△PDE的周长是_____。

初中数学九年级数学上《圆》章节课堂基础同步练习(全章整理含答案)

初中数学九年级数学上《圆》章节课堂基础同步练习(全章整理含答案)

初中数学九年级数学上《圆》章节课堂基础同步练习圆基础导练1.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.半径为5cm的圆满足圆O上的点到圆心的距离()A.大于5cmB.小于5cmC.不等于5cmD.等于5cm3.如图,在半径为2 cm的⊙O内有长为2 3 cm的弦AB,则∠AOB为()A.60°B.90°C.120°D.150°能力提升4.如图,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于点D,OD=5 cm,求BC的长.5.若圆O的半径是12cm,OP=8cm,求点P到圆上各点的距离中最短距离和最长距离.参考答案1.D 2.D 3.C4.BC=10 cm 5.最短距离为:12-8=4(cm);最长距离为:12+8=20(cm)垂直于弦的直径基础导练1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C.5D.72.如图,AB为圆O的弦,圆O的半径为5,OC⊥AB于点D,交圆O于点C,且CD=2,则AB的长是 .能力提升3.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m4.已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD之间的距离是多少?参考答案1.C2. 83.D4.1cm 或7cm弧、弦、圆心角基础导练1.如图,AB是⊙O的直径,BD=CD,∠BOD=60°,则∠AOC=() A.30°B.45°C.60°D.以上都不正确第1题图第2题图2.如图,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°3.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10B.430C.10或430D.10或2165能力提升4.一条弦分圆周为5:7,这条弦所对的圆心角为( )A.210°B.150°C.210°或150°D.75°或105°5.如图,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC与CB的弧长的大小关系是______________.第5题图第6题图6.如图,OE,OF分别为⊙O的弦AB,CD的弦心距,如果OE=OF,那么______(只需写一个正确的结论).参考答案1.C2.D3.D4.B5.相等6.AB =CD 或AB =CD圆周角 基础导练1.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 的半 径是( )A .1B .2C .3D .5O CBA第1题图 第2题图 第3题图2.如图,CD ⊥AB 于点E ,若∠B =60°,则∠A =________.3.如图,⊙O 直径AB =8, ∠CBD =30°,则CD =________.能力提升4.如图,ABC △是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=. (1)当35α=时,求β的度数;(2)猜想α与β之间的关系,并给予证明.DOABCCBAO5.如图,已知AB =AC ,∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求∠APB 的度数.参考答案1.A2.30°3. 44.(1)55β=;(2)90αβ︒+=.证明略. 5.(1)证明:由圆周角定理,得∠ABC =∠APC =60°. 又AB =AC ,∴△ABC 是等边三角形. (2)解:∵∠ACB =60°, ∠ACB +∠APB =180°, ∴∠APB =180°-60°=120°.点和圆的位置关系基础导练1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能答案2.平面上不共线的四点,可以确定圆的个数为()A.1个或3 B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个3.⊙O的半径r=5 cm,圆心到直线l的距离OM=4 cm,在直线l上有一点P,且PM=3 cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内能力提升4.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则Rt△ABC其外接圆半径为________cm.5.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.参考答案1.C2.C3.B4.6.55.解:图略.作法:连接AB,AC,分别作这两条线段的垂直平分线,两直线的交点为垃圾桶的位置.直线和圆的位置关系基础导练1.如图,P A切⊙O于点A,PO交⊙O于点B,若P A=6,OP=8,则⊙O的半径是()A.4 B.2 7 C.5 D.10第1题图第2题图2.如图,P A,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB=()A.90°B.100°C.110°D.120°3.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B、C不重合),若∠A=40°,则∠BDC的度数是( ).A.25°或155°B.50°或155°C.25°或130°D.50°或130°能力提升4.如图,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B=______,∠C=______. 5.如图所示,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,求∠A的度数.参考答案1.B2.D3.A4.50°60°70°5.解:∵EB,EC是⊙O的两条切线,∴EB=EC.∴∠ECB=∠EBC.又∠E=46°,而∠E+∠EBC+∠ECB=180°,∠ECB=67°.又∠DCF+∠ECB+∠DCB=180°,∴∠BCD=180°-67°-32°=81°.又∠A+∠BCD=180°,∴∠A=180°-81°=99°.正多边形和圆基础导练1.一正多边形外角为90°,则它的边心距与半径之比为()A.1∶2 B.1∶2C.1∶ 3 D.1∶32.如图,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A.60°B.45°C.30°D.22.5°3.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比()A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化能力提升4.从一个半径为10 cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________ cm.5.如图,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?参考答案1.B 2.C 3.D 4.10 25.解:三个小三角形是等边三角形且边长为13a,正六边形的边长为13a,正六边形的面积为36a2,原正三角形的面积为34a2,它们的面积比为2∶3.弧长和扇形面积基础导练1.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.24π cm B.12π cm C.10π cm D.5π cm2.已知一个扇形的半径为60 cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5 cm B.25 cm C.50 cm D.75 cm3.若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是( )rA.l=2r B.l=3r C.l=r D.l=32能力提升4.如图,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是____________.5.一个圆锥的高为3 3 cm,侧面展开图为半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.参考答案1.C2.B3.A4.2π5.解:设圆锥的母线为l,底面半径为r,则(1)2πr=12×2πl,∴l=2r,l∶r=2∶1.(2)∵l2-r2=h2,∴3r2=(33)2.∴r=3 cm,l=6 cm.S全=πrl+πr2=27π(cm2).。

【学生卷】初中九年级数学上册第二十四章《圆》经典练习(课后培优)

【学生卷】初中九年级数学上册第二十四章《圆》经典练习(课后培优)

一、选择题1.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 2.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°3.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°4.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 5.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .16.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8 7.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .8.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .49.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .无法判断10.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A 2B .2C .22D .2311.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .4312.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .513.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π 14.下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等 C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等15.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6二、填空题16.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.17.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.18.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)19.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .20.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.21.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .22.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.23.已知,O 的弦AB 与O 的半径相等,则弦AB 所对的圆周角的度数为______. 24.已知一个圆锥形纸帽的底面半径为5cm ,母线长为10cm ,则该圆锥的侧面积为_____cm 2(结果保留π)25.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.26.在平面直角坐标系xOy 中,A (5,6),B (5,2),C (3,0),△ABC 的外接圆的圆心坐标为____.三、解答题27.已知:如图,ABC 中,BC AC =,以BC 为直径的O 交AB 于点O ,过点D 作DE AC ⊥于点E ,交BC 的延长线于点F .求证:(1)AD BD =,(2)DF 是O 的切线.28.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).29.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).30.已知:如图,AB 是O 的直径,弦CD AB ⊥于点E ,G 是AC 上一点,AG 与DC 的延长线交于点F .(1)求证:12∠=∠.(2)当6DC =,1BE =时,求O 的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档