(精心整理)中考找规律专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请你将猜想得到的式子用含正整数n的式子表示出来__________。
代数中的规律小结:
1、找到题目中的不变量
2、找到题目中的改变量,并认真观察改变量的变化规律
3、观察与猜想结合找到变量与不变量之间的关系
二、平面图形中的规律
图形变化也是经常出现的,它的变化规律以代数规律为基础。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
例1用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,
第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示).
分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖?
在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。
有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。
例4“观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……
从第1个球起到第2004个球止,共有实心球多少个?”
分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。每个循环节里有3个实心球。我们只要知道 2004包含有多少个循环节,就容易计算出
÷10 =200(余4)。所以,2004个球里有200个循环节,还余4个球。200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。所以,一共有602个实心球。
例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…
根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
分析:1条直线将平面分成2个部分
2条直线最多可以将平面分成4(=2+2)个部分
3条直线最多可以将平面分成7(=4+3)个部分
4条直线最多可以将平面分成11(=7+4)个部分
可以从中发现每增加1条直线,分平面的部分数就增加,其规律是若原有(n-1)条直线,现增加1条直线,最多将平面分成的平面数就增加n,平面上的10条直线最多将平面分成:
2+2+3+4+5+6+7+8+9+10=56个部分。一般的平面上的n条中线最多可将平面分成(2+2+3+4+…+n)个部分。
三、空间图形中的规律
例6 如图,都是由边长为1的正方体叠成的图形。
例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。依此规律,则第⑤个图形的表面积是个平方单位。
分析:应从不同的侧面进行观察
第1个图形的表面积是6(=1×6)个平方单位,
第2个图形的表面积是18(=3×6)个平方单位
第3个图形的表面积是36(=6×6)个平方单位
由此可以看出:每一个图形表面积都是6的倍数,而倍数是呈2,3,4,5…增加,所以可以推出第4个图形的表面积是60(=10×6)个平方单位,因此第5个图形的表面积是90(=15×6)个平方单位。
例7 观察下列由棱长为1的小立方体摆成的图形,寻找规律:
如图①中:共有1个小立方体,其中1个看得见,0个看不见;
如图②中:共有8个小立方体,其中7个看得见,1个看不见;
如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个.
分析:先观察每个图形中有几个小正方体,然后发现每个正方体中看不到的正方体的个数是前面图形的正方体的个数,因此,第⑥个图中,看不见的小立方体有53=125个.
因此,读者在遇到数学问题时应身临其境,从不同的角度去观察,去分析,用最简单的方法去解决.
解题方法小结:
一、要抓住题目中隐藏的不变量
二、抓住题目里的变量
三、要善于比较、分析、思考
四、要善于寻找事物的循环节
五、要勇敢进行计算,尝试,再尝试
强化练习:
1、观察下列等式:,…… 则第n 个等式可以表示为。
2、观察下列各式:,,,……根据前面的规律,得:。(其中n为正整数)
3、观察下列等式:观察下列等式:4-1=3,9-4=5,16-9=7,25-16=9,36-25=11,……这些等式反映了自然数间的某种规律,设n(n≥1)表示了自然数,用关于n的等式表示这个规律为。
4、“”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植。按此规律,第六个图案中应种植乙种植物株。
5、“图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________。
6、探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?
7、若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?
问题2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:
问题3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
8、图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。
……
(1)将下表填写完整
图形编号 1 2 3 4 5 …
三角形个数 1 5 9 …
①②③