人教版七年级数学上册1.2.4 绝对值(第一课时)教学设计
七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版
1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。
借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。
七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。
两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。
以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。
例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。
人教版数学七年级上册1.2.4《绝对值》教案
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
新人教版 数学 七年级数学上册 1.2.4 绝对值教案1
绝对值(第一课时)教学目标:1、知识目标:①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2、过程与方法目标:经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力3、知识与情感目标:①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点:给出一个数,会求它的绝对值.教学难点:绝对值的几何意义、代数定义的导出.教学过程:一 温故互查(二人小组完成)1.复述相反数的定义.2.如何求一个数的相反数?3.先画一个数轴,并在数轴上分别表示下列各数:3,-3,0,521,-521. 这些数有什么关系?它们到原点的距离分别是多少?二 设问导读阅读教材P 1211 完成下列各题:1.绝对值的定义:一般地在数轴上___________________叫做数a 的绝对值.记作_________.2.在数轴上,3与原点的距离是________,所以3的绝对值是_________,记作_________,-3与原点的距离是________,所以-3的绝对值是_________,记作_________;+521与原点的距离是________,所以+521的绝对值是_________,记作_________;-521与原点的距离是________,所以-521的绝对值是_________,记作_________;可以得出:3和-3与原点的距离是________,所以3和-3的绝对值是_________,记作∣_________∣=∣_________∣; +521和-521与原点的距离是________,所以+521和-521的绝对值是_________,记作∣_________∣=∣_________∣.结论:互为相反数的两个数的绝对值____________________.3.由绝对值的定义你发现什么?(1)正数的绝对值是_____________;(2)负数的绝对值是_____________;(3)0的绝对值是_______________;4.当a 是正数时,∣a ∣=__________;当a 是负数数时,∣a ∣=__________;当a 是0时,∣a ∣=__________;三 自我检测1.求下列各数的绝对值:-23,+32,0,-15.4.2.(1)绝对值等于2.3的数是______.(2)∣-(+1)∣=______.(3)∣a ∣=5,则a=______.四 巩固训练1.判断:(1)绝对值最小的数是0( )(2)一个数的绝对值一定是正数( )(3)一个数的绝对值不可能是负数( )(4)互为相反数的两个数,它们的绝对值一定相等( )(5)一个数的绝对值越大,表示它的点在数轴上离原点越近() 2.任何一个有理数的绝对值一定( )0 C3.绝对值小于3的正数有( )4.简化;-∣-5∣=________;∣-(-5)∣=________;∣-(+21)∣=________; 5.在数轴上表示下列各数,并求出它们的绝对值: -121,-3,0,5,-6.5. 6.有没有一个数的绝对值等于-2?为什么?你得到的结论是:五 拓展训练1.(1)若∣a ∣=a ,则a 与0的大小关系是a___0;(2)若∣a ∣=-a ,则a 与0的大小关系是a___0.∣x-2∣+∣y+2∣=0,求x ,y 的值.3.正式排球比赛对所用排球的质量有严格的规定,现检查5个排球的质量检测结果如下(用正数记超过规定质量的克数,用负数记不足规定质量的克数);请指出哪个排球的质量好一些,并用绝对值的知识加以说明.六、教学反思。
人教版数学七年级上册1.2.4绝对值(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学七年级上册1.2.4绝对值(教案)
一、教学内容
人教版数学七年级上册1.2.4绝对值:本节主要内容包括绝对值的概念、绝对值的性质及其在数轴上的表示。具体教学内容如下:
1.理解绝对值的概念,掌握表示方法,例如|a|表示a的绝对值。
2.掌握绝对值的性质,如:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数在数轴上表示的距离,不考虑方向。它是表示数值大小的重要工具,广泛应用于数学和日常生活中。
2.案例分析:接下来,我们来看一个具体的案例。数轴上,点-3和点3的距离都是3,这个距离就是绝对值。通过这个案例,我们可以理解绝对值是如何帮助我们解决距离问题的。
我也注意到,在小组讨论中,有些学生对于绝对值在实际生活中的应用提出了很有创意的想法。这让我感到很高兴,说明学生们能够将所学知识联系到生活实际,这是我教学的一个重要目标。
然而,我也发现了一些需要改进的地方。在重点难点解析部分,我可能需要更多的耐心和不同的教学方法来帮助那些理解起来比较慢的学生。我计划在下一次课时,增加一些互动性更强的问题,让学生们更多地参与到解答过程中来,而不是单向的讲解。
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于难点部分,比如负数的绝对值是它的相反数,我会通过数轴上的具体点和图形来帮助大家理解。
人教版初中七年级数学第一单元有理数《1.2.4__第1课时_绝对值》教学设计
人教版初中七年级数学第一单元有理数1.2.4 绝对值第一课时一、教材分析:1.教材的地位和作用绝对值是人教版《义务教育课程标准实验教科书·数学》七年级上册第一章第二节绝对值第一课时的教学内容。
绝对值是有理数的重要概念之一,学习绝对值的概念和意义,不仅可以加深学生对数轴、相反数的认识和运用,也为后面学习两个负数的比较大小及有理数运算作好铺垫,因此起着承上启下的作用.同时通过本节课的学习,可以培养学生数形结合、分类讨论的思想方法,对发展学生数学观察、归纳、探究的能力起着积极有效的作用。
2.教学目标分析新课标指出,教学目标应包括知识与技能、数学思考、解决问题、情感与态度这四个方面,而这些目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程.这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在数学思考与解决问题的过程中。
教学目标:①理解绝对值的概念;了解绝对值的意义;运用绝对值的相关知识解决问题;②经历绝对值概念及意义的探究过程,使学生感受分类讨论思想,增强学生的符号意识;③初步形成反思意识,通过多种学习形式使学生学会合作,并能与他人交流解决绝对值相关问题过程的思维和结果;④通过探究的过程,让学生获得数学活动的经验,并在用数学知识解答问题的活动中获取成功的体验,建立学习的自信。
3.教学重难点:根据以上对教材的地位和作用,以及目标分析,结合新课标对本节课的要求,本节课的重点:绝对值的概念及意义的探究过程;难点:利用绝对值的概念及意义解决实际问题。
二、学情分析:1.认知基础分析:学生在小学已初步形成对数的基本认识,再加上之前学习了数轴、相反数的相关知识,对两点之间距离的概念也有所理解,共同为新课学习奠定了必要的基础.心理及能力分析:学生已初步具备一定的观察、分析、概括的思维能力,但思维的严密性仍相对薄弱。
并且他们天性活泼、求知欲强,愿意同学间合作交流,乐于接受形象生动、形式多样的学习方式。
人教版七年级数学上册1.2.4第一课时绝对值优秀教学案例
(五)作业小结
1.布置作业:布置有关绝对值的练习题,让学生巩固和加深对绝对值的理解和运用力发展。
3.作业辅导:针对学生作业中出现的问题,进行辅导和解答,帮助学生克服学习困难。
三、教学策略
(一)情景创设
1.生活情境引入:通过展示实际生活中的问题,如地图上的距离、运动员赛跑的起点和终点等,让学生感受到绝对值的存在和重要性。
2.数学情境创设:通过举例说明绝对值在数学中的应用,如坐标系中的点到原点的距离、数轴上的点与原点的距离等,让学生理解绝对值的概念。
3.多媒体辅助教学:利用多媒体课件展示绝对值的图像和动态效果,直观地展示绝对值的意义,增强学生的直观感受。
二、教学目标
(一)知识与技能
1.理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决简单的生活问题。
2.能够运用绝对值的概念,解决含有绝对值的方程和不等式,提高学生的数学解题能力。
3.理解绝对值在数学中的重要性,认识到绝对值在学习和生活中的应用价值。
(二)过程与方法
1.通过生活情境的引入,引导学生发现绝对值的规律,培养学生的观察能力和发现问题能力。
2.数学情境创设:在坐标系中,选取一个点A(2,3),让学生思考点A到原点O(0,0)的距离是多少。引发学生对绝对值的好奇心。
3.多媒体辅助教学:利用多媒体课件展示绝对值的图像,如数轴上的点与原点的距离,让学生直观地感受到绝对值的意义。
(二)讲授新知
1.绝对值的定义:引导学生观察和思考,总结绝对值的定义,即一个数的绝对值是它到原点的距离。
3.通过解决实际问题,培养学生将数学知识应用到生活中的意识,让他们感受到数学的实际意义和价值。
人教版初中数学课标版七年级上册第一章1.2.4 绝对值教案
1.2.4 绝对值(1)教案【教学目标】一、知识与技能1.借助数轴,初步理解绝对值的概念,会求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用.二、过程与方法1.使学生形成从一般到特殊的解题思想,养成严密的思维习惯.2.培养学生主动探索,敢于发现,合作交流的精神.三、情感态度与价值观1.通过对形式不同的问题的解答,激发学生学习的积极性和兴趣,使全体学生积极参与,体验成功的喜悦.2.对学生进行“实践——认识——实践”的辩证唯物主义教育.【教学重点、难点】1.重点:绝对值的概念,会求一个数的绝对值.2.难点:对绝对值概念的正确理解.【教学过程】一、情境引入:两辆汽车从同一处O出发,分别向东、西方向行驶10km ,到达A、B两处。
它们行驶路线相同吗?它们行驶路程相同吗?(1)如何用有理数表示它们的行驶情况?(2)这两个有理数有什么关系?-10与10在数轴上所表示的点到原点的距离是10个单位长度,它们的符号不同.我们把这个距离10叫做+10和-10的绝对值。
二、合作学习:1.绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值) . 记作:|a|例如,在数轴上表示数―10与表示数10的点与原点的距离都是10,所以―10和10的绝对值都是10,记作|―10|=|10|=10同样可知:|―4| =4,|+1.7|=1.72.想一想:这里的数a 可以表示什么样的数?3.试一试: 由绝对值的意义,我们可以知道:︳7︳= , ︳-7︳= ;︳2.8︳= ,︳-4.5︳= ;︳0︳=4.议一议:从以上结果你有什么启示?你能用自已的话总结出绝对值的性质吗?5.归纳出数a 的绝对值的性质:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数.我们可以用a 来表示任意一个有理数,上述性质可以表示为:①若a >0,则|a |=a ;②若a =0,则|a |=0; 或写成: ③若a <0,则|a |=–a ;(4)绝对值的非负性由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩三、典例导学:【知识点 1】 求一个数的绝对值例1.写出下列各数的绝对值. 解:66=; 88-=; 3.9 3.9-=; 5522= ; 221111-= ;100100=; 00= 【总结提升】求一个数的绝对值的方法:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到结论.练习一:课本P11第 2,3题2.判断下列各式是否正确:(1)|5|=|-5| ( )(2)-|5|=|-5| ( )(3)-5=|-5| ( )3.判断下列说法是否正确:(1)符号相反的数互为相反数( )(2) 一个数的绝对值越大,表示它的点在数轴上越靠右( )(3)一个数的绝对值越大,表示它的点在数轴上离原点越远( )(4)当a ≠0时,|a|总是大于0 ( )想一想:1.绝对值是3的数有几个?各是什么?有没有绝对值是-4.5的数?2. 绝对值小于2的整数有几个,把它们在数轴上表示出来.3.判断:如果一个数的绝对值是它本身,那么这个数是正数【知识点 2】 应用绝对值的性质解决问题在日常生活和生产中,我们借助绝对值的意义可以判断某些产品质量的好差,你能回答526,8, 3.9,,,100,0211---下列问题吗?例2. 正式排球比赛对所有排球的质量有严格的规定,下列5个质量检测结果:(用正数记超过质量的克数,用负数记不足质量的克数)+15,-10,+25,-20,-8请指出哪个排球的质量好一些.答:记为-8的排球质量好一些。
人教版初中七年级数学上册《绝对值》教案
1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。
2.使学生熟练掌握有理数绝对值的求法和有关计算问题。
(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
3.给出一个数,能求它的绝对值。
(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
教学重点给出一个数会求它的绝对值。
教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。
【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。
记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。
同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数。
1.2.4绝对值——绝对值的非负性 教学设计 2022—2023学年人教版数学七年级上册
1.2.4 绝对值——绝对值的非负性教学设计2022-2023学年人教版数学七年级上册一、教学目标1.理解绝对值的概念;2.掌握求绝对值的方法;3.熟练掌握绝对值的非负性。
二、教学重难点1.绝对值的概念;2.求绝对值的方法;3.绝对值的非负性;三、教学内容与安排1. 知识点的讲解1.1 绝对值的概念教师简要介绍数轴及其上定义的绝对值的概念,通过图示,让学生更好地理解绝对值的概念。
1.2 求绝对值的方法教师详细介绍求绝对值的方法,特别是负数的绝对值的求法,举例说明,让学生掌握方法。
1.3 绝对值的非负性教师介绍绝对值的非负性,即绝对值是一个非负的数,且等于一个数的时候,它本身便是非负的。
教师应多讲解一些实际生活中的例子,以便学生更好地理解和应用。
2. 讲解与练习安排2.1 教师讲解教师通过板书、投影片或者黑板报告等方式,对绝对值的概念、求法和非负性进行讲解,以确保学生掌握基本知识点。
2.2 练习安排•练习1:让学生通过手工工具练习绘制数轴,加深对数轴及绝对值的理解;•练习2:让学生练习计算正数、负数的绝对值,熟练掌握求绝对值的方法;•练习3:让学生通过实际生活中的例子练习应用绝对值的非负性,加深对绝对值的理解。
四、教学反思绝对值是数学中必须掌握的基础知识点,对学习数学的后续知识点打下基础。
在教学过程中,教师应结合生活实例,让学生更好地体会绝对值的概念和应用,以提高学生的学习兴趣和学习效果。
此外,在讲解时应注意语言的简单明了、易于理解。
练习环节应根据学生的掌握情况,针对性地设计训练,以提高学习效果。
七年级数学上册(人教版)1.2.4绝对值(第1课时绝对值的概念及性质)优秀教学案例
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,鼓励学生的进步和创新。
4.结合学生的反馈和评价,教师调整教学策略,为后续教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中与绝对值相关的实际问题,如地图上的距离、运动员比赛得分等,引导学生关注绝对值在现实生活中的应用。
本节课的主要内容包括绝对值的概念、绝对值的性质以及绝对值在实际问题中的应用。在教学过程中,教师应注重从实际问题出发,引导学生发现绝对值的意义,并通过合作交流、讨论归纳出绝对值的性质。同时,结合典型例题,让学生在实践中掌握绝对值的应用,提高解决问题的能力。
为了提高教学效果,教师可以运用多媒体教学手段,如动画、图片等,形象地展示绝对值的概念及性质,增强学生的直观感受。同时,注重启发式教学,引导学生主动思考、探究,培养学生的创新精神和实践能力。
3.教师通过典型例题,讲解绝对值在实际问题中的应用,引导学生学会运用绝对值解决问题。
(三)学生小组讨论
1.教师提出小组讨论任务,让学生结合实例探讨绝对值的性质。
2.学生分组讨论,共同分析绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
3.各小组汇报讨论成果,教师点评并总结绝对值的性质。
(二)问题导向
1.引导学生提出关于绝对值的问题,如“绝对值有什么意义?”,“如何表示一个数的绝对值?”等,激发学生的探究欲望。
2.教师提出具有挑战性的问题,如“你能用绝对值解释生活中的哪些现象?”引导学生运用所学知识解决实际问题。
3.鼓励学生自主探究,引导学生发现绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1
人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1一. 教材分析《人教版数学七年级上册》第1.2.4节“绝对值(第1课时)”是学生在初中阶段首次接触绝对值概念。
绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。
本节课的内容对于学生理解数的大小关系、解方程、不等式等方面具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。
但他们对绝对值的概念可能还比较陌生,需要通过具体的情境和实例来理解和掌握。
同时,学生可能对数轴有一定的了解,但将绝对值与数轴联系起来可能还需要一些引导。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值来描述和解决问题的能力。
3.引导学生通过数轴来理解绝对值,培养学生的数形结合思想。
四. 教学重难点1.重点:绝对值的概念和性质。
2.难点:绝对值在实际问题中的应用。
五. 教学方法1.情境教学法:通过具体情境引入绝对值的概念,让学生在实际情境中感受绝对值的意义。
2.数形结合法:利用数轴帮助学生理解绝对值,引导学生将绝对值与数轴相结合。
3.实例分析法:通过多个实例让学生掌握绝对值的性质,培养学生的运用能力。
六. 教学准备1.教学课件:制作课件,内容包括绝对值的概念、性质和应用实例等。
2.数轴教具:准备数轴教具,用于引导学生直观地理解绝对值。
3.练习题:准备一些有关绝对值的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾数轴上的点与原点的关系。
例如,点A 在数轴上表示2,点B在数轴上表示-2,让学生观察点A和点B与原点的关系。
2.呈现(10分钟)介绍绝对值的概念:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
并用课件展示绝对值的定义和性质。
3.操练(10分钟)让学生在数轴上找出一些数的绝对值,并说明理由。
例如,找出-3、0、5的绝对值,并解释为什么它们的绝对值分别是3、0、5。
人教版七年级数学上教案及教学反思 1.2.4绝对值
人教版七年级数学上教案及教学反思 1.2.4绝对值教学设计教学内容:人教版七班级数学上册1.2.4绝对值(第一课时)教学时间:****年12月10日教学地点:福泉学校七班级教室执教人:严桥镇福泉学校万光宗教学目标:[知识与技能]1、使同学初步理解绝对值的概念;2、明确绝对值的代数意义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数。
[过程与方法]培育同学用数形结合思想解决问题的技能,渗透符号语言和分类争论的数学思想。
[情感、立场与价值观]通过由详细实例抽象概括的独立思索和合作学习的过程,培育同学积极主动的学习习惯。
教学重点:让同学掌控求一个已知数的绝对值及正确理解绝对值的概念。
教学难点:对绝对值的几何意义和代数意义的理解。
教学过程:一、查找记忆1.什么叫做相反数?在数轴上分别标出-3、0、2、3及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于6的点。
二、新课教学〔一〕问题与思索出示问题:两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处(图见教材P11页)提出问题:1、它们的行驶路径相同吗?2、它们行驶路程的远近(线段OA、OB的长度)相同吗?老师在同学回答的基础上引出课题。
〔板书课题〕〔二〕探究新知1、绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作:|a|。
〔板书〕想一想:这里的数a可以表示什么样的数?互为相反数的两个数的绝对值有什么关系?同学争论、沟通,汇报结果,老师归纳总结。
2、例题解析:例1 求以下各数的绝对值。
-19,0,-2.3,+0.56,-6,+6.解:-19的绝对值是19,即|-19|=19;0的绝对值是0,即|0|=0;-2.3的绝对值是2.3,即|-2.3|=2.3;+0.56的绝对值是0.56,即|+0.56|=0.56;-6的绝对值是6,即|-6|=6;+6的绝对值是6,即|+6|=6.〔老师板演,规范解题格式〕3、练习:P11第1题同学自主完成,老师巡察,个别辅导,集体汇报结果。
1.2.4 绝对值(第1课时 绝对值的概念及性质)(教案)-2022-2023学年七年级数学上册同步
1.2.4 绝对值(第1课时绝对值的概念及性质)(教案)一、知识点概述本节课主要介绍绝对值的概念及性质。
通过引导学生了解绝对值的定义和计算方法,培养学生观察问题、分析问题和解决问题的能力。
二、教学目标1.掌握绝对值的概念及性质;2.理解绝对值的计算方法;3.能够灵活运用绝对值解决实际问题。
三、教学过程1. 导入新课引导学生回顾之前学过的数轴和有向数的概念,提出绝对值的概念。
2. 绝对值的定义1.引导学生猜测绝对值的定义。
2.引导学生通过举例子观察、思考,总结绝对值的定义:对于任意实数a,其绝对值记作|a|,表示a离0的距离。
3. 绝对值的性质1.在数轴上讨论绝对值的性质:对于任意实数a,有以下性质:–当a≥0时,|a|=a;–当a<0时,|a|=-a。
2.通过数轴上的例子,让学生感受绝对值与数轴上的位置关系。
3.指导学生通过求解简单的绝对值计算题目,进一步巩固绝对值的性质。
4. 绝对值的计算方法1.引导学生观察、总结绝对值的计算方法:–当a≥0时,|a|=a;–当a<0时,|a|=-a。
2.通过练习题的讲解,帮助学生掌握绝对值的计算方法。
5. 练习与拓展1.基础练习:在课堂上布置基础练习,巩固学生对绝对值的理解和计算方法。
2.拓展练习:在课后布置拓展练习,提高学生运用绝对值解决实际问题的能力。
四、教学反思本节课通过引导学生观察、思考,探索绝对值的概念和性质,培养了学生的观察和分析问题的能力。
通过练习题的讲解,学生掌握了绝对值的计算方法。
但在教学中,部分学生对于绝对值的符号理解不够清晰,需要在后续的教学中进一步强化和巩固。
另外,在设计练习题目时,可以增加一些实际应用的题目,提高学生运用绝对值解决实际问题的能力。
人教新版(2024)七年级数学上册-1.2.4 绝对值(教案)
1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。
人教版数学七年级上册1.2《绝对值(1)》名师教案
1.2.4 第一课时绝对值一、教学目标〔一〕学习目标1.理解绝对值的概念及通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;2.会求一个数的绝对值;知道一个数的绝对值,会求这个数;3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲. 〔二〕学习重点理解绝对值的概念,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法〔三〕学习难点会求一个数的绝对值,知道一个数的绝对值,会求这个数二、教学设计〔一〕课前设计1.预习任务(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .(2)一个正数的绝值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(3)一个数的绝对值一定是一个非负数.(4)⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.预习自测(1)-2021的绝对值是〔 〕A.-2021 B .2021 C .20171 D . 20171- 【知识点】绝对值【解题过程】解:-2021的绝对值是2021.【思路点拨】根据负数的绝对值等于它的相反数即可求解.【答案】B(2)2+的相反数是 .【知识点】绝对值 【解题过程】解:2+的相反数是-2.【思路点拨】先化简为2,即求2的相反数.【答案】-2(3)以下说法中正确的选项是( )A.符号相反的数互为相反数;B.一个数的绝对值越大,表示它的点在数轴上越靠右;C.一个数的绝对值越大,表示它的点在数轴上离原点越远;D.当a a =时, 0>a .【知识点】绝对值【解题过程】解:符号相反的数互为相反数.错误,如-1与2,故A 说法不正确;一个数的绝对值越大,表示它的点在数轴上离原点越远,故B 错误,C 正确;当a a =时,0≥a ,故D 错误,故应选C .【思路点拨】根据绝对值的意义和性质即可求解.【答案】C(4)以下等式不成立的是( )A .55=-B .55--=-C .55=-D .55-=--【知识点】绝对值【解题过程】解:不成立的是B,因为55,55-=--=-【思路点拨】根据绝对值的意义和性质即可求解.【答案】B〔二〕课堂设计1.知识回忆(1)数轴的三要素是什么?(2)什么叫互为相反数?它的几何意义是什么?2.问题探究探究一 绝对值的定义及其几何意义●活动①: 绝对值的概念及其几何意义两辆汽车从同一处O 出发,分别向东、西方向行驶10km ,到达A 、B 两处。
人教版七年级数学上册:1.2.4《绝对值》教学设计
人教版七年级数学上册:1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,它描述了一个数在数轴上所表示的点到原点的距离。
人教版七年级数学上册第1.2.4节主要介绍了绝对值的概念及其性质,包括绝对值的定义、绝对值的性质、绝对值的应用等。
本节课的内容是学生进一步理解数轴的概念,培养数形结合的思维方式,同时为后续学习不等式、方程等知识打下基础。
二. 学情分析七年级的学生已经学习了有理数、数轴等基础知识,对于数的概念和数轴有一定的理解。
但绝对值作为一个新的概念,需要学生从直观到抽象的认识过程。
此外,学生对于抽象概念的理解和应用能力还有待提高,因此,在教学过程中,需要注重引导学生从实际问题中抽象出绝对值的概念,并通过大量的练习来巩固和应用。
三. 教学目标1.了解绝对值的概念,理解绝对值的性质。
2.能够运用绝对值的概念和性质解决实际问题。
3.培养学生的数形结合思维,提高学生的抽象思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.绝对值在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置富有启发性的问题,引导学生从实际问题中抽象出绝对值的概念;通过典型案例的分析和讨论,让学生理解绝对值的性质;通过小组合作学习,培养学生之间的交流和合作能力。
六. 教学准备1.教材和人教版七年级数学上册相关资料。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入绝对值的概念:在数轴上,点A表示的数是3,点B表示的数是-3,求点A和点B到原点的距离。
让学生思考并回答问题,引导学生从实际问题中抽象出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义:一个数在数轴上所表示的点到原点的距离。
并给出绝对值的符号表示:|x|。
同时,解释绝对值的性质,如:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
3.操练(10分钟)让学生进行一些有关绝对值的练习,如:计算下列各数的绝对值,判断下列各式的值是正数、负数还是0等。
1.2.4绝对值教学设计2024--2025学年人教版七年级数学上册
答案:a的取值范围是a ≥ 5或a ≤ -5。
3.解绝对值方程|2x - 3| = 4。
答案:x = 7/2或x = -1/2。
4.求解不等式|x - 2| < 3。
答案:-1 < x < 5。
5.小明从家出发向东走了5公里,然后又向西走了3公里,他离家有多远?
每组选出一名代表,准备向全班展示讨论成果。来自5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对绝对值的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
-总结绝对值的基本公式和解题方法,如绝对值的定义、非负性、解方程和不等式的方法等。
-强调绝对值在实际生活中的应用,如距离计算、温度变化等,鼓励学生在日常生活中发现和应用绝对值。
2.当堂检测:
-设计一些与本节课内容相关的练习题,让学生在课堂上进行练习,检测学习效果。
-题目应涵盖绝对值的概念、性质和应用,以及解绝对值方程和不等式的方法。
重点:
1.绝对值的概念及其表示方法。
2.绝对值的性质,包括正数、负数和零的绝对值。
3.绝对值在实际问题中的应用。
难点:
1.理解绝对值的非负性,即绝对值总是大于等于零。
2.掌握绝对值方程和不等式的解法。
3.将绝对值概念应用于解决实际问题,如距离、温度等。
解决办法:
1.通过具体例子和生活中的实例,引导学生理解绝对值的概念。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用绝对值解决实际问题。
人教版数学七年级上册1.2.4《绝对值》教学设计
人教版数学七年级上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,对于七年级学生来说是全新的内容。
本节课的内容主要包括绝对值的定义、性质以及绝对值在数轴上的表示方法。
教材通过简单的例子引导学生探究绝对值的性质,让学生在理解绝对值概念的基础上,能够运用绝对值性质解决问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数轴、有理数等概念有一定的了解。
但绝对值作为一个新的概念,对学生来说仍然具有一定的抽象性。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和直观的数轴演示,帮助学生理解和掌握绝对值的概念和性质。
三. 教学目标1.理解绝对值的定义,掌握绝对值的性质。
2.能够运用绝对值性质解决简单问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.绝对值的定义和性质。
2.绝对值在数轴上的表示方法。
3.运用绝对值性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入绝对值的概念,让学生在具体的情境中感受绝对值的意义。
2.数形结合法:利用数轴直观地表示绝对值,帮助学生理解和掌握绝对值的性质。
3.引导发现法:教师引导学生发现绝对值的性质,培养学生的探究能力和思维品质。
4.归纳总结法:在教学过程中,教师引导学生总结绝对值的性质,加深学生对知识点的理解。
六. 教学准备1.教学课件:制作内容丰富、形式多样的课件,帮助学生理解和掌握绝对值的概念和性质。
2.数轴教具:准备数轴教具,方便学生直观地理解绝对值在数轴上的表示。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入绝对值的概念,如:“小明的家距离学校5公里,那么小明的家到学校的距离是多少?”引导学生思考并回答问题,引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,即一个数的绝对值是它到原点的距离。
通过数轴演示,让学生直观地理解绝对值的意义。
七年级数学上册(人教版)1.2.4绝对值(第一课时)优秀教学案例
1.设计问题链:设计一系列问题,引导学生从已知的有理数概念逐步过渡到绝对值的概念,激发学生的思考。
2.引导学生探究:通过问题的引导,让学生自主探究绝对值的计算方法,培养学生的自主学习能力。
3.问题解决:引导学生运用绝对值的概念解决实际问题,提高学生解决问题的能力。
(三)小组合作
1.分组讨论:将学生分成小组,让他们在小组内进行讨论,共同探究绝对值的概念和运用方法。
4.小组合作的学习模式:通过分组讨论和小组展示,培养了学生的合作意识和沟通能力,提高了学生的表达能力和解决问题的能力。
5.及时的反馈与总结:在教学过程中,教师及时给予学生反馈,指出学生的错误,并帮助学生改进。在课程结束时,教师引导学生进行总结,巩固所学知识,提高学生的学习效果。
这些亮点体现了本教学案例在教学内容、教学方法和教学评价等方面的优秀表现,有助于提高学生的学习兴趣、培养学生的自主学习能力和合作意识,促进学生的全面发展。同时,这些亮点也展示了教师在教学中的专业素养和敬业精神,为学生的成长提供了良好的教育环境。
2.运用绝对值解决实际问题:通过生活实例,引导学生运用绝对值解决实际问题,提高学生解决问题的能力。
3.数形结合思想:通过数轴的演示,让学生理解绝对值与数轴的关系,培养学生的数形结合思想。
(三)情感态度与价值观
1.培养学生的学习兴趣:通过生动有趣的教学活动,激发学生对绝对值学习的兴趣,提高他们的学习积极性。
2.掌握绝对值的计算方法:学生能够熟练地计算正表示:学生能够理解绝对值在数轴上的表示方法,能够根据绝对值判断点在数轴上的位置。
(二)过程与方法
1.探究绝对值的方法:通过实际例子,引导学生探究绝对值的计算方法,培养学生自主学习能力。
2.小组展示:各小组代表进行展示,分享他们的讨论成果,培养学生的表达能力和合作能力。
人教版七年级数学上册1.2.4绝对值教学设计
3.导入新课:在学生思考的基础上,引出本节课的主题——绝对值,引导学生进入新课的学习。
(二)讲授新知
1.绝对值的概念:通过数轴和温度计的例子,引导学生理解绝对值表示数的大小,与数的正负无关。给出绝对值的定义,解释绝对值符号及其表示方法。
4.多样化练习,巩固知识
-设计不同类型的习题,包括基础题、提高题和应用题,以满足不同层次学生的学习需求。
-通过错题分析,帮助学生找到错误原因,及时纠正,巩固知识点。
5.适时反馈,调整教学策略
-在教学过程中,关注学生的学习反馈,根据学生的掌握情况,适时调整教学节奏和策略。
-对学生进行个性化辅导,针对不同学生的困难给予有针对性的指导。
2.交流分享:小组讨论结束后,邀请部分小组分享他们的讨论成果,其他小组进行补充和评价,促进知识的碰撞和交流。
3.教师点评:对学生的讨论进行点评,强调重点、难点,纠正错误,引导学生正确理解绝对值的知识。
(四)课堂练习
1.基础题:设计一些基础题,让学生独立完成,巩固绝对值的概念和性质。
2.提高题:设计一些稍有难度的题目,如绝对值方程、绝对值不等式等,提高学生的解题能力。
2.绝对值的性质:通过具体数值的例子,让学生观察、分析、总结绝对值的性质,如非负性、对称性等。
3.绝对值的应用:介绍绝对值在实际问题中的应用,如距离、温度等,让学生了解所学知识在实际生活中的价值。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对绝对值的概念、性质和应用进行讨论,鼓励学生提出问题、解决问题。
3.应用题:设计一些与生活相关的绝对值应用题,让学生学会将实际问题转化为数学模型,运用所学知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版义务教育课程标准实验教科书七年级上册
1.2.4 绝对值第一课时教学设计
一、教材分析
绝对值概念是一个非常重要的概念,学习这个内容可以起到复习巩固前面内容的作用,加深对有理数的概念的理解。
同时学习本节课的内容,是进一步学习有理数有大小的比较、有理数的加法法则、乘法法则、二次根式的化简的基础。
二、教学目标:
知识与技能
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
过程与方法
经历绝对值概念的形成,体会数形结合的思想方法,丰富解决问题的策略。
情感态度与价值观
学生在经历了实践、探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性.
三、重点难点
重点 :初步理解绝对值的意义,会求一个有理数的绝对值;
难点 :有理数的绝对值的代数意义及其应用
突破重难点方法:利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义
四、教学方法和教学手段
导与学生的自主探究相结合的教学方法,利用多媒体等手段教学.
五、教学过程。