中考数学几何模型2:共顶点模型

合集下载

【中考数学复习】2022中考数学几何模型(费马点,胡不归,阿氏圆)

【中考数学复习】2022中考数学几何模型(费马点,胡不归,阿氏圆)

12讲通关中考数学几何模型中考数学几何模型1:截长补短模型 (1)中考数学几何模型2:共顶点模型 (9)中考数学几何模型3:对角互补模型 (16)中考数学几何模型4:中点模型 (25)中考数学几何模型5:角含半角模型 (35)中考数学几何模型6:弦图模型 (44)中考数学几何模型7:轴对称最值模型 (53)中考数学几何模型8:费马点最值模型 (64)中考数学几何模型9:隐圆模型 (72)中考数学几何模型10:胡不归最值模型 (84)中考数学几何模型11:阿氏圆最值模型 (97)中考数学几何模型12:主从联动模型 (106)中考数学几何模型1:截长补短模型名师点睛拨开云雾开门见山有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等.然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.典题探究启迪思维探究重点例题1.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.变式练习>>>1.已知△ABC的内角平分线AD交BC于D,∠B=2∠C.求证:AB+BD=AC.例题2.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.2.已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.例题3.如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.例题4.在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,求线段AE长度的最大值.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.例题6.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.达标检测领悟提升强化落实1.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.2.如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.4.如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.5.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.6.如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.7.如图,在正方形ABCD 中,点P 是AB 的中点,连接DP ,过点B 作BE ⊥DP 交DP 的延长线于点E ,连接AE ,过点A 作AF ⊥AE 交DP 于点F ,连接BF .(1)若AE =2,求EF 的长;(2)求证:PF =EP +EB .中考数学几何模型2:共顶点模型名师点睛拨开云雾开门见山共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

2024年中考数学常见几何模型(全国通用)双中点(线段)模型与双角平分线(角)模型(原卷版)

2024年中考数学常见几何模型(全国通用)双中点(线段)模型与双角平分线(角)模型(原卷版)

专题01.双中点(线段)模型与双角平分线(角)模型线段与角度是初中几何的入门知识,虽然难度不高,但重要性是不言而喻的。

这类模型通常由问题出发,先由线段(角度)和差确定解题方向,然后辅以线段中点(角平分线)来解决。

但是,对于有公共部分的线段双中点模型和双角平分线模型,可以写出的线段(角度)和差种类较多,这就增加了思考的难度。

模型1.线段的双中点模型图1图21)双中点模型(两线段无公共部分)条件:如图1,已知A 、B 、C 三点共线,D 、E 分别为AB 、BC 中点,结论:12DE AC .2)双中点模型(两线段有公共部分)条件:如图2,已知A 、B 、C 三点共线,D 、E 分别为AB 、BC 中点,结论:12DE AC ...A .20ACB .DC 例3.(2022秋·湖北咸宁·七年级统考期末)1例5.(2022秋·山东青岛·七年级校考期末)直线(1)若20AB cm ,求MN 的长;(2)初步感知:(1)如图1,点C 在线段AB 上,若2k ,则AC __________;若3AC BC ,则k例9.(2022·贵州铜仁·七年级期末)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度.(2)根据第(1)题的计算过程和结果,设AC=a,BC=b,其他条件不变,求MN的长度.(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB 向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动.设点P的运动时间为t(s).当C、P、Q三点中,有一点恰好是以另外两点为端点的线段的中点时,直接写出时间t.模型2.双角平分线模型图1图2图31)双角平分线模型(两个角无公共部分)条件:如图1,已知:OD 、OE 分别平分∠AOB 、∠BOC ;结论:12DOE AOC .2)双角平分线模型(两个角有公共部分)条件:如图1,已知:OD 、OE 分别平分∠AOB 、∠BOC ;结论:12DOE AOC .3)拓展模型:双角平分线模型(三个角围成一个周角)条件:如图3,已知∠AOB +∠BOC+∠AOC=360°,OP 1平分∠AOC 、OP 2平分∠BOC ;结论:1211802POP AOB .A .70 B .100例2.(2023秋·福建福州·七年级统考期末)如图,已知射线,BOC OF 平分AOB ,以下四个结论:③AOD BOC ;④EOF例3.(2023·河南·七年级校联考期末)如图,22OA OB 、分别是1A OM 和MOB 分别是1n A OM 和1n MOB 的平分线,则例4.(2022秋·山西太原·七年级统考期末)图,的内部,OE 是∠AOB 的一条三等分线.请从A .当∠BOC =30°时,∠EOD 的度数为B .当∠BOC =α°时,∠EOD 的度数为例5.(2023·江苏无锡·七年级校考期末)解答题:别平分AOB 、AOC ,求 °<180n m ,OD 、OE 分别平分例6.(2022秋·河南商丘·七年级统考期末)综合与探究:如图1,在AOB 的内部画射线OC ,射线OC 把AOB 分成两个角,分别为AOC 和BOC ,若这两个角中有一个角是另外一个角的2倍,则称射线OC 为AOB 的“3等分线”.(1)若90AOB ,射线OC 为AOB 的“3等分线”,则AOC 的度数为__________.(2)如图2,已知60AOB ,过点O 在AOB 外部作射线OP .若,,OA OP OB 三条射线中,一条射线恰好是以另外两条射线为角的“3等分线”,求AOP 的度数(180AOP ).例9.(2022·四川·成都市七年级期末)如图所示:点P 是直线AB 上一点,∠CPD 是直角,PE 平分∠BPC .(1)如图1,若∠APC =40°,求∠DPE 的度数;(2)如图1,若∠APC = ,直接写出∠DPE 的度数(用含 的代数式表示);(3)保持题目条件不变,将图1中的∠CPD 按顺时针方向旋转至图2所示的位置,探究∠APC 和∠DPE 的度数之间的关系,写出你的结论,并说明理由.A .①②③B .③④C .①②④4.(2023秋·江苏徐州·七年级校考期末)如图,点M 在线段A .20225102 B .20235102 C .20225102 D .20235102A .30B .25 7.(2023秋·山西大同·七年级统考期末)在别为AOC 和BOC ,若AOC 60AOB ,射线OC 为AOB①在图1的情况下,在DBC 内作DBF ②在旋转过程中,若BM 平分DBA ,BN ③在旋转过程中,两块三角板的边所在直线夹角成④DBC ABE 的角度恒为105 .其中正确的结论个数为(A .1个B .2个11.(2022秋·四川巴中·七年级统考期末)如图:数轴上点13.(2023春·四川达州·七年级校考阶段练习)D 、E 分别为线段AB BC 、中点,直线14.(2023秋·福建福州·七年级校考期末)已知线段QD16.(2023秋·福建福州·七年级校考期末)已知有理数MP 时,NP ;(1)若点P在线段AB上运动,当7AB ,点P以1cm/s (2)【拓展与延伸】已知线段10cm3cm/s的速度从点B出发,先向点A方向运动,到达点(1)根据题意,小明求得MN ______于是他先将题中的条件一般化,并开始深入探究.设AB a=,C是线段AB上任意一点(不与点(1)如图1,求证:AOB EOB DOE ;(2)如图2,作OF 平分AOB (3)如图3,在(2)的条件下,当90AOD 时,作射线OA 的反向延长线AOH AOE ,反向延长射线OE 得到射线OQ ,射线OP 在HOQ 内部,26BOC DOF ,5271GOH POQ EOF ,求BOP 的度数.(2)若将(1)中的条件“ON 平分BOC ,OM 平分且AOB ,求AOM BON 的度数;(3)如图2,若ON 、OC 在AOB 的外部时,ON 时,猜想:MON 与 的大小有关系吗?如果没有,指出结论并说明理由.232023··(1)如图1,当OB ,OC 重合时,求EOF 的度数;EOF 的度数;(3)当AOB 和COD 的位置如图325.(2023·江苏七年级课时练习)(理解新知)如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,(1)线段的中点这条线段的“奇妙点”(填“是”或“不是”)为何值时,26.(2022·广东茂名·七年级期末)已知:∠AOB =60°,∠COD =90°,OM 、ON 分别平分∠AOC 、∠BOD .(1)如图1,OC 在∠AOB 内部时,∠AOD +∠BOC =,∠BOD ﹣∠AOC =;(2)如图2,OC 在∠AOB 内部时,求∠MON 的度数;(3)如图3,∠AOB ,∠COD 的边OA 、OD 在同一直线上,将∠AOB 绕点O 以每秒3°的速度逆时针旋转直至OB 边第一次与OD 边重合为止,整个运动过程时间记为t 秒.若∠MON =5∠BOC 时,求出对应的t 值及∠AOD 的度数.27.(2023·江苏·七年级专题练习)如图1,射线OC 在AOB 的内部,图中共有3个角:AOB 、AOC 、BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB 的“定分线”.(1)一个角的平分线_________这个角的“定分线”;(填“是”或“不是”)(2)如图2,若MPN a ,且射线PQ 是MPN 的“定分线”,则MPQ ________(用含a 的代数式表示出所有可能的结果);(3)如图2,若MPN =48°,且射线PQ 绕点P 从PN 位置开始,以每秒8°的速度逆时针旋转,当PQ 与PN 成90°时停止旋转,旋转的时间为t 秒;同时射线PM 绕点P 以每秒4°的速度逆时针旋转,并与PQ 同时停止.当PQ 是MPN 的“定分线”时,求t 的值.。

中考数学几何模型之共顶点模型(解析版)

中考数学几何模型之共顶点模型(解析版)

中考数学几何模型:共顶点模型名师点睛 拨开云雾 开门见山共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分典题探究 启迪思维 探究重点例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE .(1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.【解答】解:(1)CE=BD,理由如下:∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;(2)∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°.变式练习>>>1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.【解答】解:(1)∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE.在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)由(1)得:△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBP+∠BPC=90°,∠BPC=∠APD,∴∠EAC+∠APD=90°,∴∠AHB=90°,∴∠BAH+∠ABD=90°,∵∠DAE=∠ABD,∴∠BAH+∠DAE=90°,即∠BAD=90°,∵AB=8,AD=6,∴BD=AE=10,∴S四边形ABED=10×10÷2=50.例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.变式练习>>>2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.【解答】解:连接BP,∵△ABC和△PCD都为等边三角形,∴AC=BC,DC=PC,∠ACB=∠DCP=60°,∴∠ACB﹣∠DCB=∠DCP﹣∠DCB,即∠ACD=∠BCP,∴△ACD≌△BCP(SAS),∴AD=BP,又∠RAB+∠BAC+∠QAE=180°,∴R,A,Q三点共线,又∠CBP=∠CAD=60°,∠RBA+∠ABC+∠CBP=180°,∴R,B,P三点共线,又AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP,又∠R=60°,∴△PQR是等边三角形,则P、Q、R是等边三角形的三个顶点.例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.(1)如图1,求证:BF=AF+FC,EF=DF+FC;(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系CD=BE;(不必证明)【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=CE+CD;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【解答】解:(1)∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AE=AC,且∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠BAE=∠DAC,在△DAC和△BAE中,∵,∴△DAC≌△BAE(SAS),∴CD=BE,故答案为:CD=BE.(2)∵△ABC、△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴CE=BD,∠ACE=∠B=45°,又∵BC=BD+CD,∠ACE=45°,∴BC=CE+CD,∠DCE=90°,∴CD2+CE2=DE2,∵BD=CE,DE=AD,∴CD2+BD2=2AD2.故答案为:BC=CE+CD.例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).【解答】解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,∴AD+DE=BC=4;(2)①补全图形,如图2,设DE与BC相交于点H,连接AE,交BC于点G,∵∠ADB=∠CDE=90°,∴∠ADE=∠BDC,在△ADE与△BDC中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD.∵DE与BC相交于点H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB沿着射线CE的方向平移,得到线段EF,∴EF=CB=4,EF∥CB,∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4;达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH. 求证:GH∥BE.2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN和EBFG,连接NC,AF,求证:NC∥AF.3.如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:AB2+DE2=AD2+BE2.4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【解答】【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,故答案为:BD=CE;【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF=2或6.【解答】(1)证明:如图①中,设AD交EF于O.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∴∠AEO=∠FDO,∵∠AOE=∠FOD,∴∠OFD=∠OAE=60°,∵AB⊥BC,∴∠ABD=90°,∵∠ABC=60°,∴∠CBF=30°,∵∠OFD=∠CBF+∠BCF,∴∠FBC=∠FCB=30°,∴CF=BF,∴DF=CE﹣CF(2)如图图②中,结论:DF=CF﹣CE.图③中,结论:DF=CE+CF;如图②中,∵△ABD≌△ACE,∴BD=EC,∠ADB=∠AEC,∵∠ADB+∠ADF=180°,∴∠AEF+∠ADF=180°,∴∠DAE+∠DFE=180°,∴∠DFE=120°,∴∠FBC=∠FCB=30°,∴FB=FC,∴DF=BF﹣BD=CF﹣CE.(3)①如图1中,∵BD=2DF,设BF=DF=CF=x,∵EF=6,BD=EC,∴3x=6,∴x=2∴CF=2.②如图③中,设BF=CF=x,则BD=2x,∵BD=EC,EF=6,∴6+x=2x,∴x=6,∴CF=6,综上所述,CF=2或6.故答案为2或6.。

模型11 手拉手模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型11 手拉手模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。

【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。

手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE是正三角形,∴DE=DC,∵∠AOB=60°,∠DCP=60°,∠DPC>∠AOB,∴∠DPC>∠DCP,∴DP<DC,即DP<DE,∴④错误;所以正确的有①②③⑤变式训练【变式1-1】.如图,ABD∆,AEC∆都是等边三角形,则BOC∠的度数是()A.135︒B.125︒C.120︒D.110︒解:ABD,AEC∆∆都是等边三角形,∴=,AE ACAD AB∠=∠=︒,60∠==︒,ADB DBADAB CAE=,60∴∠=∠,DAB BAC CAE BAC∴∠+∠=∠+∠,DAC BAE∴∆≅∆,ADC ABE()DAC BAE SAS∴∠=∠,∴∠=∠+∠+∠BOC BDO DBA ABE=∠+∠BDO DBA ADC=∠+∠+∠ADB DBA∴∠的度数是120︒=︒,BOC=︒+︒1206060故选:C.【变式1-2】.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有()A.②④B.①②③C.①②④D.①②③④解:∵△DAC和△EBC均是等边三角形,∴AC=DC,BC=CE,∠ACE=∠BCD,∴△ACE≌△DCB,①正确由①得∠AEC=∠CBD,∴△BCN≌△ECM,∴CM=CN,②正确假使AC=DN,即CD=CN,△CDN为等边三角形,∠CDB=60°,又∵∠ACD=∠CDB+∠DBC=60°,∴假设不成立,③错误;∵∠DBC+∠CDB=60°∠DAE+∠EAC=60°,而∠EAC=∠CDB,∴∠DAE=∠DBC,④正确,∴正确答案①②④故选:C.【变式1-3】.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE与AC交于点F,若AB=5,BD=3,则=.解:连接CE,过点F作FM⊥BC于点M,FN⊥CE于点N,∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE=3,∠ABD=∠ACE=60°,∵AB=BC=5,∴DC=2,∵∠ACB=∠ACE=60°,FM⊥BC,FN⊥CE,∴FM=FN,=DC•FM,S△FCE=CE•FN,∵S△DFC∴,∴,故答案为:.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB ∆和ECD ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,D 为AB 边上一点,若5AD =,12BD =,则DE 的长为__________解:ACB ∆ 和ECD ∆都是等腰直角三角形,CD CE ∴=,AC BC =,90ECD ACB ∠=∠=︒,ACE BCD ∴∠=∠,在ACE ∆和BCD ∆中,CE CD ACE BCD AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,12BD AE ∴==,45CAE CBD ∠=∠=︒,90EAD ∴∠=︒,222212513DE AE AD ∴=+=+=.变式训练【变式2-1】.如图,3AB =,2AC =,连结BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,AC CD == ,90ACD ∠=︒,2AD ∴==,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,BC ∴=.故选:D .【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).解:AB AC = ,90BAC ∠=︒,点D 为BC 中点,12BD CD AD BC ∴===,45BAD CAD C ∠=∠=∠=︒,AD BC ⊥,BC =,DF DE ⊥ ,90EDF ADC ∴∠=∠=︒,ADE CDF ∴∠=∠,AD CD = ,BAD C ∠=∠,()AED CFD ASA ∴∆≅∆,故①正确;当E 、F 分别为AB 、AC 中点时,12EF BC AD ==,故②不一定正确;ADE CDF ∆≅∆ ,AE CF ∴=,BE AE AB += ,BE CF AC ∴+=,故③正确;ADE CDF ∆≅∆ ,ADE CDF S S ∆∆∴=,212ADF CDF ADC AEDF S S S S AD ∆∆∆∴=+==⨯四边形,故④正确;故答案为:①③④.【变式2-3】.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF .(2)若BE =1,AE =2,求CE 的长.(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴EF2=BE2+BF2=12+()2=3,∴EF=,∵CE2=2EF2=6,∴CE=.考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD =36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论是_____.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;法一:作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;法二:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴A、B、M、O四点共圆,∴∠AMO=∠ABO=72°,同理可得:D、C、M、O四点共圆,∴∠DMO=∠DCO=72°=∠AMO,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8解:连接BE 并延长交AC 延长线于F ,120ACB ∠=︒ ,AC BC =,30CAB CBA ∴∠=∠=︒,120DCE ACB ∠=︒=∠ ,ACD BCE ∴∠=∠,AC BC = ,CD CE =,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,CB 为定直线,30CBE ∠=︒为定值,∴当D 在直线AB 上运动时,E 也在定直线上运动,当AE BE ⊥时,AE 最小,30CAB ABC CBE ∠=︒=∠=∠ ,90AFB ∴∠=︒,∴当E 与F 重合时,AE 最小,在Rt CBF ∆中,90CFB ∠=︒,30CBF ∠=︒,122CF CB ∴==,6AF AC CF ∴=+=,AE ∴的最小值为6AF =,故选:C .【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.解:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=5AF.∴AF=.∴当AD最短时,AF最短、CF最长.∵当AD⊥BC时,AF最短、CF最长,此时AD=AB=.∴AF最短==.∴CF最长=AC﹣AF最短=5﹣=.故答案为:.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD之间的等量关系,并说明理由.(1)解:AB AC = ,120BAC ∠=︒,AQ BC ⊥,30B C ∴∠=∠=︒,BQ QC =,12AQ AB ∴=,由勾股定理得:2BQ AB ===,BC ∴=,∴BC AB ==(2)证明:BAC DAE ∠=∠ ,BAC BAE DAE BAE ∴∠-∠=∠-∠,即DAB EAC ∠=∠,在ADB ∆和AEC ∆中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,()ADB AEC SAS ∴∆≅∆;(3)解:CD BD =+,理由如下:由(1)可知:DE =,ADB AEC ∆≅∆ ,EC BD ∴=,CD DE EC BD ∴=+=+.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS证明:BAE DAC ∠=∠ ,BAE EAC DAC EAC ∴∠+∠=∠+∠,BAC DAE ∴∠=∠,AB AD = ,B D ∠=∠,()ABC ADE ASA ∴∆≅∆,AC AE ∴=,故选:C .2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒,故选:C .3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大解:A .OBD ∆ 和ABC ∆都是等边三角形,60ABC OBD ODB BOD ∴∠=∠=∠=∠=︒,BO BD =,BC AB =,ABC DBA OBD DBA ∴∠-∠=∠-∠,CBD ABO ∴∠=∠,()BOA BDC SAS ∴∆≅∆,故A 不符合题意;B .BOA BDC ∆≅∆ ,90BDC BOA ∴∠=∠=︒,6090150ODC BDO BDC ∴∠=∠+∠=︒+︒=︒,故B 不符合题意;C .延长CD 交x 轴于点E ,150ODC ∠=︒ ,18030ODE ODC ∴∠=︒-∠=︒,90BOA ∠=︒ ,60BOD ∠=︒,30DOA BOA BOD ∴∠=∠-∠=︒,60DEA DOA ODE ∴∠=∠+∠=︒,∴直线CD 与x 轴所夹的锐角恒为60︒,故C 不符合题意;D .BOA BDC ∆≅∆ ,CD OA ∴=,点A 是x 轴上一个定点,OA ∴的值是一个定值,∴随点B 的移动,线段CD 的值不变,故D 符合题意;故选:D .4.如图,3AB =,2AC =BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,2AC CD == ,90ACD ∠=︒,222AD AC CD ∴=+=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,2217BC CE BE ∴=+=.故选:D .5.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A 10B .4C .5D .5解:如图,以AO 为边,在AO 的左侧作等边AOH ∆,连接BH ,AOH ∆ ,ABP ∆是等边三角形,1AO AH OH ∴===,AB AP =,60OAH BAP ∠=∠=︒,OAP HAB ∴∠=∠,在OAP ∆和HAB ∆中,AO AH OAP HAB AP AB =⎧⎪∠=∠⎨⎪=⎩,()OAP HAB SAS ∴∆≅∆,OP BH ∴=,在OPH ∆中,BH OH OB <+,∴当点H 在BO 的延长线上时,BH 的最大值4OH OB =+=,OP ∴的最大值为4,故选:B .6.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,则∠AOB =150°.解:连接OO ′,如图,∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,∴BO ′=BO =4,∠O ′BO =60°,∴△BOO ′为等边三角形,∴∠BOO ′=60°,∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠O ′BO ﹣∠ABO =∠ABC ﹣∠ABO ,即∠O ′BA =∠OBC ,在△O ′BA 和△OBC中,∴△O ′BA ≌△OBC (SAS ),∴O ′A =OC =5,在△AOO ′中,∵OA ′=5,OO ′=4,OA =3,∴OA 2+OO ′2=O ′A 2,∴∠AOO ′=90°,∴∠AOB =60°+90°=150°,故答案为:150°.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=﹣.解:∵AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,∴BC=AB=2,DE=AE=3,∠BAD=∠CAE,∠ABC=45°=∠ACB,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴EC=BD,∠ABD=∠ACE=45°,∴∠ECB=∠ECD=90°,∴DE2=EC2+CD2,∴18=(2+CD)2+CD2,解得:CD=﹣,CD=﹣﹣(不合题意舍去),故答案为:﹣.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.解:连接BD,∠BAD=90°﹣∠BAE,∠CAE=90°﹣∠BAE,∴∠BAD=∠CAE.又AD=AE,AB=AC,∴△ADB≌△AEC(SAS).∴BD=CE,∠ADB=∠AEC=135°,∴∠BDC=135°﹣45°=90°.∵△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,∴DE=2,BC=3.设BD=x,则DC=2+x,在Rt△BDC中,利用勾股定理BD2+DC2=BC2,所以x2+(2+x)2=18,解得x1=﹣﹣(舍去),x2=﹣+.∵点F、G分别为DE、BE的中点,∴FG=BD=.故答案为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.解:(1)BD=CE,理由如下:∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=60°,∴∠BCE=120°;+S△CDE=S△ADE,理由如下:(3)S△ABE∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),=S△ACE,∠ABC=∠ACE=60°,∴S△ABD∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ABC=∠ECD,∴AB∥CE,=S△ABC,∴S△ABE+S△CDE=S△ADE+S△ACD,∵S△ACE+S△CDE=S△ADE+S△ACD,∴S△ABD+S△ACD+S△CDE=S△ADE+S△ACD,∴S△ABC+S△CDE=S△ADE.∴S△ABE12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为CE=BD;位置关系为CE⊥BD;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图(2),∵∠BAD=90°﹣∠DAC,∠CAE=90°﹣∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE=BD;CE⊥BD.②当点D在BC的延长线上时,①的结论仍成立.如图(3),∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图(4)所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为CF⊥BD,线段CF、BD的数量关系为CF=BD;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时①的结论仍成立.理由如下:由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD;(2)当∠ACB=45°时,CF⊥BD.理由如下:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.(1)证明:∵四边形AEFG为正方形,∴AE=AG,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,BE与AG交于点P,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.。

2022年九年级中考数学冲刺-几何模型讲义

2022年九年级中考数学冲刺-几何模型讲义

2022年中考几何模型一、角平分线模型知识精讲1. 过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题2. 若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例:已知:AD是的平分线,,过点D于点E,则.3. 在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连接DE、DF4. 过角平分线上一点作角的一边的平行线,构造等腰三角形,例:已知:点D是平分线上的一点,过点D作三角形,即.5. 有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例:已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则.6. 从角的一边上的一点作角平分线的垂线,使之与角的另一边相交,则可得到一个等腰三角形,例:已知:OE平分∠AOB,点D在OA上,DE⊥OE,则可延长DE交OB于点F,则DE=EF,OD=OF,∠ODF=∠OFD.7. 有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例:4321DA4231EFCB(1)已知:OC 平分,点E 、F 分别在OA 、OB 上,过点E M ,过点F N(2)已知:OC 平分,点E 、F 在OC 上,于点M ,于点N ,则(3)已知:OC 平分,点E 、F 在OC ,8. 利用“在同圆或等圆中,相等的圆周角(圆心角)所对的弦相等”可得相等线段,例:已知:∠BAC 是圆O 的圆周角,∠DOE 是圆O 的圆心角,AF 平分∠BAC ,OG 平分∠DOE ,连接BF 、CF 、DG 、EG ,则BF =CF ,DG =EG .9. 【内内模型】如图,两个内角平分线交于点D ,则.10. 【内外模型】如图,的一个内角平分线和一个外角平分线交于点D ,则.11. 【外外模型】如图,交于点D ,则.二、中点模型知识精讲1. 在等腰三角形中有底边中点或证明底边中点时,可以作底边的中线,利用等腰三角形的“三线合一”性质来解决问题.例:已知:在△ABC中,AB=AC,取BC的中点D,连接AD,则AD平分∠BAC,AD是边BC上的高,AD是BC边上的中线.【说明】应用等腰三角形“三线合一”的性质是证明两条直线垂直的重要方法.2. 在直角三角形中,有斜边中点或有斜边的倍分关系线段时,可以作斜边的中线解决问题,例:(1)如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则CD=AD=BD.(2)如图,在Rt△ABC中,AB=2BC,作斜边AB上的中线CD,则AD=BD=CD=BC,△BCD是等边三角形.【总结】在直角三角形中,若遇到斜边的中点,则连接直角顶点与斜边的中点是解决问题的基本方法,作这条辅助线的目的是得到三条相等的线段及两对相等的角. 3. 将三角形的中线延长一倍,构造全等三角形或平行四边形(倍长中线),例:(1)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则△ADC≌△EDB.(2)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则四边形ABEC是平行四边形.4. 将三角形中线上的一部分延长一倍,构造全等三角形或平行四边形,例:如图,已知点E是△AD上的一点,延长AD至点F,使得DE=DF,连接BF、CF,则四边形BFCE为平行四边形或△BDF≌△CDE或△BED≌△CFD.【总结】证明两条线段相等常用的方法:①当要证明的两条线段是两个三角形的边时,一般通过证明这两条线段所在的两个三角形全等,通过三角形全等的对应边相等来证明两条线段相等;②当两条线段是同一个三角形的两条边时,一般证明这两条边所对的角相等,利用等角对等边证明两条线段相等.5. 有以线段中点为端点的线段时,可以倍长此线段,构造全等三角形或平行四边形,例:如图,已知点C边AE上一点,O为AB的中点,延长CO至点D,使得,连接AD、BD,四边形ADBC为平行四边形.6. 有三角形中线时,可过中点所在的边的两端点向中线作垂线,构造全等三角形,例:如图,AF为△ABC的中线,作BD⊥AF交AF延长线于点D,作CE⊥AF于点E,则△BDN≌△CEN.7. 在三角形中,有一边的中点时,过中点作三角形一边的平行线或把某条线段构造成中位线,利用已知的条件可求线段长,例:如图,D为AB的中点,过点D作DE∥BC,则DE为△ABC的中位线;过点B作BF∥DC 交AC的延长线于点F,则DC为△ABF的中位线.8. 有两个(或两个以上)中点时,连接任意两个中点可得三角形的中位线,例:如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则.9. 有一边中点,并且在已知或求证中涉及线段的倍分关系时,可以取另一边的中点,构造三角形的中位线,例:如图,点E是△ABC边BC的中点,取AC的中点F,连接EF,则EF∥AB,10. 当圆心与弧(或弦)的中点,可以利用垂径定理解决问题,例:(1)如图,,连接AC、OB,则OB⊥AC,OB平分AC.(2)如图,点C为弦AB的中点,连接OC,则OC⊥AB.三、平行模型知识精讲在一些有平行线却没有截线的问题中,通常需要添加辅助线构造“三线八角”,再运用平行线的有关知识解题,常见的辅助线添加方式如下:如果遇到两条平行线之间夹折线,一般应过折点作出与已知平行线平行的直线.1. 如图,已知AB∥CD,点E为AB、CD间的一点,过点E作EF∥AB,则∠A+∠C=∠AEC.2. 如图,已知AB∥CD,则∠A+∠AEC+∠C=360°.3. 如图,AB∥CD,则∠B=∠D+∠E.4. 如图,AB∥CD,则∠BEG+∠D+∠F=180°.5. 如图,AB∥CD,则∠ABE=∠D+∠E.四、垂直模型1. 在三角形中,若题目中已经有一边的高了,常作另一边上的高,然后用同角的余角相等证明角相等.例:如图,在△ABC中,AD⊥BC于点D,过点B作BE⊥AC交AC于点E,交AD于点F,则∠CBE=∠CAD,∠AFE=∠C=∠BFD.除了能得到角度间的关系外,还可以通过构造相似三角形来证明线段成比例或者用于求线段的长度.2. 在四边形中,如果有高线,可以再作垂线,构造特殊的四边形或者直角三角形.例:如图,在四边形ABCD中,AB⊥BC,DC⊥BC,过点D作DE⊥BC,垂足为点E,则四边形BCDE为矩形,△ADE为直角三角形.3. 在直角三角形中,常作斜边上的高,利用同角(等角)的余角相等,可得到相似三角形.例:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,则∠A=∠DCB,∠B=∠ACD,△ABC∽△CBD∽△ACD.4. 若题中已有直线的垂线时,可再作已知直线的垂线,得到两条平行线.例:如图,在△ABC中,AF⊥BC于点F,过AB上一点D作DE⊥BC于点E,则DE∥AF,∠BDE=∠BAF,∠ADE+∠BAF=180°,△BDE∽△BAF.5. 若存在过一条直线上两点同时向另一条直线作垂线,可以再作一条垂线,构造一组平行线,利用平行线等分线段定理解决问题.6. 当两条互相垂直的弦的交点恰好在圆上,构成90°的圆周角,可构造直径.例:如图,点A在圆O上,∠BAC=90°,连接BC,则BC就是圆O的直径.7. 当圆中有互相垂直的弦时,经常作直径所对的圆周角,可以得到垂直于同一条直线的两条直线,利用平行弦所夹的弧相等来解决问题.例:在圆O中,弦AB⊥CD于点E,连接CO并延长交圆O于点F,连接DF,则FD⊥CD,FD∥AB,.8. 当圆中有和弦垂直的线段时,作直径所对的圆周角,可以得到直角三角形,通过相似三角形来解决问题.例:如图,△ABC内接于圆O,CD⊥AB于点D,连接CO并延长交圆O于点E,连接AE,则△ACE∽△DCB.五、对角互补模型知识精讲1. 全等型—90º如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③2. 如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC 平分∠AOB.则可得到如下几个结论:①CD=CE,②OE-OD=OC,③.3. 全等型—60º和120º如图,已知∠AOB=2∠DCE=120º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OD+OE=OC,③.4. 全等型—和如图,已知∠AOB=,∠DCE=,OC平分∠AOB.则可以得到以下结论:①CD=CE,②OD+OE=2OC·cos,③.5. 相似型—90º如图,已知∠AOB=∠DCE=90º,∠BOC=.结论:CE=CD·.六、半角模型知识精讲1. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则BE+DF=EF.2. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则AE平分∠BEF,AF平分∠DFE.3. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则4. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,过点A作AH⊥EF交EF于点H,则AH=AB.简证:由上述结论可知AE平分∠BEF,又∵AB⊥BC,∴AH=AB.5. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,. 简证:由结论1可得EF=BE+DF,CE+CF+EF=CE+CF+BE+DF=2AB.6. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:如图,将△AND绕点A顺时针旋90º得到△AGB,连接GM.通过证明△AMG≌△AMN得MN=MG,DN=BG,∠GBE=90º,即可证.7. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则△BME△DFN△AMN△BAN△DMA△AFE.简证:通过证明角相等得到三角形相似,要善于使用上述结论.8. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则简证:连接AC,∵∠DAF=∠EAC,∠ADB=∠ACB,∴△ECA△NDA,又∵△AMN△AFE,∴.【补充】通过面积比是相似比的平方比亦可得到9. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:由结论7可得△DAM△BNA,∴,即.10. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:设,在Rt△CEF中,,化简得,.11. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则当BE=DF时,EF.证明:如图,作△AEF的外接圆,点P为EF的中点,连接OA、OE、OF、PC,过点A作AH⊥EF.∵∠EAF=45º,∴∠EOF=90º,设,则,∴当点A、O、P、C四点共线时,即BE=DF,、EF大值.12. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N简证:由结论8可得△△ECA△NDA,同理可得补充:等腰直角三角形与“半角模型”如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.∵旋转,∴△ACD≌△,∴AD=,在△DCE与△中,ED=,∵∠BE=∠BC+∠EBC=∠DAC+∠EBC=90º,∴,.七、倍半角模型知识精讲一、二倍角模型处理方法1. 作二倍角的平分线,构成等腰三角形.例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.二、倍半角综合1. 由“倍”造“半”已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.如图,若,则()2. 由“半”造“倍”已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,则,在Rt△BCD中,由勾股定理可得,解得,故有.三、一些特殊的角度1. 由特殊角30º求tan15º的值如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.2. 由特殊角45º求tan22.5º的值由图可得,.3. “345”三角形(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,.八、全等模型知识精讲一、几何变换中的全等模型1. 平移全等模型,如下图:2. 对称(翻折)全等模型,如下图:3. 旋转全等模型,如下图:二、一线三等角全等模型4. 三垂直全等模型,如图:5. 一线三直角全等模型,如图:6. 一线三等角与一组对应边相等全等模型,如图:三、手拉手全等模型7. 等腰三角形中的手拉手全等模型如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD ≌△ACE.8. 等边三角形中的手拉手全等模型如图,△ABC与△CDE均为等边三角形,点B、C、E三点共线,连接AE、BD,则△BCD≌△ACE.9. 一般三角形中的手拉手全等模型如图,在任意△ABC中,以AB为边作等边△ADB,以AC为边作等边△ACE,连接DC、BE,则△ADC≌△ACE.10. 正方形中的手拉手全等模型如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.九、相似模型知识精讲1. A字型与反A字型相似2. 8字型与反8字型相似3. 蝴蝶型相似4. 共角共边相似模型5. 一线三等角6. 旋转相似模型拓展讲解:1. 射影定理(1)双垂直,如图:结论①△ABD∽△ACB,AB2=AD·AC;②△ADC∽△ACB,AC2=AD·AB;③△CDB∽△ACB,CB2=BD·BA.(2)斜射影相似结论:△ABD∽△ACB,AB2=AD·AC.2. 对角互补相似如图,在Rt△ABC中,∠C=90º,点O是AB的中点,若∠EOF=90º,则.证明:过点O作OD⊥AC于点D,OH⊥BC于点H,如图所示:通过△ODE∽△OHF即可得到3. 三平行相似如图,AB∥EF∥CD,若,则.证明:∵EF∥AB,∴△DEF∽△DAB,∴,即①同理△BEF∽△BCD,∴,即②①+②,得,.4. 内接矩形相似如图,四边形DEFG是△ABC的内接矩形,EF在BC边上,D、G分别在AB、AC边上,则△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM,.十、倍长中线模型知识精讲1. 如图,在矩形ABCD中,若BD=BE,DF=EF,则AF⊥CF.2. 如图,四边形ABCD是平行四边形,BC=2AB,M为AD的中点,CE⊥AB于点E,则∠DME=3∠AEM.3. 如图,△ADE与△ABC均为等腰直角三角形,且EF=CF,求证(1)DF=BF;(2)DF⊥BF.4. 如图,△OAB∽△ODC,∠OAB=∠ODC=90º,BE=EC,求证:(1)AE=DE;(2)∠AED=2∠ABO.十一、弦图模型知识精讲1. 证法一以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于2. 证法二以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于3. 证法三以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于4. 证法四如图所示,分别以a、b为直角边,以c为斜边的四个直角三角形全等,图中3个正方形的边长分别为a、b、c,整个图形的面积为S5. 证法五分别以a、b为直角边,以c为斜边的四个直角三角形全等,将它们按如图所示拼成一个多边形,并延长AC交DF于点P.。

共顶点模型-2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版)

共顶点模型-2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题1共顶点模型模型1:等腰三角形共顶点模型2:等腰直角三角形共顶点模型3:等边三角形共顶点解题策略模型4:相似三角形共顶点【例1】(2022·全国·九年级专题练习)如图,△ABC为等边三角形,D为AC边上一点,连接BD,M为BD的中点,连接AM.(1)如图1,若AB=2√3+2,∠ABD=45°,求△AMD的面积;(2)如图2,过点M作MN⊥AM与AC交于点E,与BC的延长线交于点N,求证:AD=CN;(3)如图3,在(2)的条件下,将△ABM沿AM翻折得△AB′M,连接B'N,当B'N取得最小经典例题值时,直接写出BN−DE的值.MN【例2】(2022·江苏·八年级专题练习)(1)问题发现:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点A、D、E在同一条直线上,则∠AEB的度数为__________,线段AD、BE之间的数量关系__________;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点A、D、E不在一条直线上,请判断线段AD、BE之间的数量关系和位置关系,并说明理由.(3)解决问题:如图3,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=α,则直线AD和BE的夹角为__________.(请用含α的式子表示)【例3】.(2022·江苏·八年级课时练习)如图1,在△ABC中,AE⊥BC于E,AE=BE,D 是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【例4】(2021·福建·闽江学院附中九年级期中)正方形ABCD和正方形AEFG的边长分别为3和1,将正方形AEFG绕点A逆时针旋转.(1)当旋转至图1位置时,连接BE,DG,则线段BE和DG的关系为;(2)在图1中,连接BD,BF,DF,求在旋转过程中△BDF的面积最大值;(3)在旋转过程中,当点G,E,D在同一直线上时,求线段BE的长.一、解答题1.(2022·四川自贡·九年级专题练习)问题:如图1,在等边三角形ABC内,点P到顶点A、B、C的距离分别是3,4,5,求∠APB的度数?探究:由于P A、PB、PC不在同一个三角形中,为了解决本题,我们可以将△ABP绕点A 逆时针旋转60°到△ACP′处,连结P P′,这样就将三条线段转化到一个三角形中,从而利用全等的知识,求出∠APB的度数.请你写出解答过程:应用:请你利用上面的方法解答:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:BE2+FC2=EF22.(2022·全国·九年级专题练习)【探究发现】(1)如图1,在四边形ABCD中,对角线AC⊥BD,垂足是O,求证:AB2+CD2=AD2+BC2.【拓展迁移】(2)如图2.以三角形ABC的边AB、AC为边向外作正方形ABDE和正方形ACFG,求证:CE⊥BG.(3)如图3,在(2)小题条件不变的情况下,连接GE,若∠EGA=90°,GE=6,AG=8,则培优训练BC的长_____________.(直接填写答案)3.(2022·全国·八年级课时练习)两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD≌△ACE.(1)请证明图1的结论成立;(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,求∠BOC的度数;(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.4.(2022·重庆开州·八年级期末)在正方形ABCD中,连接对角线AC,在AC上截取AE=BC,连接BE,过点A作AF⊥BE于点F,延长AF交BC于点M.(1)如图1,连接ME并延长交AD的延长线于点Q,若BC=5,求△AQM的面积;(2)如图2,过点A作AP⊥AM于点A,交CD的延长线于点P,求证:AP−2FM=BE.5.(2022·福建省福州延安中学模拟预测)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为斜边AB上一动点(不与端点A,B重合),以C为旋转中心,将CD逆时针旋转90°得到CE,连接AE,BE,F为AE的中点.(1)求证:BE⊥AB;(2)用等式表示线段CD,BE,CF三者之间数量关系,并说明理由;(3)若CF=3,CD=√5,求tan∠BCE的值.26.(2022·浙江湖州·中考真题)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B 的对边,a>b.记△ABC的面积为S.(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为S 1,正方形BGFC 的面积为S 2. ①若S 1=9,S 2=16,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:S 2−S 1=2S .(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2−S1与S之间的等量关系,并说明理由.7.(2022·贵州遵义·三模)某校数学兴趣学习小组在一次活动中,对一些特殊几何图形具有的性质进行了如下探究:(1)发现问题:如图1,在等腰△ABC中,AB=AC,点M是边BC上任意一点,连接AM,以AM 为腰作等腰△AMN,使AM=AN,∠MAN=∠BAC,连接CN.求证:∠ACN=∠ABM.(2)类比探究:如图2,在等腰△ABC中,∠B=30°,AB=BC,AC=4,点M是边BC上任意一点,以AM为腰作等腰△AMN,使AM=MN,∠AMN=∠B.在点M运动过程中,AN是否存在最小值?若存在,求出最小值,若不存在,请说明理由.(3)拓展应用:如图3,在正方形ABCD中,点E是边BC上一点,以DE为边作正方形DEFG,H 是正方形DEFG的中心,连接CH.若正方形DEFG的边长为6,CH=2√2,求△CDH的面积.8.(2022·重庆一中七年级期中)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE =______;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE它们之间的数量关系,并写出证明过程.9.(2022·重庆巴蜀中学一模)在等边△ABC中,点D在AB上,点E在BC上,将线段DE 绕点D逆时针旋转60°得到线段DF,连接CF.(1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若AB=6,求AF的长;(2)如图(2),点G在AC上且∠AGD=60°+∠FCB,求证:CF=DG;(3)如图(3),AB=6,BD=2CE,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将△BDP沿着BP翻折得到△BQP,连接QC.当△ADP的周长最小时,直接写出△CPQ 的面积.10.(2022·江苏·八年级课时练习)△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE 边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.11.(2022·浙江·诸暨市浣江初级中学一模)【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE =∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD =6,BD=10,则CD=.12.(2022·河南周口·九年级期末)观察猜想(1)如图1,在等边△ABC中,点M是边BC上任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN,则∠ABC与∠ACN的数量关系是______.(2)类比探究如图2,在等边△ABC中,点M是BC延长线上任意一点(不含端点C),(1)中其它条件不变,(1)中结论还成立吗?请说明理由.(3)拓展延伸如图3,在等腰△ABC中,BA=BC,点M是边BC上任意一点(不含端点B、C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连按CN.试探究∠ABC与∠ACN的数量关系,并说明理由.13.(2021·辽宁·东港市第七中学一模)如图,在△ABC、△ADE中,AB=AC,AD=AE,设∠BAC=∠DAE=α.连接BD,以BC、BD为邻边作▱BDFC,连接EF.(1)若α=60°,当AD、AE分别与AB、AC重合时(图1),易得EF=CF.当△ADE绕点A顺时针旋转到(图2)位置时,请直接写出线段EF、CF的数量关系________;(2)若α=90°,当△ADE绕点A顺时针旋转到(图3)位置时,试判断线段EF、CF的数量关系,并证明你的结论;(3)若α为任意角度,AB=6,BC=4,AD=3,△ADE绕点A顺时针旋转一周(图4),当A、E、F三点共线时,请直接写出AF的长度.14.(2022·江苏·苏州高新区实验初级中学三模)【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC,若AC = AB,则cos∠ABC=___________,sin∠CAD=__________.(2)如图2,凸四边形中,AD = BD,AD⊥BD,当2CD2 + CB2 = CA2时,判断四边形ABCD 是否为对余四边形,证明你的结论.【拓展提升】(3)在平面直角坐标中,A(-1,0),B(3,0),C(1,2),四边形ABCD是对余四边= u,点D的纵形,点E在对余线BD上,且位于△ABC内部,∠AEC = 90° + ∠ABC.设AEBE坐标为t,请在下方横线上直接写出u与t的函数表达,并注明t的取值范围____________________________ .15.(2022·陕西咸阳·八年级期末)△ABC和△ADE如图所示,其中∠ABC=∠ACB,∠ADE=∠AED,∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD、BD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长.16.(2022·河北保定·八年级期末)如图1,∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB;过点C作CE⊥CB,与MN交于点E.(1)连接AD,AD是AC的______倍;(2)直线MN在图1所示位置时,可以得到线段BD和AE的数量关系是______,BD−BA与BC之间的数量关系是______,请证明你的结论;(3)直线MN绕点A旋转到图2的位置,若BD=2,BC=√2,则AB的长为______(直接写结果);(4)直线MN绕点A旋转到图3的位置时,直接写出线段BA,BC,BD之间的数量关系______.17.(2021·江苏苏州·八年级期中)【理解概念】当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中有一个三角形是等腰直角三角形,则把这条对角线叫做这个四边形的“等腰直角线”,把这个四边形叫做“等腰直角四边形”,当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中一个三角形是等腰直角三角形,另一个三角形是等腰三角形,则把这条对角线叫做这个四边形的“真等腰直角线”,把这个四边形叫做“真等腰直角四边形”.(1)【巩固新知】如图①,若AD=3,AD=DB=DC,BC=3√2,则四边形ABCD______(填“是”或“否”)真等腰直角四边形.(2)【深度理解】在图①中,如果四边形ABCD是真等腰直角四边形,且∠BDC=90°,对角线BD是这个四边形的真等腰直角线,当AD=4,AB=3时,则边BC的长是______.(3)如图②,四边形ABCD与四边形ABDE都是等腰直角四边形,且∠BDC=90°,∠ADE=90°,BD>AD>AB,对角线BD、AD分别是这两个四边形的等腰直角线.求证:AC=BE.(4)【拓展提高】在图3中,已知:四边形ABCD是等腰直角四边形,对角线BD是这个四边形的等腰直角线.若BD正好是分得的等腰直角三角形的一条直角边,且AD=3,AB=4,∠BAD=45°,求AC的长.18.(2022·江苏·八年级课时练习)如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.19.(2022·全国·八年级课时练习)在△ABC中,∠B=90°,D为BC延长线上一点,点E 为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当∠BAC=50°时,则∠AED=_______°;(2)当∠BAC=60°时,①如图2,连接AD,判断△AED的形状,并证明;②如图3,直线CF与ED交于点F,满足∠CFD=∠CAE.P为直线CF上一动点.当PE−PD 的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.20.(2021·安徽合肥·八年级阶段练习)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.21.(2021·福建省福州延安中学九年级期中)如图,△ABC为等边三角形,点D为线段BC 上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF.(1)求证:∠BDF=30°(2)若∠EFD=45°,AC=√3+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角△DMN,其中DN=MN=√2,连接FM,点O为FM的中点,当△DMN绕点D旋转时,求证:EO的最大值等于BC.22.(2021·河南许昌·九年级期中)如图,在等腰直角三角形ABC和ADE中,AC=AB,AD =AE,连接BD,点M、N分别是BD,BC的中点,连接MN.(1)如图1,当顶点D在边AC上时,请直接写出线段BE与线段MN的数量关系是,位置关系是.(2)当△ADE绕点A旋转时,连接BE,上述结论是否依然成立,若成立,请就图2情况给出证明;若不成立,请说明理由.(3)当AC=8时,在△ADE绕点A旋转过程中,以D,E,M,N为顶点可以组成平行四边形,请直接写出AD的长.23.(2021·福建莆田·九年级期中)如图1,在等边△ABC中,∠A=60°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,∠MPN=;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,则上面题(1)中的两个结论是否依然成立,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 周长的最大值24.(2021·四川·成都七中八年级期中)已知,在△ABC中,AB=AC,(1)如图1,∠ABC=2α,∠BDA=α,若α=30°,且点D在CA的延长线上时,求证:CD2= BD2+AD2;(2)如图2,∠ABC=2α,∠BDA=α,若α=30°,试判断AD,BD,CD之间的等量关系,并说明理由(3)如图3,若∠BDA=∠ABC=45°,AD=6√2,BD=5,求CD的长.25.(2021·河南南阳·八年级期中)在△ABC中,∠BAC=90°,AB=AC,D为BC的中点.(1)如图1,E、F分别是AB、AC上的点,且BE=AF、求证:△DEF是等腰直角三角形经过分析已知条件AB=AC,D为BC的中点.容易联想等腰三角形三线合一的性质,因此,连结AD(如图2),以下是某同学由已知条件开始,逐步按层次推出结论的流程图.请帮助该同学补充完整流程图.补全流程图:①___≅____,②∠EDF=___(2)如果E、F分别为AB、CA延长线上的点,仍有BE=AF,其他条件不变,试猜想△DEF 是否仍为等腰直角三角形?请在备用图中补全图形、先作出判断,然后给予证明.26.(2021·四川·成都嘉祥外国语学校九年级期中)正方形ABCD中,点E、F在BC、CD 上,且BE=CF,AE与BF交于点G.(1)如图1,求证AE⊥BF;(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=√2BN;,求AB的长(3)在(2)的条件下,若tan∠AEB=3,S△CHN=95。

中考数学常见几何模型专题02 全等模型-半角模型(原卷版)

中考数学常见几何模型专题02 全等模型-半角模型(原卷版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,探究图中∠BAE 、∠F AD 、∠EAF 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE .连接AG ,先证明△ABE ∠∠ADG ,再证明△AEF ∠∠AGF ,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,若点E 在CB 的延长线上,点F 在CD 的延长线上,如图3所示,仍然满足EF =BE +FD ,请直接写出∠EAF 与∠DAB 的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt ∠ABC 中,∠BAC =90°,AB =AC ,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD绕点A按逆时针方向旋转90º,得到∠ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△F AE∠△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:∠BAD.猜(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12想线段BE,EF,FD之间的数量关系并说明理由.8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.。

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。

模型1:高分线模型条件:AD 是高,AE 是角平分线结论:∠DAE=2B C∠∠-例1.(2023秋·浙江·八年级专题练习)如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 为ACB ∠的平分线,CE AB ⊥于点E ,则ECD ∠度数为()A .5︒B .8︒C .10︒D .12︒【答案】C 【分析】依据直角三角形,即可得到40BCE ∠=︒,再根据30A ∠=︒,CD 平分ACB ∠,即可得到BCD ∠的度数,再根据DCE BCD BCE ∠=∠-∠进行计算即可.【详解】解:50,B CE AB ∠=︒⊥ ,40BCE ∴∠=︒,又30A ∠=︒ ,CD 平分ACB ∠,1118050305022()BCD BCA ∴∠=∠=⨯︒-︒-︒=︒,504010DCE BCD BCE ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键.例2.(2023春·河南南阳·七年级统考期末)如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有()①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .1个B .2个C .3个D .4个【答案】B【详解】解:①根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH 是△ACF 的角平分线和高线,故此说法正确.故选:B .【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.例3.(2023·安徽合肥·七年级统考期末)如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求:(1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm .【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB•AC =12BC•AD ,∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ),即AD 的长度为365cm ;(2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC+AE+CE ﹣(AB+BE+AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023·广东东莞·八年级校考阶段练习)如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠关系式,并证明.(3)如图,F 为AE 的延长线上的一点,FD BC ⊥于D ,这时AFD ∠与C B ∠-∠的关系式是否变化,说明理由.【答案】(1)10︒(2)()12DAE C B ∠=∠-∠(3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ∠,根据角平分线的定义得到50BAE ∠=︒,根据高线的性质得到90ADE ∠=︒,从而求出60BAD ∠=︒,继而根据角的和差得到结果;(2)根据角平分线的定义得到12BAE BAC ∠=∠,根据三角形内角和求出119022EAC B C ∠=︒-∠-∠,根据角的和差得到结果;(3)过A 作AG BC ⊥于G ,结合(2)知1()2EAG C B ∠=∠-∠,证明FD AG ∥,得到AFD EAG ∠=∠,即可证明.【详解】(1)解:∵30B ∠=︒,50C ∠=︒,∴1805030100BAC ∠=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是高,∴90ADE ∠=︒,∵30B ∠=︒,∴60BAD ∠=︒,∴10DAE BAD BAE ∠=∠-∠=︒;(2)()12DAE C B ∠=∠-∠,证明如下:∵AE 平分BAC ∠,∴12EAC BAC ∠=∠,∵180BAC B C ∠=︒-∠-∠,∴()11101902822B C B C EAC ︒-∠-∠-∠︒-==∠∠,∴EAD EAC DAC ∠=∠-∠()11090922B C C =︒∠---∠︒-∠()12C B =∠-∠;(3)不变,理由是:如图,过A 作AG BC ⊥于G ,由(2)可知:1()2EAG C B ∠=∠-∠,AG BC ⊥ ,90AGB ∠=︒,FD BC ⊥ ,90FDC ∴∠=︒,AGD FDC ∴∠=∠,FD AG ∴∥,AFD EAG ∴∠=∠,1()2AFD C B ∴∠=∠-∠.【点睛】本题主要考查三角形的内角和定理、角平分线的性质、直角三角形的性质和平行线的判定与性质,熟练掌握三角形的内角和定理和角平分线的性质是解题的关键.模型2:双垂直模型结论:①∠A =∠C ;②∠B =∠AFD =∠CFE ;③AB CD AE BC ⋅=⋅。

中考数学必会几何模型(含答案)

中考数学必会几何模型(含答案)

MATH微信:beijingdaxue777QQ:1456770148中考必会几何模型目录专题一角平分线相关问题模型 (3)模型1角平分线相关模型 (3)专题二8字模型与飞镖模型 (6)模型1:角的8字模型 (6)模型2:角的飞镖模型 (8)模型3边的“8”字模型 (10)模型4边的飞镖模型 (11)专题三半角模型 (15)专题四将军饮马模型 (23)模型1:直线与两定点 (23)模型2角与定点 (28)模型3两定点一定长 (31)专题五角平分线四大模型 (34)模型1角平分线的点向两边作垂线 (34)模型2截取构造对称全等 (35)模型3角平分线+垂线构造等腰三角形 (37)模型4角平分线+平行线 (39)专题六截长补短辅助线模型 (42)模型1截长补短 (42)专题七蚂蚁行程 (48)模型1立体图形展开的最短路径 (48)专题八三垂直全等模型 (55)模型1三垂直全等模型 (55)专题九手拉手模型 (62)模型1手拉手 (62)专题十相似模型 (68)模型1A、8模型 (68)模型2共边共角型 (72)模型3一线三等角型 (75)模型4倒数型 (79)模型5与圆有关的简单相似 (82)模型6相似和旋转 (85)专题十一圆中的辅助线 (89)模型1连半径构造等腰三角形 (89)模型2构造直角三角形 (90)模型3与圆的切线有关的辅助线 (94)专题十二中点四大模型 (97)模型1倍长中线或类中线(与中点有关的线段)构造全等三角形 (97)模型2已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”. (99)模型3已知三角形一边的中点,可考虑中位线定理 (102)模型4已知直角三角形斜边中点,可以考虑构造斜边中线 (107)专题一角平分线相关问题模型模型1角平分线相关模型(1)如图1,若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=∠A.图1图2图3针对训练1.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【小结】本题若不套用模型,则需要通过三角形的外角性质证明得到∠A、∠D的数量关系.2.(2018•巴中)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=.【分析】由解题模型一中的(1)可知,∠BOC=90°+∠A,把∠BOC=110°代入计算可得到∠A的度数.【详解】∵∠BOC=90°+∠A,∠BOC=110°,∴90°+∠A=110°.∴∠A=40°.【小结】本题若不套用模型,需要利用三角形的内角和定理、角平分线的定义得到∠BO C、∠A的数量关系.3.(2018•济南历城区模拟)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018=.【详解】∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,【小结】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,以及角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键。

第5讲角含半角模型(原卷版) 2020年中考数学几何模型能力提升篇(全国通用)

第5讲角含半角模型(原卷版)  2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型5:角含半角模型st●模型1:截长补短模型●模型2:共顶点模型●模型3:对角互补模型●模型:4:中点模型●模型5:角含半角模型●模型6:弦图模型●模型7:轴对称最值模型●模型8:费马点最值模型●模型9:隐圆模型●模型10:胡不归最值模型●模型11:阿氏圆最值模型●模型12:主从联动模型名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。

解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版)

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型模型1:定点定长共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.DDD【例1】.(2021·全国·九年级课时练习)在边长为12cm 的正方形ABCD 中,点E 从点D 出发,沿边DC 以1cm/s 的速度向点C 运动,同时,点F 从点C 出发,沿边CB 以1cm/s 的速度向点B 运动,当点E 达到点C 时,两点同时停止运动,连接AE 、DF 交于点P ,设点E . F 运动时间为t 秒.回答下列问题:(1)如图1,当t 为多少时,EF 的长等于(2)如图2,在点E 、F 运动过程中,①求证:点A 、B 、F 、P 在同一个圆(⊙O)上;②是否存在这样的t 值,使得问题①中的⊙O 与正方形ABCD 的一边相切?若存在,求出t 值;若不存在,请说明理由;③请直接写出问题①中,圆心O 的运动的路径长为_________.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB 、△OCD 的顶点O 重合,且∠A +∠B +∠C +∠D =180°,则∠AOB+∠COD=______°;(直接写出结果)(2)连接AD 、BC ,若AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线.①如图②,如果∠AOB =110°,那么∠COD 的度数为_______;(直接写出结果)②如图③,若∠AOD =∠BOC ,AB 与CD 平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC 中,AB =AC,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB≌△AEC ;②请直接写出线段AD,BD,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD 是圆美四边形.(1)求美角∠A 的度数;(2)如图1,若⊙O 的半径为5,求BD 的长;(3)如图2,若CA 平分∠BCD ,求证:BC +CD =AC .一、解答题1.(2022·辽宁葫芦岛·一模)射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH ⊥AB 于点H.(1)如图1,点F和点G都在射线AB的同侧时,EG与GH的数量关系是______;(2)如图2,点F和点G在射线AB的两侧时,线段EF,AE,GH之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G都在射线AB的同侧,AE=1,EF=2,请直接写出HG的长.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF,求n的值.3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;的值.(3)如图3,在(2)的条件下,连接BE、AF交于G点.若GF=DF,请直接写出CD ABBE4.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)在平面直角坐标系中,抛物线y=3ax2﹣10ax+c分别交x轴于点A、B(A左B右)、交y轴于点C,且OB=OC=6.(1)如图1,求抛物线的解析式;(2)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设△BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且∠EOC=45°,点N在第一象限内,连接DN,DN∥EC,点G在DE上,连接NG,点M在DN上,NM=EG,在NG上截取NH=NM,连接MH并延长交CD于点F,过点H作HK⊥FM交ED于点K,连接FK,若∠FKG=∠HKD,GK=2MN,求点G的坐标.5.(2021·广东·珠海市紫荆中学九年级期中)如图,△ABC中,∠BAC=90°,AB=AC=4,直角△ADE的边AE在线段AC上,AE=AD=2,将△ADE绕直角顶点A按顺时针旋转一定角度α,连接CD、BE,直线CD,BE交于点F,连接AF,过BC中点G作GM⊥CD,GN⊥AF.(1)求证:BE=CD;(2)求证:旋转过程中总有∠BFA=∠MGN;(仅对0°<α<90°时加以证明)(3)在AB上取一点Q,使得AQ=1,求FQ的最小值.6.(2021·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直MC的最小值.线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=7.(2022·全国·九年级课时练习)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系:______;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②用等式表示线段DF与FG的数量关系并证明.8.(2021·四川·成都实外九年级阶段练习)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图2,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.9.(2021·上海徐汇·九年级期中)如图,已知Rt△ABC和Rt△CDE,∠ACB=∠CDE=90°,∠CAB=∠CED,AC=8,BC=6,点D在边AB上,射线CE交射线BA于点F.(1)如图,当点F在边AB上时,联结AE.①求证:AE∥BC;CF,求BD的长;②若EF=12(2)设直线AE与直线CD交于点P,若△PCE为等腰三角形,求BF的长.10.(2022·全国·九年级专题练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①若∠A=40°,直接写出∠E的度数是;②求∠E与∠A的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若∠BEC是△ABC 中∠BAC的遥望角,求证:DA=DE.11.(2022·全国·九年级课时练习)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A 顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,求证:BP=DQ;(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;(3)若点P,Q,C三点共线,且AD=3,求BP的长.12.(2021·江苏·泗阳县实验初级中学九年级阶段练习)如图1,在正方形ABCD中,点E、F分别是BC、CD上的两个动点,且BE=CF,AE和BF相交于点P.(1)探究AE、BF的关系,并说明理由;(2)求证:A、D、F、P在同一个圆上;(3)如图2,若正方形ABCD的边AB在y轴上,点A、B的坐标分别为(0,−1+a)、(0,−1−a),点E、F分别是BC、CD上的两个点,且BE=CF,AE和BF相交于点P,点M的坐标为(4,−4),当点P落在以M为圆心1为半径的圆上.求a的取值范围.13.(2021·重庆一中九年级阶段练习)如图,在等腰Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,点E为AC边上一点,连接ED并延长至F,使ED=FD,以EF为底边作等腰Rt△EGF.(1)如图1,若∠ADE=30°,AE=4,求CE的长;(2)如图2,连接BF,DG,点M为BF的中点,连接DM,过D作DH⊥AC,垂足为H,连接AG交DH于点N,求证:DM=NG;(3)如图3,点K为平面内不与点D重合的任意一点,连接KD,将KD绕点D顺时针旋转90°得到K′D,连接K′A,KB,直线K′A与直线KB交于点P,D′为直线BC上一动点,连接A D′并在A D′的右侧作C′D′⊥A D′且C′D′=AD′,连接A C′,Q为BC边上一点,CD=3CQ,AB=当Q C′+C′P取到最小值时,直线C′P与直线BC 交于点S,请直接写出△BPS的面积.14.(2021·福建省福州外国语学校三模)在Rt△ABC中,∠ACB=90°,AC=3,BC=4.将Rt△ABC绕点B 顺时针旋转α(0°<α<60°)得到Rt△DEB,直线DE,AC交于点P.(1)如图1,当BD⊥BC时,连接BP.①求△BDP的面积;②求tan∠CBP的值;(2)如图2,连接AD,若F为AD中点,求证;C,E,F三点共线.15.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线y=kx+k与x轴交于A,与y轴交于C点,直x+k,与x轴交于B.线BC的解析式为y=−1k(1)如图1,求点A的横坐标;(2)如图2,D为BC延长线上一点,过D作x轴垂线于点E,连接CE,若CD=CA,设△ACE的面积为S,求S与k的函数关系式;(3)如图3,在(2)的条件下,连接OD交AC于点F,将△CDF沿CF翻折得到△FCG,直线FG交CE 于点K,若3∠ACE−∠CDO=45°,求点K的坐标.16.(2021·全国·九年级课时练习)在平行四边形ABCD中,已知∠A=45°,AD⊥BD,点E为线段BC上的一点,连接DE,以线段DE为直角边构造等腰Rt△DEF,EF交线段AB于点G,连接AF、DG.BE=5,则DE的长为多少?(1)如图1,若AB=(2)如图2,若点H,K分别为线段BG,DE的中点,连接HK,求证:AG=2HK;G为圆心,AG为半径作⊙G,点M为⊙G上(3)如图3,在(2)的条件下,若BE=2,BG=一点,连接MK,取MK的中点P,连接AP,请直接写出线段AP的取值范围.17.(2021·江苏苏州·二模)如图(1),已知矩形ABCD中,AB=6cm,BC=,点E为对角线AC上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以s的速度向终点C运动,设E的运动时间为t s.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.18.(2022·江苏扬州·模拟预测)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠DAB=45°,∠CAB=30°,点O为斜边AB的中点,连接CD交AB于点E.设AB=1.(1)求证:A、B、C、D四个点在以点O为圆心的同一个圆上;(2)分别求△ABC和△ABD的面积;(3)过点D作DF∥BC交AB于点F,求OE︰OF的比值.19.(2021·江苏南京·二模)如图①,A是⊙O外一点,AB与⊙O相切于点B,AO的延长线交⊙O于点C,过点B作BD//AC,交⊙O于点D,连接DO,并延长DO交⊙O于点E,连接AE.已知BD=2,⊙O的半径为3.(1)求证:AE是⊙O的切线;(2)求AE的长;(3)如图②,若点M是⊙O上一点,且BM=3,过A作AN//BM,交弧ME于点N,连接ME,交AN于点G,连接OG,则OG的长度是______.20.(2020·浙江温州·九年级期中)如图,在▱ABCD中,AB=5,tan A=4,过点B作BE⊥AD于点E,过B,3D,E三点的圆分别交边AB,BC,CD于点F,M,N,连结BE,CE,连结BN交CE于点P.(1)求证:EF=MN.(2)当△BPE是等腰三角形时,求AD的长.(3)连结BD,MN,当BD平分∠ADC时,求△BMN与△CDE面积的比值.21.(2020·湖南·郴州市第九中学九年级阶段练习)如图,边长为ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°得到BQ,连接QP,QP与BC交于点E,其延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并写出自变量x的取值范围;(3)试问当P点运动到何处时,PB+PE的值最小,并求出此时CE的长.(画出图形,直接写出答案即可)22.(2021·全国·九年级课时练习)如图,四边形ABCD内接于⊙O,对角线AC⊥BD,垂足为E,CF⊥AB于点F,直线CF与直线BD于点G.(1)若点G在⊙O内,如图1,求证:G和D关于直线AC对称;(2)连接AG,若AG=BC,且AG与⊙O相切,如图2,求∠ABC的度数.23.(2020·北京市三帆中学九年级期中)已知:过⊙O上一点A作两条弦AB、AC,且∠A=45°,(AB、AC 都不经过O)过A作AC的垂线AF,交⊙O于D,直线BD,AC交于点E,直线BC,AD交于点F.(1)请在图1中,按要求补全图形;(2)在图2中探索线段BE和BF的数量关系,并证明你的结论;(3)探索线段AB、AE、AF的数量关系,并直接写出你的结论________.24.(2020·湖北·武汉二中广雅中学二模)如图,等腰Rt△ABC中,∠ACB=90°,D为BC边上一点,连接AD.(1)如图1,作BE⊥AD延长线于E,连接CE,求证:∠AEC=45°;(2)如图2,P为AD上一点,且∠BPD=45°,连接CP.①若AP=2,求△APC的面积;②若AP=2BP,直接写出sin∠ACP的值为______.。

中考数学几何模型能力 对角互补模型(解析版)

中考数学几何模型能力 对角互补模型(解析版)

中考数学几何模型 对角互补模型共顶点模型,即四边形或构成的几何图形中,相对的角互补。

主要:含90°的对角互补,含120°的对角互补,两种类型,种类不同,得出的个别结论会有所区别。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线. 类型一:含90°的对角互补模型(1)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,则有以下结论:CD CE =①; =2OD OE OC +②;21+=2OCD OCE S S OC V V ③作法1 作法2(2)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,当∠DCE 的一边与AO 的延长线交于点D 时,则有以下结论:CD CE =①; -=2OE OD OC ②;21-=2OCE OCD S S OC V V ③作法1 作法2类型二:含120°的对角互补模型(1)如图,∠AOB=2∠DCE=120°,OC 平分∠AOB ,则有以下结论:CD CE =①; =OD OE OC +②; 23+=4OCD OCE S S OC V V ③ 作法1 作法2(2)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,当∠DCE 的一边与AO 的延长线交于点D 时,则有以下结论:CD CE =①; -=2OE OD OC ②;21-=2OCE OCD S S OC V V ③作法1 作法2例题1. 如图,正方形ABCD 与正方形OMNP 的边长均为10,点O 是正方形ABCD 的中心,正方形OMNP 绕O 点旋转,证明:无论正方形OMNP 旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.变式练习>>>1. 角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.例题2. 四边形ABCD被对角线BD分为等腰直角△ABD和直角△CBD,其中∠A和∠C都是直角,另一条对角线AC的长度为2,求四边形ABCD的面积.变式练习>>>2. 如图,在四边形ABCD中,∠A=∠C=90°,AB=AD,若这个四边形的面积为12,则BC+CD=_______.例题3. 如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM 交AB于点E,PN交BC于点F,当PE=2PF时,AP=.变式练习>>>3. 如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.例题4. 用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;(3)在上述情况中,△AEC的面积是否会等于?如果能,求BE的长;如果不能,请说明理由.变式练习>>>4. 我们规定:横、纵坐标相等的点叫做“完美点”.(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B 运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.①不管t为何值,E点总是“完美点”;②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.例题5. 已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.(1)利用图1,求证:PA=PB;(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.达标检测领悟提升强化落实1. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连结DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④DE长度的最小值为4;⑤△CDE面积的最大值为8,其中正确的结论是______________.2. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,求BE的长.3. 如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为点F,连接OF.求:(1)CF的长;(2)OF的长.4. 如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.5. “如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.6.(2019·贵阳适应性)如图①,已知AC=BC,AC⊥BC,直线MN经过点B,过点A作AD⊥MN,垂足为D,连接CD.(1)动手操作:根据题意,请利用尺规将图①补充完整;(保留作图痕迹,不写作法)(2)探索证明:在补充完成的图①中,猜想CD、BD与AD之间的数量关系,并说明理由;(3)探索拓广:一天小明一家在某公园游玩时走散了,电话联系后得知,三人的位置如图②,爸爸在A处,妈妈在C处,小明在D处,B为公园大门口,若B、D在直线MN上,且AC⊥BC,AD⊥MN,AC=BC,AD=100m,CD=40m,求出小明到公园门口的距离BD的长度.答案例题1. 如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O 点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.【解答】解:当OP∥AD或OP经过C点,重叠部分的面积显然为正方形的面积的,即25,当OP在如图位置时,过O分别作CD,BC的垂线垂足分别为E、F,如图在Rt△OEG与Rt△OFH中,∠EOG=∠HOF,OE=OF=5,∴△OEG≌△OFH,∴S四边形OHCG=S四边形OECF=25,即两个正方形重叠部分的面积为25.变式练习>>>1. 角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;例题2. 四边形ABCD被对角线BD分为等腰直角△ABD和直角△CBD,其中∠A和∠C都是直角,另一条对角线AC的长度为2,求四边形ABCD的面积.【解答】解:将△ABC绕点A旋转90°,使B与D重合,C到C′点,则有∠CDC′=∠ADC+∠ADC′=∠ADC+∠ABC=180°,所以C、D、C′在同一直线上,则ACDC′是三角形,又因为AC=AC′,所以△ACC′是等腰直角三角形,在△ABC和△ADC′中∴△ABC≌△ADC′(SAS),∴四边形ABCD的面积等于等腰直角三角形ACC′的面积,所以S四边形ABCD=S△ACC′=×2×2=2.变式练习>>>2. 如图,在四边形ABCD中,∠A=∠C=90°,AB=AD,若这个四边形的面积为12,则BC+CD=_______.答案:43例题3. 如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM 交AB于点E,PN交BC于点F,当PE=2PF时,AP= 3 .【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.变式练习>>>3. 如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.【解答】解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点共圆,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==,故选:B.【本题两种方法解答,过E作两垂线亦可】例题4. 用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;(3)在上述情况中,△AEC的面积是否会等于?如果能,求BE的长;如果不能,请说明理由.【解答】解:(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(3)能.△AEC的CE边上的高为等边△ABC的高,为2,∵△AEC的面积等于,∴底边CE=2,∴BE=6或2.变式练习>>>4. 我们规定:横、纵坐标相等的点叫做“完美点”.(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B 运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.①不管t为何值,E点总是“完美点”;②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.【解答】解(1)∵点A(x,y)是“完美点”∴x=y∵x+y=4∴x=2,y=2∴A点坐标(2,2)(2)①∵四边形OABC是正方形,点A坐标为(0,4),∴AO=AB=BC=4∴B(4,4)设直线OB解析式y=kx过B点∴4=4kk=1∴直线OB解析式y=x设点E坐标(x,y)∵点E在直线OB上移动∴x=y∴不管t为何值,E点总是“完美点”.例题5. 已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.(1)利用图1,求证:PA=PB;(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.【解答】解:(1)作PE⊥OM,PF⊥ON,垂足为E、F∵四边形OEPF中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,∴∠EPA=∠FPB,由角平分线的性质,得PE=PF,∴△EPA≌△FPB,即PA=PB;(2)∵S△POB=3S△PCB,∴PO=3PC,由(1)可知△PAB为等腰三角形,则∠PBC=(180°﹣∠APB)=∠MON=∠BOP,又∵∠BPC=∠OPB(公共角),∴△PBC∽△POB,∴=,即PB2=PO•PC=3PC2,∴=达标检测领悟提升强化落实1. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连结DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④DE长度的最小值为4;⑤△CDE面积的最大值为8,其中正确的结论是______________.答案:①②③2. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,求BE的长.答案:223. 如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为点F,连接OF.求:(1)CF的长;(2)OF的长.【解答】解:(1)如图,在BE上截取BG=CF,连接OG,∵RT△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在△OBG与△OCF中,,∴△OBG≌△OCF(SAS),∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE===2,∵BC2=BF•BE,则62=BF•2解得:BF=,∴EF=BE﹣BF=,∵CF2=BF•EF,∴CF=;4. 如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是DE+DF=AD;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.【解答】解:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD;(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△DPF中,∴△MPE≌△DPF(ASA)∴ME=DF,∴DE+DF=AD;5. “如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则= 1 ;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==1,∴=1,故答案为1.(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==,∴=,故答案为.(3)由(2)有,△ADE∽△CDF,∵==,∴===,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF===2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,6.(2019·贵阳适应性)如图①,已知AC=BC,AC⊥BC,直线MN经过点B,过点A作AD⊥MN,垂足为D,连接CD.(1)动手操作:根据题意,请利用尺规将图①补充完整;(保留作图痕迹,不写作法)(2)探索证明:在补充完成的图①中,猜想CD、BD与AD之间的数量关系,并说明理由;(3)探索拓广:一天小明一家在某公园游玩时走散了,电话联系后得知,三人的位置如图②,爸爸在A处,妈妈在C处,小明在D处,B为公园大门口,若B、D在直线MN上,且AC⊥BC,AD⊥MN,AC=BC,AD=100m,CD=40m,求出小明到公园门口的距离BD的长度.。

中考数学对角互补模型专题知识解读

中考数学对角互补模型专题知识解读

对角互补模型专题知识解读【专题说明】共顶点模型,即四边形或构成的几何图形中,相对的角互补。

主要:含90°的对角互补,含120°的对角互补,两种类型,种类不同,得出的个别结论会有所区别。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线.【方法技巧】类型一:含90°的对角互补模型(1)如图,∠AOB=∠DCE=90°,OC平分∠AOB,则有以下结论:作法1 作法2;;(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D 时,则有以下结论:作法1 作法2;;类型二:含120°的对角互补模型(1)如图,∠AOB=2∠DCE=120°,OC平分∠AOB,则有以下结论:作法1 作法2;;(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D 时,则有以下结论:作法1 作法2;;【典例分析】【类型一:含90°的对角互补模型】【典例1】(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,在△GAE和△F AE中,,∴△GAE≌△F AE(SAS),∴EF=EG,∵EG=BG+BE=BE+DF,∴EF=BE+FD,故答案为:EF=BE+FD;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠3=∠2,∵∠EAF=∠BAD,∴∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,在△MAE和△F AE中,,∴△MAE≌△F AE(SAS),∴EF=EM,∵EM=BM+BE=BE+DF,∴EF=BE+FD;(3)(1)中的结论不成立,EF=BE﹣FD,理由如下:如图3,在EB上截取BH=DF,连接AH,同(2)中证法可得,△ABH≌△ADF,∴AH=AF,∠BAH=∠DAF,∴∠HAE=∠F AE,在△HAE和△F AE中,,∴△HAE≌△F AE(SAS),∴EF=EH,∵EH=BE﹣BH=BE﹣DF,∴EF=BE﹣FD.【变式1-1】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于点G,以下五个结论:①∠B=∠C=45°;②AP =EF;③∠AFP和∠AEP互补;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的,其中正确的结论是()A.①②③B.①②④⑤C.①③④⑤D.①③④【答案】D【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,故①正确;∵点P为BC的中点,∠BAC=90°,AB=AC,∴AP=CP,∠APC=90°,∠BAP=∠C=45°,∵∠EPF=∠APC,∴∠APE=∠FPC,在△AEP和△CFP中,,∴△AEP≌△CFP(ASA),∴PE=PF,∴△EPF是等腰直角三角形,∴四边形AEPF的面积为S△AEP+S△AFP=S△CPF+S△APF=S△APC=S△ABC,故④正确,⑤不正确;∵∠BAC=∠EPF=90°,∴∠AFP和∠AEP互补,故③正确;∵PE不是定长,故②不正确.∴正确的有:①③④,故选:D.【变式1-2】(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【解答】证明:(1)延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠F AD=∠DAG+∠F AD=50°,∴∠EAF=∠F AG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.【变式1-3】(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:.【解答】解:(1)如图1,延长EB到G,使BG=DF,连接AG.∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,易证△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.理由是:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(3)当(1)结论EF=BE+FD成立,当图三中,EF=BE﹣FD或EF=FD﹣BE.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.同理可得:∴EG=EF∵EG=BG﹣BE∴EF=FD﹣BE.故答案为:(1)EF=BE+FD;(2)成立;(3)EF=BE+FD或EF=BE﹣FD或EF=FD﹣BE.\【变式1-4】问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【解答】解:(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵DE=DH,FD⊥EH,∴FE=FH,在△FCH中,∵CH+CF>FH,∴BE+CF>EF.故答案为>.(2)结论:EF2=BE2+CF2.理由:如图2中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∠B=∠DCH,∵DE=DH,FD⊥EH,∴FE=FH,∵∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCH=90°,∴∠FCH=90°,∴FH2=CH2+CF2,∴EF2=BE2+CF2.(3)如图3中,结论:EF=BE+CF.理由:∵DB=DC,∠B+∠ACD=180°,∴可以将△DBE绕点D顺时针旋转得到△DCH,A,C,H共线.∵∠BDC=130°,∠EDF=65°,∴∠CDH+∠CDF=∠BDE+∠CDF=65°,∴∠FDE=∠FDH,∵DF=DF,DE=DH,∴△FDE≌△FDH(SAS),∴EF=FH,∵FH=CF+CH=CF+BE,∴EF=BE+CF.【类型二:含120°的对角互补模型】【典例2】问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC =90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD 之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.【变式2-1】如图,△ABC是边长为6的等边三角形,BD=CD,∠BDC=120°,以点D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连结MN,则△AMN 的周长是.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为4的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,,∴△DMN≌△DMF(SAS),∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6+6=12.故答案为:12.【变式2-2】【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.【解答】(1)解:如图1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+DF=AE+CF+DE+DF=AD+CD=5+5=10.。

中考数学几何部分共顶点模型之共顶点正方形公开课精品课件

中考数学几何部分共顶点模型之共顶点正方形公开课精品课件
几何部分
共顶点模型之共顶点正方形
一 例题解析
例 如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形
ACFG,连接EG,AM是BC边上的中线,延长MA交EG于点H.
求证: AM 1 EG .
2
解析: 延长AM到K使MK=AM,连接CK,BK.

MK=AM=
1 2
AK,
CM=BM
∴ 四边形ACKB是平行四边形
∴∠CAB+∠ACK=180°
∵ ∠CAB+∠GAE=180° ∵ AG=AC, AE=AB=CK
∴ GE=AK
∴∠GAE=∠ACK
∴ △AGE≌ △CAK

AM=
1 2
AK=
1
2 GE
方法归纳: K 中线倍长构造全等
变式:如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形 ACFG,连接EG,AM是BC边上的中线,延长MA交EG于点H.
P是EF中点.求证:点P到 BC的距离是BC的一半.
M是HF中点. 求证:MA⊥BC
求证:MO1⊥MO2
求证:O1O3 =O2O4
谢谢
二 方法梳理
方法:
中线倍长构造全等
1 3
2
作垂线构造旋转型全等 N K
结论:
K
AM 1 EG 2
MH EG
S AGE S ABC
三 巩固练习
以 ABCD 的四条边为边,在其形外分别作正方形,连接 EF,GH,IJ,KL.若 ABCD 的面积为5,求图中的阴影部分四个三角形 的面积和.
解析: 连接BD, AC.
求证: S AGE S ABC .
解析: 作KE⊥GA交GA延长线于点K, 作BN⊥AC交AC于点N.

2024年中考数学常见几何模型(全国通用)相似三角形重要模型之(双)A字型与(双)8字型(解析版)

2024年中考数学常见几何模型(全国通用)相似三角形重要模型之(双)A字型与(双)8字型(解析版)

专题19相似三角形重要模型之(双)A 字型与(双)8字型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

本专题重点讲解相似三角形的(双)A 字模型和(双)8(X )字模型.A 字型和8(X )字型的应用难点在于过分割点(将线段分割的点)作平行线构造模型,有的是直接作平行线,有的是间接作平行线(倍长中线就可以理解为一种间接作平行线),这一点在模考中无论小题还是大题都是屡见不鲜的。

模型1.“A ”字模型【模型解读与图示】“A ”字模型图形(通常只有一个公共顶点)的两个三角形有一个“公共角”(是对应角),再有一个角相等或夹这个公共角的两边对应成比例,就可以判定这两个三角形相似.图1图2图31)“A ”字模型条件:如图1,DE ∥BC ;结论:△ADE ∽△ABC ⇔AD AB =AE AC =DE BC .2)反“A ”字模型条件:如图2,∠AE D =∠B ;结论:△ADE ∽△ACB ⇔AD AC =AE AB =DE BC .3)同向双“A ”字模型条件:如图3,EF ∥BC ;结论:△AEF ∽△ABC ,△AEG ∽△ABD ,△AGF ∽△ADC ⇔EG FG AG BD CD AD∵四边形ABCD 是菱形,8BD ,∴AB ∵1242ABCD S AC BD 菱形,∴6AC ∵BE BF CG AH ,∴AE CF 【答案】(1)见解析(2)AF FG 【分析】(1)证明AE AB例3.(2022·山东东营·中考真题)如图,在ABC 中,点F 、G 在BC 上,点E 、H 分别在AB 、AC 上,四边形EFGH 是矩形,2,EH EF AD 是ABC 的高.8,6BC AD ,那么EH 的长为____________.【答案】245##4.8例4.(2022·浙江宁波·中考真题)(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF ∥交DE 于点G ,求证:DG EG .(2)如图2,在(1)的条件下,连接,CD CG .若,6,3 CG DE CD AE ,求DE BC的值.(3)如图3,在ABCD 中,45, ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G , EF EG 交BC 于点F .若40, EGF FG 平分,10 EFC FG ,求BF 的长.【答案】(1)证明见详解(2)13(3)5 【分析】(1)利用∥DE BC ,证明,ADG ABF AEG ACF △△△△ ,利用相似比即可证明此问;(2)由(1)得DG EG ,CG DE ,得出DCE 是等腰三角形,利用三角形相似即可求出DE BC 的值;(3)遵循第(1)、(2)小问的思路,延长GE 交AB 于点M ,连接FM ,作MN BC ,垂足为N .构造出等腰三角形、含30°、45°角的特殊直角三角形,求出BN 、FN 的值,即可得出BF 的长.(1)解:∵DE BC ∥,∴,ADG ABF AEG ACF △△△△ ,∴, DG AG EG AG BF AF CF AF ,∴DG EG BF CF.∵BF CF ,∴DG EG .(2)解:由(1)得DG EG ,∵CG DE ,∴6CE CD .∵3AE ,∴9AC AE CE .∵DE BC ∥,∴ADE ABC .∴13DE AE BC AC .(3)解:如图,延长GE 交AB 于点M ,连接FM ,作MN BC ,垂足为N .在ABCD 中,,45 BO DO ABC ADC .∵EG BD ∥,∴由(1)得 ME GE ,∵ EF EG ,∴10 FM FG ,∴ EFM EFG .∵40 EGF ,∴40EMF ,∴50EFG .∵FG 平分EFC ,∴50 EFG CFG ,∴18030 BFM EFM EFG CFG .∴.在Rt FMN 中,sin 305,cos30 MN FM FN FM∵45, MBN MN BN ,∴5 BN MN ,∴5 BF BN FN 【点睛】本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.例5.(2023•安庆一模)如图,在△ABC 中,点D 、E 、F 分别在边BC 、AB 、CA 上,且DE ∥CA ,DF ∥AB .(1)若点D 是边BC 的中点,且BE =CF ,求证:DE =DF ;(2)若AD ⊥BC 于D ,且BD =CD ,求证:四边形AEDF 是菱形;(3)若AE =AF =1,求+的值.【分析】(1)根据中点和平行两个条件可得中点,从而可得DE 是△ABC 的中位线,进而可得DE =FC ,同理可得DF =BE ,即可解答;(2)根据已知易证四边形AEDF 是平行四边形,再利用等腰三角形的三线合一性质可得∠BAD =∠CAD ,然后利用平行线的性质可得∠EDA =∠CAD ,从而可得∠BAD =∠EDA ,进而可得EA =ED ,即可解答;(3)根据A 字模型相似三角形可知△BED ∽△BAC ,△CDF ∽△CBA ,从而可得=,=,然后把两个式子相加进行计算,即可解答.【解答】(1)证明:∵点D 是边BC 的中点,DE ∥CA ,∴点E 是AB 的中点,∴DE 是△ABC 的中位线,∴DE =AC ,∵点D 是边BC 的中点,DF ∥AB ,∴点F 是AC 的中点,∴FC =AC ,∴DE =FC ,同理可得:DF =BE ,∵BE =FC ,∴DE =DF ;(2)证明:∵DE ∥CA ,DF ∥AB ,∴四边形AEDF 是平行四边形,∵AD ⊥BC ,BD =CD ,∴AD 是BC 的垂直平分线,∴AB =AC ,∴∠BAD =∠CAD ,∵DE ∥AC ,∴∠EDA =∠CAD ,∴∠BAD =∠EDA ,∴EA =ED ,∴四边形AEDF 是菱形;(3)∵DE ∥CA ,∴∠EDB =∠C ,∵∠B =∠B ,∴△BED ∽△BAC ,∴=,∵DF ∥AB ,∴∠B =∠FDC ,∵∠C =∠C ,∴△CDF ∽△CBA ,∴=,∴+=+==1,∵四边形AEDF 是平行四边形,∴DE =AF ,DF =AE ,∵AE =AF =1,∴DE =DF =1,∴+=1,∴+的值为1.【点评】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,分式的化简求值,菱形的判定与性质,熟练掌握菱形的判定与性质,以及A 字模型相似三角形的关键.模型2.“X ”字模型(“8”模型)【模型解读与图示】“8”字模型图形的两个三角形有“对顶角”,再有一个角相等或夹对顶角的两边对应成比例就可以判定这两个三角形相似.图1图2图3图41)“8”字模型条件:如图1,AB ∥CD ;结论:△AOB ∽△COD ⇔AB CD =OA OC =OB OD.2)反“8”字模型条件:如图2,∠A =∠D ;结论:△AOB ∽△DOC ⇔AB CD =OA OD =OB OC.3)平行双“8”字模型条件:如图3,AB ∥CD ;结论:AE BE AB DF CF CD4)斜双“8”字模型条件:如图4,∠1=∠2;结论:△AOD ∽△BOC ,△AOB ∽△DOC ⇔∠3=∠4.例1.(2022·辽宁·中考真题)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB ,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB ,∴6AD BC AB ,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC ,∵E 为AD 的中点,∴1113222AE AD AB BC,∴12EF AE BF BC ,192ABE S AE AB ,∴13EF BE ,∴133AEF ABE S S ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.例2.(2023·黑龙江·哈尔滨九年级阶段练习)如图,,AB CD AE FD ∥∥,AE ,FD 分别交BC 于点G ,H ,则下列结论中错误的是()A .DH CH FH BHB .GE CG DF CBC .AF HG CE CGD .=FH BF AG FA例3.(2021·上海·中考真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;②若BE CD ,求AD BC的值;(2)若2,3DE OE ,求CD 的长.例4.(2022·贵州铜仁·中考真题)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,记COD △的面积为1S ,AOB 的面积为2S .(1)问题解决:如图①,若AB //CD ,求证:12 S OC OD S OA OB(2)探索推广:如图②,若AB 与CD 不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在OA 上取一点E ,使OE OC ,过点E 作EF CD ∥交OD 于点F ,点H 为AB 的中点,OH 交EF 于点G ,且2 OG GH ,若56OE OA ,求12S S 值.【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)2554【分析】(1)如图所示,过点D 作AE ⊥AC 于E ,过点B 作BF ⊥AC 于F ,求出sin sin DE OD DOE BF OB BOF ∠,∠,然后根据三角形面积公式求解即可;(2)同(1)求解即可;(3)如图所示,过点A 作AM EF ∥交OB 于M ,取BM 中点N ,连接HN ,先证明△OEF ≌△OCD ,得到OD =OF ,证明△OEF ∽△OAM ,得到5==6OF OE OM OA ,设55OE OC m OF OD n ,,则66OA m OM n ,,证明△OGF ∽△OHN ,推出31522n ON OF ,32n BN MN ON OM ,则9OB ON BN n ,由(2)结论求解即可.【详解】解:(1)如图所示,过点D 作AE ⊥AC 于E ,过点B 作BF ⊥AC 于F ,∴sin sin DE OD DOE BF OB BOF ∠,∠,∴111===sin 22OCD S S OC DE OC OD DOE △∠,211==sin 22AOB S S OA BF OA OB BOF △∠,∵∠DOE =∠BOF ,∴sin sin DOE BOF ;∴121sin 2==1sin 2OC OD DOE S OC OD S OA OB OA OB BOF ∠∠;(2)(1)中的结论成立,理由如下:如图所示,过点D 作AE ⊥AC 于E ,过点B 作BF ⊥AC 于F ,∴sin sin DE OD DOE BF OB BOF ∠,∠,∴111===sin 22OCD S S OC DE OC OD DOE △∠,211==sin 22AOB S S OA BF OA OB BOF △∠,∵∠DOE =∠BOF ,∴sin sin DOE BOF ;∴121sin 2==1sin 2OC OD DOE S OC OD S OA OB OA OB BOF ∠∠;(3)如图所示,过点A 作AM EF ∥交OB 于M ,取BM 中点N ,连接HN ,∵EF CD ∥,∴∠ODC =∠OFE ,∠OCD =∠OEF ,又∵OE =OC ,∴△OEF ≌△OCD (AAS ),∴OD =OF ,∵EF AM ∥,∴△OEF ∽△OAM ,∴5==6OF OE OM OA ,设55OE OC m OF OD n ,,则66OA m OM n ,,∵H 是AB 的中点,N 是BM 的中点,∴HN 是△ABM 的中位线,∴HN AM EF ∥∥,∴△OGF ∽△OHN ,∴OG OF OH ON ,∵OG =2GH ,∴23OG OH ,∴2=3OG OF OH ON ,∴31522n ON OF ,32n BN MN ON OM ,∴9OB ON BN n ,由(2)可知125525=6954S OC OD m n S OA OB m n .【点睛】本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.模型3.“AX ”字模型(“A 8”模型)【模型解读与图示】图1图2图31)一“A ”一“8”模型条件:如图1,DE ∥BC ;结论:△ADE ∽△ABC ,△DEF ∽△CBF ⇔AD AE DE DF FE AB AC BC FC BF 2)两“A ”一“8”模型条件:如图2,DE ∥AF ∥BC ;结论:111BC DE AF .3)四“A ”一“8”模型条件:如图3,DE ∥AF ∥BC,1111BC DE AF AG;结论:AF =AG 例1.(2022·山东东营·中考真题)如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立...的是()A .AD AE DB EC B .DE DF BC FC C .DE AE BC ECD .EF AE BF AC【答案】C例2.(2021·江苏南京·中考真题)如图,AC 与BD 交于点O ,,OA OD ABO DCO ,E 为BC 延长线上一点,过点E 作//EF CD ,交BD 的延长线于点F .(1)求证AOB DOC △≌△;(2)若2,3,1AB BC CE ,求EF 的长.例3.(2022·重庆九年级期中)如图,AD 与BC 相交于点E ,点F 在BD 上,且AB ∥EF ∥CD ,求证:1AB +1CD =1EF .证明:∵AB ∥EF ,∴△DEF ∽△DAB ,∴EF AB =DF DB.又∵EF ∥CD ,∴△BEF ∽△BCD .∴EF CD =BF BD.∴EF AB +EF CD =DF DB +BF BD =BD BD =1.∴1AB +1CD =1EF.例4.(2022•安庆模拟)在四边形ABCD 中,对角线AC 、BD 相交于点O .(1)如图①,若四边形ABCD 为矩形,过点O 作OE ⊥BC ,求证:OE =CD .(2)如图②,若AB ∥CD ,过点O 作EF ∥AB 分别交BC 、AD 于点E 、F .求证:=2.(3)如图③,若OC 平分∠AOB ,D 、E 分别为OA 、OB 上的点,DE 交OC 于点M ,作MN ∥OB 交OA 于一点N ,若OD =8,OE =6,直接写出线段MN 长度.【分析】(1)由OE ⊥BC ,DC ⊥BC ,可知EO ∥CD ,且OB =OD ,可得结论;(2)由△DFO ∽△DAB ,得,同理,,,利用等式的性质将比例式相加,从而得出结论;(3)作DF ∥OB 交OC 于点F ,连接EF ,可知△ODF 是等腰三角形,得DO =DF =8,由△DMF ∽△EMO ,可得EM =,由△DMN ∽△DOE ,得,从而得出答案.【解答】(1)证明:∵四边形ABCD 是矩形,∴O 是AC 中点,AB ⊥BC ,∵OE ⊥BC ,∴OE ∥AB ,∴E 是BC 中点,∴OE =;(2)证明:∵EF ∥AB ,∴△DFO ∽△DAB ,∴,同理,,,∴=,∴,即;(3)解:作DF∥OB交OC于点F,连接EF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵DF∥OB,∴∠DFO=∠BOC=∠AOC,∴△ODF是等腰三角形,∴DO=DF=8,∵DF∥OE,∴△DMF∽△EMO,∴,∴EM=,∴,∵MN∥OE,∴△DMN∽△DOE,∴,∴,∴MN=.【点评】本题是相似形综合题,主要考查了矩形的性质,相似三角形的判定与性质,等腰三角形的性质,对比例式进行恒等变形是解题的关键.课后专项训练1.(2021·山东淄博·中考真题)如图,,AB CD 相交于点E ,且////AC EF DB ,点,,C F B 在同一条直线上.已知,,AC P EF r DB q ,则,,p q r 之间满足的数量关系式是()A .111r q pB .112p r qC .111p q rD .112q r pA .43AC ,123BD B .【答案】D 【分析】过点B 作BO AD ∥交AC 理求出BO 的长,进而可求出AC 【详解】过点B 作BO AD ∥交∵AC AD ,BO AD ∥,∴DAC ∵AED OEB ,∴AED ∽∵3DE BE ,∴13EO BO AE DA .∵AB AC ,75ACB ,∵ 在Rt AOB △中,22BO AO AB A .41cmB .57cmC .【答案】C 【分析】设AF 与DE 交于点G ,连接BC ,交AF 三角形的性质可得ADE ABC ∠∠,从而可得DEAD AE ∵,AB AC , AD DAE BAC ∵,ADE △AF DE ∵,BC AF ,在Rt BAH 中,50cm AB 282cm BC BH ,B ,【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.4.(2022·湖北十堰·中考真题)如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果OA :OC =OB :OD =3,且量得CD =3cm ,则零件的厚度x 为()A .0.3cmB .0.5cmC .0.7cmD .1cm【答案】B 【分析】求出△AOB 和△COD 相似,利用相似三角形对应边成比例列式计算求出AB ,再根据外径的长度解答.【详解】解:∵OA :OC =OB :OD =3,∠AOB =∠COD ,∴△AOB ∽△COD ,∴AB :CD =3,∴AB :3=3,∴AB =9(cm ),∵外径为10cm ,∴19+2x =10,∴x =0.5(cm ).故选:B .【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB 的长.5.(2022·湖南怀化·中考真题)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC =_____.【答案】8【分析】根据三角形中位线定理求得DE ∥BC ,12DE BC ,从而求得△ADE ∽△ABC ,然后利用相似三角形的性质求解.【详解】解:∵D 、E 分别是AB 、AC 的中点,则DE 为中位线,所以DE ∥BC ,12DE BC 所以△ADE ∽△ABC ∴21()4ADE ABCS DE S BC ∵S △ADE =2,∴S △ABC =8故答案为:8.【点睛】本题考查中位线及平行线性质,本题难度较低,主要考查学生对三角形中位线及平行线性质等知识点的掌握.【答案】6【分析】通过四边形EFGH 为矩形推出AEH △的高,可得出AM EH AD BC,再将数据代入即可得出答案.【答案】2【分析】过D 作DH 其次利用CDG CBD ∽案.∵在Rt ABC 中,AC BC 又∵2BD AD ,∴AD 在Rt CHD 中,CD CH ∵DG AE ∥,∴CFE8.(2022·四川宜宾·中考真题)如图,ABC 中,点E 、F 分别在边AB 、AC 上,12 .若4BC ,2AF ,3CF ,则EF ______.【答案】85【分析】易证△AEF ∽△ABC ,得EF AF BC AC 即EF AF BC AF CF即可求解.【详解】解:∵∠1=∠2,∠A =∠A ,∴△AEF ∽△ABC ,∴EF AF BC AC ,即EF AF BC AF CF∵4BC ,2AF ,3CF ,∴2423EF ,∴EF =85,故答案为:85.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.9.(2022·辽宁阜新·中考真题)如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE ,BD 与CE 相交于点F ,若DEF 的面积是3,则BCF △的面积是______.【答案】27【分析】根据矩形ABCD 的性质,很容易证明DEF ∽BCF △,相似三角形之比等于对应边比的平方,即可求出BCF △的面积.【详解】解:∵四边形ABCD 是矩形,AD BC ,AD BC ∥EDF CBF ,EFD CFB ∵,EDF CBF DEF ∽BCF △,2AE DE ∵,AD BC ,DE :1BC :3,DEF S :2BCF S DE :2BC ,即3:1BCF S :9,27BCF S .故答案为:27.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,综合性比较强,学生要灵活应用.掌握相似三角形的面积比是相似比的平方是解题的关键.10.(2022·湖北荆门·中考真题)如图,点G 为△ABC 的重心,D ,E ,F 分别为BC ,CA ,AB 的中点,具有性质:AG :GD =BG :GE =CG :GF =2:1.已知△AFG 的面积为3,则△ABC 的面积为_____.【答案】18【分析】根据线段比及三角形中线的性质求解即可.【详解】解:∵CG :GF =2:1,△AFG 的面积为3,∴△ACG 的面积为6,∴△ACF 的面积为3+6=9,∵点F 为AB 的中点,∴△ACF 的面积=△BCF 的面积,∴△ABC 的面积为9+9=18,故答案为:18.【点睛】题目主要考查线段比及线段中点的性质,熟练掌握线段中点的性质是解题关键.11.(2023·福建·统考中考真题)阅读下列材料,回答问题任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB 远大于南北走向的最大宽度,如图1.工具:一把皮尺(测量长度略小于AB )和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O 处,对其视线可及的P ,Q 两点,可测得POQ 的大小,如小明利用皮尺测量,求出了小水池的最大宽度AB ,其测量及求解过程如下:测量过程:(ⅰ)在小水池外选点C ,如图4,测得m AC a ,m BC b ;(ⅱ)分别在AC ,BC ,上测得3a CM m,m 3b CN ;测得m MN c .求解过程:(ⅱ)用皮尺测得mBC a.求解过程:由测量知,在过点C作CD AB,垂足为D.在Rt CBD△即cosBDa,所以cosBD a.同理,CD【答案】(1)13;(2)见解析;(3)94【分析】(1)由折叠性质可知DE CD,利用等面积求出(2)添加辅助线构造全等三角形和相似三角形,利用性质即可证明;(2)方法一:延长CF∵FA FB ,BFM AFC ,∴ BFM AFC SAS ≌.∴AC BM ,M ACF ,∴BM AC ∥,∴MBG CDG ,∴MBG CDG ∽,∴DG CD BG BM ,∴44339DG BG(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设4AB ,若AEB DEB ,求四边形BDFC 的面积.【答案】1CF BD ,理由见解析(2)①成立,理由见解析②4366 ∴60,ADG ABC ∴ADG △为等边三角形,∴60,60ADG ABC AGD ACB ,GDF CEF ,∴ADG △为等边三角形,∴AD AG DG ,∵AD CE ,AD AB AG AC ∴DG CE ,BD CG ,又DFG CFE ,∴ AAS DGF ECF ≌,∴12CF FG CG ,∴②过点D 作∥DG BC ,交AC 的延长线于点∴MC •CD =MD •CN CD =AB CE【答案】问题背景:见解析;尝试应用:22;迁移拓展:m 【分析】问题背景:根据EF BD ∥,EG CD ∥,推出,AFE ABD AEG ADC ∽∽,根据对应边成比例即可得到结论;尝试应用:延长EM 至D ,使得EM MD ,连接DB DC ,,证得四边形形,得到,,,BD EC EF BD BE DC EG DC ∥∥,由图(1)得,EF EG BD DC =,即可得到EF EG 得到22EF EG ;迁移拓展:过点E 作MN BC ∥,交AB 于点M ,交AC 于点N ,得到∵AM 是ABC 的中线,∴MB MC ,∵EM MD ,∴,,,BD EC EF BD BE DC EG DC ∥∥,由图(1)得,EF EG BD DC =∴EF EG EC BE ,∴EF EC EG BE 迁移拓展:如图(3),过点E 作MN BC ∥,交AB 于点∵ABC 是等边三角形,∴60ABC ACB BAC ∵MN BC ∥,∴AMN ∴,AM AN BM CN ∴又∵120CEB CEN(3)【答案】(1)12(2)见解析(3)【分析】(1)证明AEB△∽△(2)证明AEB CBF∽(3)设EG ED x,则【详解】(1)解:由题知,若13ED ,则AE AD17.(2022·四川内江·中考真题)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F 为BE 的中点时,求证:AM =CE ;(2)若EF BF =2,求AN ND 的值;(3)若MN ∥BE ,求ANND的值.【答案】(1)见解析(2)2737(3)27【分析】(1)根据矩形的性质,证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得12BM B EF CE F ,从而求出BM 的长,再利用△ANM ∽△BMC ,得AN AMBM BC,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得CE BCBC BM,可得BM 的长,由(2)同理可得答案.(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =12CD ,∵AB =CD ,∴12BM CE AB ,∴AM BM ,∴AM =CE ;(2)∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF ∽△ECF ,∴12BM B EF CE F ,∵CE =3,∴BM =32,∴AM =92,∵CM ⊥MN ,∴∠CMN =90°,∴∠AMN +∠BMC =90°,∵∠AMN +∠ANM =90°,∴∠ANM =∠BMC ,∵∠A =∠MBC ,∴△ANM ∽△BMC ,∴AN AM BM BC ,∴92342AN ,∴7162AN ,∴DN =AD ﹣AN =4﹣2716=3716,∴272716373716AN DN ;(3)∵MN ∥BE ,∴∠BFC =∠CMN ,∴∠FBC +∠BCM =90°,∵∠BCM +∠BMC =90°,∴∠CBF =∠CMB ,∴tan ∠CBF =tan ∠CMB ,∴CE BC BC BM ,∴344BM ,∴163BM ,∴162633AM AB BM ,由(2)同理得,AN AMBM BC,∴231643AN,解得:AN=89,∴DN=AD﹣AN=4﹣89=289,∴8292879ANND.【点睛】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM的长是解决(2)和(3)的关键.18.(2023•重庆中考模拟)问题提出:如图1,D、E分别在△ABC的边AB、AC上,连接DE,已知线段AD=a,DB=b,AE=c,EC=d,则S△ADE,S△ABC和a,b,c,d之间会有怎样的数量关系呢?问题解决:探究一:(1)看到这个问题后,我们可以考虑先从特例入手,找出其中的规律.如图2,若DE∥BC,则∠ADE=∠B,且∠A=∠A,所以△ADE∽△ABC,可得比例式:a ca b c d而根据相似三角形面积之比等于相似比的平方.可得 22ADE ABC S a S a b .根据上述这两个式子,可以推出:22ADE ABC S a a a a c acS a b a b a b c d a b c d a b .(2)如图3,若∠ADE =∠C ,上述结论还成立吗?若成立,请写出证明过程;着不成立,请说明理由.探究二:回到最初的问题,若图1中没有相似的条件,是否仍存在结论:ADE ABC S acS a b c d ?方法回顾:两个三角形面积之比,不仅可以在相似的条件下求得,当两个三角形的底成高具有一定的关系时,也可以解决.如图4,D 在△ABC 的边上,做AH ⊥BC 于H ,可得:1212ABD ADCBD AHS BD S DC DC AH .借用这个结论,请你解决最初的问题.延伸探究:(1)如图5,D 、E 分别在△ABC 的边AB 、AC 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,则ADEABCS S .(2)如图6,E 在△ABC 的边AC 上,D 在AB 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,ADEABCS S .结论应用:如图7,在平行四边形ABCD 中,G 是BC 边上的中点,延长GA 到E ,连接DE 交BA 的延长线于F ,若AB =5,AG =4,AE =2,▱ABCD 的面积为30,则△AEF 的面积是.【答案】探究一:(2)见解析;延伸探究:(1)ac bd ;(2)ac bd ;结论应用:32【分析】问题解决:探究一(2):参照(1)中证明方法解答即可;探究二,过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;延伸探究:(1)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;(2)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;结论应用:取AD 的中点M ,连接GM 并延长交DE 于点N ,连接DG ,可得15ADG S ,根据题意,进而得出152ADE S,根据AM =DM ,MN AF ∥,可得FN =DN ,根据AE =2,AG =4,GN AF ∥,可得FN =2EF ,进而可得ED =5EF ,即可得出1352AEF ADE S S.【详解】解:问题解决:探究一:(2)成立,理由如下:∵∠ADE =∠C ,∠A =∠A ,∴ADE ACB ∽,∴a cc d a b,∴22()()ADE ABC S b a S c a c acc d a b c d a d ;探究二:过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,∵,DM AC BN AC ,∴//DM BN ,∴AD DM aAB BN a b,121()()2ADE ABCAE DMS AE DM c a ac S AC BN c d a b a b c d AC BN;延伸探究:(1)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,∵,DM AC BN AC ,∴//DM BN ,∴AD DM a AB BN b ,1212ADEABCAE DMS AE DM c a ac S AC BN d b bd AC BN ;(2)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N,∵,DM AC BN AC ,∴//DM BN ,∴AD DM a AB BN b ,1212ADEABCAE DMS AE DM c a ac S AC BN d b bd AC BN ;结论应用:取AD 的中点M ,连接GM 并延长交DE 于点N ,连接DG ,∴AM =DM ,1152ADG ABCD S S平行四边形,∵AE =2,AG =4,∴11522ADE ADG S S ,∵AM =DM ,MN AF ,∴FN =DN ,∵AE =2,AG =4,GN AF ∥,∴12EF AE FN AG ,即:FN =2EF ,∴ED =5EF ,∴1352AEF ADE S S .【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例等知识点,熟练运用相似三角形的性【答案】【问题发现】3;【操作探究】sin MN PQ m ;【解决问题】15.【问题发现】由90ANM AQP C ,30A ,得12MN AM ,12PQ AP AM BP ,则1113222MN PQ AM BM AB,于是得到问题的答案.【操作探究】由90ANM AQP C ,A A ,可证明AMN ABC △∽△, MN AM PQ AP PQ MB∵四边形ABCD是菱形, ,BO BC AB AD8,COBOC90,∵,AM BN AD BC20.(2022·湖北武汉·中考真题)问题提出:如图(1),ABC 中,AB AC ,D 是AC 的中点,延长BC 至点E ,使DE DB ,延长ED 交AB 于点F ,探究AFAB的值.(1)先将问题特殊化.如图(2),当60BAC 时,直接写出AFAB的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC ,D 是AC 的中点,G 是边BC 上一点, 12CG n BC n,延长BC 至点E ,使DE DG ,延长ED 交AB 于点F .直接写出AFAB的值(用含n 的式子表示).【答案】(1)[问题提出](1)14;(2)见解析(2)[问题拓展]24n 【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ,90AFD ,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB,即可求解;(2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC ,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ,进而可得14AF AB ;[问题拓展]方法同(2)证明DBH DEC △≌△,得出,GH EC =,证明EDH EFB △∽△,得到2+2FB EB nDH EH ,进而可得AF AB24n.(1)[问题探究]:(1)如图,∵ABC中,AB AC,D是AC的中点,60BAC,ABC是等边三角形,12AD AB30ABD DBE,60A,DB DE,30E DBE,180120DCE ACB∵,18030ADF CDE E DCE,60A∵,90AFD,12AF AD,1124ADAFAB AB.(2)证明:取BC的中点H,连接DH.∵D是AC的中点,∴DH AB∥,12DH AB.∵AB AC,∴DH DC,∴DHC DCH.∵BD DE,∴DBH DEC.∴BDH EDC.∴DBH DEC△≌△.∴BH EC.∴32EBEH.∵DH AB∥,∴EDH EFB△∽△.∴32FB EBDH EH.∴34FBAB.∴14AFAB.(2)[问题拓展]如图,取BC的中点H,连接DH.∵D是AC的中点,∴DH AB∥,12DH AB.∵AB AC,∴DH DC,∴DHC DCH.∵DE DG,∴DGH DEC.∴GDH EDC.∴DGH DEC≌.∴GH EC=.HE CG∵12CG nBC nBC nCG1BG n CG,1111222nCE GH BC BG nCG n CG CG∴1221+22nCGEB BC CE n nEH EHn CCGG.∵DH AB∥,∴EDH EFB△∽△.∴2+2FB EB nDH EH.∴24FB nAB.∴42244AF n nAB.AFAB24n.【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.(1)求证:BE CF .(2)当56AB FH ,AD 【答案】(1)见解析(2)6EF 【分析】(1)根据等边对等角得出GFE 可证明 AAS ABF DCE ≌,根据全等三角形的性质得出(2)根据CD FH ∥,得出DCE △△根据相似三角形的性质列出等式,解方程即可求解.【详解】(1)解:∵FH EF ,GE ∵四边形ABCD 是矩形,∴AB CD ,∴ AAS ABF DCE ≌,∴BF CE ,【点睛】本题考查了矩形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.。

2023年中考数学常见几何模型全归纳之模 相似模型-母子型(共角共边模型)和A(X)字型(解析版)

2023年中考数学常见几何模型全归纳之模  相似模型-母子型(共角共边模型)和A(X)字型(解析版)
(1)证明∶∵∠ACB=90°,AC=BC,CD是中线,
∴∠BCD=∠ACD=45°,∠BCE=∠ACF= 90°,∴∠DCE=∠DCF= 135°
∵在△DCE与△DCF中,
,∴ ,∴DE=DF;
(2)证明∶∵∠DCE= ∠DCF= 135°∴∠CDF+∠F=180°-135°=45°,
∵∠CDF+∠CDE=45°,∴∠F=∠CDE,
【详解】∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,∴ ,
∵ ,∴ ,
∴ ,
∴△ADC与△ACB的周长比1:2,故选:B.
【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD∽△ABC是解答本题的关键.
2.(2022·陕西汉中·九年级期末)如图, 是等腰直角 斜边 的中线,以点 为顶点的 绕点 旋转,角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 ,且 .(1)如图1,若 ,求证: ;(2)如图2,若 ,求证: ;
1.(2022·湖南怀化·中考真题)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.
【答案】8
【分析】根据三角形中位线定理求得DE∥BC, ,从而求得△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】解:∵D、E分别是AB、AC的中点,则DE为中位线,
∴ ,∴ ∴ ,
∵ ,DE=BF,∴ ,
∴ ,∴ ,
∵ , ,∴ ,
∵ ,∴ ,
∴ .
【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.
3.(2022·浙江宁波·中考真题)(1)如图1,在 中,D,E,F分别为 上的点, 交 于点G,求证: .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何模型2:共顶点模型 名师点睛 拨开云雾 开门见山 共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下:
(1)寻找公共的顶点
(2)列出两组相等的边或者对应成比例的边
(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:
连接BD 、AE 交于点F ,连接CF ,则有以下结论:
(1)BCD ACE ≅△△
(2)AE BD =
(3)AFB DFE ∠=∠
(4)FC BFE ∠平分
典题探究 启迪思维 探究重点 例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE .
(1)试判断BD 、CE 的数量关系,并说明理由;
(2)延长BD 交CE 于点F 试求∠BFC 的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
变式练习>>>
1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.
(1)求证:BD=AE.
(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.
例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在
△ADB内,求证:CD与EF互相平分.
变式练习>>>
2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.
例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.
(1)如图1,求证:BF=AF+FC,EF=DF+FC;
(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.
例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系;(不必证明)
【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为;(不必证明)
线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;
【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表
示).
达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH. 求证:GH∥BE.
2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN 和EBFG,连接NC,AF,求证:NC∥AF.
3.如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:
AB2+DE2=AD2+BE2.
4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.
5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是.
【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.
【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.
6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.
(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;
(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线
段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF=.。

相关文档
最新文档