常用极性、非极性吸附剂

常用极性、非极性吸附剂
常用极性、非极性吸附剂

【求助】常用极性、非极性吸附剂!

作者: wzhahassxmc 收录日期: 2009-12-28 发布日期: 2009-12-28

吸附剂很多,请大家提供下常用的性能好的极性吸附剂有哪些、非极性吸附剂有哪些,微观的吸附原理是什么?希望能把原理写明白,谢谢!

作者:li2004

虽然吸附现象早已为人们发现和熟知,但是作为工业上应用则是近几十年的事情。从理论上讲,固体物质的表面对于流体都具有一定的物理吸附作用,但要达到工业上的使用要求,还需要有一个选择与评价的问题,这是吸附操作中首先要解决的问题。

1.对工业吸附剂的要求

(1)要有巨大的内表面积和大的孔隙率也就是说,吸附剂必须是具有高度疏松结构和巨大暴露表面的多孔物质。只有这样,才能给吸附提供很大的表面。吸附剂的有效表面包括颗粒的外表面和内表面,而内表面总是比外表面大得多,例如硅胶的内表面高达600m2/g,活性炭的内表面可高达1000m2/g。这些内部孔道通常都很小,有的宽度只有几个分子的直径,但数量极大,这是由吸附剂的孔隙率决定的。因此,要求吸附剂要有很大的孔隙率。除此之外,还要求吸附剂具有合适的孔隙和分布合理的孔径,以便吸附质分子能到达所有的内表面而被吸附。

(2)对不同的气体要具有选择性的吸附作用工业上应用吸附剂的目的,就是为了对某些气体组分有选择地吸附,从而达到分离气体混合物的目的。因此要求所选的吸附剂对所要吸附的气体具有很高的选择性。例如活性炭吸附二氧化硫(或氨)的能力,远大于吸附空气的能力,故活性炭能从空气与二氧化硫(或氨)的混合气体中优先吸附二氧化硫(或氨),达到净化废气的目的。

(3)吸附容量要大吸附剂的吸附容量是指一定温度下,对于一定的吸附质浓度,单位质量(或体积)的吸附剂所能吸附的最大吸附质质量。吸附容量大小的影响因素很多,它包括吸附剂的表面大小,孔隙率大小和孔径分布的合理性,还与分子的极性以及吸附剂分子上官能团的性质有关。

(4)要有足够的机械强度和热稳定性及化学稳定性吸附剂是在湿度、温度和压力条件变化的情况下工作的,这就要求吸附剂有足够的机械强度和热稳定性,对于用来吸附腐蚀性气体时,还要求吸附剂有较高的化学稳定性。当采用流化床吸附装置时,对吸附剂的机械强度要求更高,主要原因是在流化状态下运行,吸附剂的磨损大。

(5)颗粒度要适中而且均匀用于固定床时,若颗粒太大且不均匀,易造成气路短路和气流分布不均,引起气流返混,气体在床层中停留时间短,降低吸附分离效果。如果颗粒太小,床层阻力过大,严重时会将吸附剂带出器外。

(6)其他要求吸附剂有再生能力,以延长其使用寿命。另外,要求吸附剂易再生和活化,且制造简便,价廉易得。

2.常用工业吸附剂

目前工业上常用的吸附剂主要有活性炭、活性氧化铝、硅胶和分子筛等。

(1)活性炭活性炭是许多具有吸附性能的碳基物质的总称,木炭可以被认为是一种吸附能力很低的活性炭。活性炭的原料是几乎所有的含碳物质。如煤、木材、骨头、果核、坚硬的果壳以及废纸浆、废树脂等,将这些含碳物质在低于878K下进行炭化,再用水蒸气或热空气进行活化处理。还有用氯化锌、氯化镁、氯化钙、磷酸来代替热蒸汽作活化剂的。活性炭经过活化处理,比表面积一般可达700~1000m2/g,具有优异和广泛的吸附能力。炭分子筛是新近开发的一种孔径均一的分子筛型活性炭新品种,孔径一般在100nm 以下,具有良好的选择吸附能力。

普通活性炭又分为颗粒状活性炭(粒炭)和粉状活性炭(粉炭),气体吸附多用粒炭,因其阻力小,而粉炭多用于液体的脱色处理。

活性炭是一种非极性吸附剂,具有疏水性和亲有机物质的性质,它能吸附绝大部分有机气体,如苯类,醛酮类、醇类、烃类等以及恶臭物质,因此,活性炭常被用来吸附和回收有机溶剂和处理恶臭物质。同时由于活性炭的孔径范围宽,即使对一些极性吸附质和一些特大分子的有机物质,仍然表现出它的优良的吸附能力,如在SO2、NOx、Cl2、H2S、CO2等有害气体治理中,有着广泛的用途。因此,在吸附操作中,活性炭是一种首选的优良吸附剂。

近年来出现的纤维活性炭,是一种新型的高性能活性炭吸附材料。它是利用超细纤维如黏胶丝、酚醛纤维或腈纶纤维等制成毡状、绳状、布状等,经高温(1200K以上)炭化,用水蒸气活化后形成的。纤维活性炭的表面积大,有的可高达1700m2/g,密度小(5~15kg/m3),微孔多而均匀。普通颗粒活性炭孔径不均一,除小孔外,还有0.01~0.1μm的中孔和0.5~5μm的大孔,而纤维活性炭不但孔隙率较大,而且孔径比较均一,绝大多数为0.0015~0.003μm的小孔和中孔,因而吸附容量大,而且,由于纤维活性炭的微孔直接通向外表面,吸附质分子内扩散距离较短,所以吸附和脱附速率高,残留量少,因而使用寿命长。正是由于纤维活性炭具有这些结构特征,对各种无机和有机气体、水溶液中的有机物、重金属离子等具有较大的吸附容量和较快的吸附速率,其吸附能力比一般的活性炭高出1~10倍,特别是对于一些恶臭物质的吸附量比颗粒活性炭要高40倍左右。

(2)活性氧化铝活性氧化铝是将含水氧化铝(如铝土矿)在严格控制的加热速率下于773K加热制成的

多孔结构的活性物质。根据结晶构造,氧化铝可分为α型和γ型。具有吸附活性的主要是γ型,尤其是含一定结晶水的γ-氧化铝,吸附活性很高。晶格类型的形成主要取决于焙烧温度,若三水铝石在773~873K 温度下焙烧,所得氧化铝即为含有结晶水的γ型活性氧化铝,温度超过1173K,开始变成α型氧化铝,吸附性能急剧下降。

活性氧化铝是一种极性吸附剂,无毒,对水的吸附容量很大,常用于高湿度气体的吸湿和干燥。它还用于多种气态污染物,如SO2、H2S、含氟废气、NOx以及气态碳氢化合物等废气的净化。

活性氧化铝机械强度好,可在移动床中使用,并可作催化剂的载体。而且它对多数气体和蒸气是稳定的,浸入水或液体中不会溶胀或破碎。循环使用后其性能变化很小,因此使用寿命长。

活性氧化铝常用作催化剂的载体。

(3)硅胶将水玻璃(硅酸钠)溶液用无机酸处理后所得凝胶,经老化、水洗去盐,于398~408K下干燥脱水,即得到坚硬多孔的固体颗粒硅胶。硅胶是一种无定形链状和网状结构的硅酸聚合物,其分子式为

SiO2·nH2O。硅胶的孔径分布均匀,亲水性极强,吸收空气中的水分可达自身质量的50%,同时放出大量的热,使其容易破碎。硅胶在应用上有很大一部分是用作吸湿剂(干燥剂),在用作干燥剂时常加入氯化钴或溴化铜,以指示吸湿程度。

硅胶是一种极性吸附剂,可以用来吸附SO2、NOx等气体,但难于吸附非极性的有机物。硅胶还可用作催化剂的载体。其主要物理性质见表15—1。

(4)沸石分子筛分子筛自1756年从自然界发现到现在已陆续发现36种之多。这种天然分子筛是一种结晶的铝硅酸盐,因将其加热熔融时可起泡“沸腾”,因此又称沸石或泡沸石,又因其内部微孔能筛分大小不一的分子,故又名分子筛或沸石分子筛。目前人工合成的沸石分子筛已超过百种。最常用的有A型、X 型、Y型、M型和ZSM型等。

沸石分子筛具有多孔骨架结构,其化学通式为,其中Me主要是K+、Na+、Ca2+等金属阳离子,x/n 为价数为n的可交换金属阳离子Me的个数,m是结晶水的分子数。

分子筛在结构上有许多孔径均匀的孔道与排列整齐的洞穴,这些洞穴由孔道连接。洞穴不但提供了很大的比表面积,而且它只允许直径比其孔径小的分子进入,从而对大小及形状不同的分子进行筛分。根据孔径大小不同和SiO2与Al2O3分子比不同,分子筛有不同的型号。如3A(钾A型)、4A(钠A型)、5A(钙A 型)、10X(钙X型)、13X(钠X型)、Y(钠Y型)、钠丝光滑石型等。

分子筛与其他吸附剂相比有以下优点。

①吸附选择性强。这是由于分子筛的孔径大小整齐均一,又是一种离子型吸附剂。因此它能根据分子的大小及极性的不同进行选择性吸附。如它可有效地从饱和碳氢化合物中把乙烯、丙烯除去,还可有效地把乙炔从乙烯中除去,这一点是由它的强极性决定的。

②吸附能力强。即使气体的组成浓度很低,仍然具有较大的吸附能力。

③在较高的温度下仍有较大的吸附能力,而其他吸附剂却受温度的影响很大,因而在相同温度条件下,分子筛的吸附容量大。正是由于上述优点,分子筛成为一种十分优良的吸附剂,广泛用于基本有机化工、石油化工的生产上,在有害气体的治理上,也常用于SO2、NOx、CO、CO2,NH3,CCl4、水蒸气和气态碳氢化合物废气的净化。

(5)其他吸附剂除去上述主要的吸附剂外,还有漂白土和活性白土、焦炭粒和白云石粉、腐殖酸类吸附剂、蚯蚓粪、吸附树脂等常见的吸附剂。

(6)吸附剂浸渍这是提高吸附剂吸附能力(容量)和选择性的一种有效方法。其处理方法是将吸附剂预先在某些特定物质的溶液中进行浸渍,再把吸附了这些特定物质的吸附剂进行干燥,然后再去吸附某些气态物质,使这些气态物质与预先吸附在吸附剂表面上的特定物质发生化学反应。对于同一种吸附剂,可根据吸附处理有害气体中污染物的种类、选择浸渍一些特定物质,以提高吸附的选择性

影响气体吸附的因素

影响气体吸附的因素很多,主要有吸附剂的性质、吸附质的性质与浓度、吸附器的设计和吸附的条件。除此之外,还包括一些其他的因素,诸如其他气体的存在,吸附剂的脱附情况等。

1.吸附剂性质的影响

实践证明,被吸附气体的总量,随吸附剂表面积的增加而增加,同等体积(或质量)的吸附剂吸附的气体量越大,证明该吸附剂的比表面积越大。吸附剂比表面积大小与它的孔隙率、孔径、颗粒度等因素有关。

确定吸附剂吸附能力的一个重要概念是“有效表面积”,即吸附质分子能进入的表面。根据微孔尺寸分布数据,主要起吸附作用是直径与被吸附分子大小相等的微孔。通常假设,由于位阻效应,一个分子不易渗入比某一最小直径还要小的微孔,这个最小直径即所谓临界直径,它代表了吸附质的特性且与吸附质分子的直径有关。表15-3列出了某些常见分子的临界直径。

因此,吸附剂的有效表面只存在于吸附分子能够进入的微孔中。

如前所述,分子筛的孔径单一、均匀,如5 分子筛的孔径为5 ,就只能吸附直径为5 以下的分子。活性炭的孔径分布很宽,可以从20~1000 ,所以它既能吸附直径小的分子,也能吸附直径大的有机物分子。在选择吸附剂时,应使其孔径分布与吸附质分子的大小相适应(1 =10—10m)。

吸附剂的极性对吸附过程影响也很大。一般来说,对于具有极性的吸附剂,尤其是分子筛,由于其对吸附质的吸附靠静电引力,因此,它对极性吸附质吸附量就大;对于不具有极性的活性炭,它就能够大量吸附非极性的有机分子。

2.吸附质性质和浓度的影响

吸附质的性质和浓度也影响着吸附过程和吸附量。除上述吸附分子的临界直径外,吸附质的相对分子质量、沸点和饱和性,都影响吸附量。当用同一种活性炭作吸附剂时,对于结构类似的有机物,其相对分子质量愈大、沸点愈高,则被吸附得愈多。对结构和相对分子质量都相近的有机物,不饱和性愈大,则愈易被吸附。

吸附质在气相中的浓度愈大,吸附量愈大。下一节将要介绍的吸附等温线可以明显证明这一点。但浓度增加必然使同样的吸附剂较早达到饱和,则需较多的吸附剂,并使再生频繁,操作麻烦。因而吸附法不宜用于净化吸附质浓度高的气体。对于浓度高的气体,一般先采取其他净化方法,如吸收法。当其他方法不能满足排放标准的要求时,再在其他方法之后加设吸附装置。所以,吸附法较为适宜处理污染物浓度低,排放标准要求很严的废气。

3.吸附操作条件的影响

吸附是一种放热过程,因此操作时首先要考虑温度的影响。对物理吸附,低温是有利的,所以总希望

在低温下进行。对于化学吸附,由于提高温度会加速化学反应的速率,因而希望适当提高系统的温度,以增大吸附速率和吸附量。

其次要考虑的是操作压力,增大气相主体的压力,从而增大了吸附质的分压,对吸附有利。但增大压力不仅会增加能耗,而且还会给吸附设备和吸附操作带来特殊要求,因此一般不为此而设增压设备。

吸附操作中气流的速率对气体吸附影响也很大。气流速率要保持适中,若速率太大,不仅增大了压力损失,而且会使气体分子与吸附剂接触时间过短,不利于气体的吸附,因而降低吸附速率。气体流速过低,又会使设备增大。因此,吸附器的气流速率要控制在一定的范围之内。如通过固定床吸附器的气流速率一般应控制在0.2~0.6m/s的范围内。

4.吸附器设计的影响

为了进行有效吸附,对吸附器的设计提出以下基本要求。

(1)要具有足够的气体流通面积和停留时间,它们都是吸附器尺寸的函数;

(2)要保证气流分布均匀,以至所有的过气断面都能得到充分利用;

(3)对于影响吸附过程的其他物质如粉尘、水蒸气等要设预处理装置,以除去入口气体中能污染吸附剂的杂质;

(4)采用其他较为经济有效的工艺,预先除去人口气体中的部分组分,以减轻吸附系统的负荷,这一点主要是对处理污染物浓度较高的气体而言;

(5)要能够有效地控制和调节吸附操作温度;

(6)要易于更换吸附剂。

5.其他因素的影响

(1)吸附剂浸渍的影响有些吸附操作不能达到要求,往往采取吸附剂浸渍处理,以提高吸附剂的选择性和增大吸附容量。

(2)脱附的影响脱附是回收吸附质使吸附剂获得再生的过程,因此希望吸附质脱附得越干净越好。但由于工艺条件和吸附剂本身的限制,往往不能使吸附质从吸附剂上完全脱附出来,因而也就相应地影响了下一步的吸附操作。

作者:li2004

吸附剂一般有以下特点

一、概述

能有效地从气体或液体中吸附其中某些成分的固体物质。

吸附剂一般有以下特点:大的比表面、适宜的自动馏程孔结构及表面结构;对吸附质有强烈的吸附能力;一般不与吸附质和介质发生化学反应;制造方便,容易再生;有良好的机械强度等。

吸附剂可按孔径大小、颗粒形状、化学成分、表面极性等分类,如粗孔和细孔吸附剂,粉状、粒状、条状吸附剂,碳质和氧化物吸附剂,极性和非极性吸附剂等。

常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂(如硅胶、氧化铝、分子筛、天然黏土等)。

衡量吸附剂的主要指标有:对不同气体杂质的吸附容量、磨耗率、松装堆积密度、比表面积、抗压碎强度等。用于滤除毒气,精炼石油和植物油,防止病毒和霉菌,回收天然气中的汽油溴价以及食糖和其他带色物质脱色等。

二、吸附剂的种类

工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,极大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。

1.硅胶

2.活性氧化铝、

3.活性炭

4.沸石分子筛

5.碳分子筛

实际上也是一种活性炭,它与一般的碳质吸附剂不同之处,在于其微孔孔径均匀地分布在一狭窄的范围内,微孔孔径大小与被分离的气体分子直径相当,微孔的比表面积一般占碳分子筛所有表面积的90%以上。碳分子筛的孔结构主要分布形式为:大孔直径与碳粒的外表面相通,过渡孔从大孔分支出来,微孔又从过渡孔分支出来。在分离过程中,大孔主要起运输通道作用,微孔则起分子筛的作用。

以煤为原料制取碳分子筛的方法有碳化法、气体活化法、碳沉积法和浸渍法。其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。

碳分子筛在空气分离制取氮气领域已获得了成功,在其它气体分离方面也有广阔的前景。

四、其他

吸附剂也称吸收剂.这种物质可使活性成分附着在其颗粒表面,使液态微量化合物添加剂变为固态化合物,

有利于实施均匀混合.其特性是吸附性强,化学性质稳定.

吸附剂一般也分为有机物和无机物两类,有机物类如小麦胚粉,脱脂的玉米胚粉,玉米芯碎片,粗麸皮,大豆

细粉以及吸水性强的谷物类等.无机物类则包括二氧化硅,蛭石,硅酸钙等.

最具代表性的吸附剂是活性炭,吸附性能相当好,但是通风橱成本比较高,曾应用在松花江事件中用来吸附水体中的甲苯。其次还有分子筛、硅胶、活性铝、聚合物吸附剂和生物吸附剂等等

化学键 非极性分子和极性分子

化学键 非极性分子和极性分子(上) 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 B . 难点聚焦 (1) 化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 (2) 离子键: 一、 离子化合物:由阴、阳离子相互作用构成的化合物。如 NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 二、 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子化合物的电子式中由阳离子和带中括号的阴离子组成且简单的阳离子不带最外

键的极性与分子的极性

2.3.1 键的极性和分子的极性 【学习目标】1、区分键的极性和分子的极性;2、掌握判断键的极性和分子的极性的方法; 3、了解分子极性的应用。 【课前案——温故而知新】 一、电负性 1、含义:用来描述不同元素的原子对键合电子的大小。 2、递变规律:在元素周期表中,同主族元素,由上到下,原子的电负性依次; 同周期元素,由左到右,原子的电负性依次。 3、判断化学键的类型:一般来说,当键合原子的电负性差值大于时,形成离子键; 当键合原子的电负性差值小于时,形成共价键。 二、键的极性 按照共价键中,将共价键分为极性共价键和非极性共价键。 1、非极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移。 2、极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移,极性键中的两个键合原子,电负性较大的原子呈(“正”或“负”,下同)电性,电负性较小的 呈电性。 【课前检测】1、写出下列物质的电子式:① CCl4;②NH3; ③H2O ;④CO2;⑤Na2O2;⑥Mg(OH)2。 2、有下列物质:①O2;②CO2;③NH3;④Na2O;⑤Na2O2;⑥NaOH;⑦CaBr2;⑧H2O2;⑨NH4Cl;⑩HBr,回答下列问题: (1)只含有极性键的是;(2)只含有非极性键的是;(3)含有极性键和非极性键的是;(4)只含有离子键的是;(5)含有非极性键的离子化合物是。 【课中案】 一、分子的极性 对于一个分子来说,可以设想它的全部正电荷集中于一点,叫做正电荷中心,它的全部负电荷集 中于一点,叫做负电荷中心,但分子是电中性的。 1、极性分子:分子中正电中心和负电中心(“不重合”或“重合”),使分子的某一部分呈正电 性(δ+),另一部分呈负电性(δ—)。 2、非极性分子:分子中正电中心和负电中心(“不重合”或“重合”)。 【注意】极性分子、非极性分子都显电中性,都不带电荷。 二、分子极性的判断方法 1、物理模型法 AB n分子,A-B键看作AB原子间的相互作用力,根据中心原子A所受合 力是否为零来判断, F合=0,为非极性分子(极性抵消); F合≠0,为极性分子(极性不抵消)。 【理解与巩固】1、完成下列表格:

有机溶剂极性表

有机溶剂极性表

下图是混合有机溶剂极性顺序(由小到大,括号内表示的是混合比例) 强极性溶剂:甲醇〉乙醇〉异丙醇 中等极性溶剂:乙氰〉乙酸乙酯〉氯仿〉二氯甲烷〉乙醚〉甲苯 非极性溶剂:环己烷,石油醚,己烷,戊烷 常用混合溶剂: 乙酸乙酯/己烷:常用浓度0~30%。但有时较难在旋转蒸发仪上完全除去溶剂。 乙醚/戊烷体系:浓度为0~40%的比较常用。在旋转蒸发器上非常容易除去。乙醇/己烷或戊烷:对强极性化合物5~30%比较合适。 二氯甲烷/己烷或戊烷:5~30%,当其他混合溶剂失败时可以考虑使用。 3)将1~2mL选定的溶剂体系倒入展开池中,在展开池中放置一大块滤纸。 4)将化合物在标记过的基线处进行点样。我们用的点样器是买来的,此外,点样器也可从加热过的Pasteur吸管上拔下(你可以参照UROP)。在跟踪反应进行时,一定要点上起始反应物、反应混合物以及两者的混合物。 5)展开:让溶剂向上展开约90%的薄板长度。 6)从展开池中取出薄板并且马上用铅笔标注出溶剂到达的前沿位置。根据这个算Rf的数值。 7)让薄板上的溶剂挥发掉。 8)用非破坏性技术观察薄板。最好的非破坏性方法就是用紫外灯进行观察。将薄板放在紫外灯下,用铅笔标出所有有紫外活性的点。尽管在 5.301中不用这种方法,但我们将采用另一常用的无损方法--用碘染色法。(你可以参看UROP)。

9)用破坏性方式观测薄板。当化合物没有紫外活性的时候,只能采用这种方法。在 5.301中,提供了很多非常有用的染色剂。使用染色剂时,将干燥的薄板用镊子夹起并放入染色剂中,确保从基线到溶剂前沿都被浸没。用纸巾擦干薄板的背面。将薄板放在加热板上观察斑点的变化。在斑点变得可见而且背景颜色未能遮盖住斑点之前,将薄板从加热板上取下。 10)根据初始薄层色谱结果修改溶剂体系的选择。如果想让Rf变得更大一些,可使溶剂体系极性更强些;如果想让Rf变小,就应该使溶剂体系的极性减小些。如果在薄板上点样变成了条纹状而不是一个圆圈状,那么你的样品浓度可能太高了。稀释样品后再进行一次薄板层析,如果还是不能奏效,就应该考虑换一种溶剂体系。

有机溶剂极性顺序

一:溶剂极性参数表,方便以下比较展开剂。 环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、 二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、 乙酸:6.0、水:10.2 数值越大,极性越大 二:常用溶剂的沸点、溶解性和毒性 溶剂名称沸点℃(101.3kPa) 溶解性毒性 液氨-33.35 能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉,强刺激性 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒,麻醉性,刺激性 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物1,1,1-三氯乙烷74.0 与丙酮、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇

常见有机溶剂的极性

常见有机溶剂的极性 化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220 Toluene(甲苯) 2.4 0.59 111 285 p-xylene(对二甲苯) 2.5 0.65 138 290 Chlorobenzene(氯苯) 2.7 0.8 132 - o-dichlorobenzene(邻二氯苯) 2.7 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.9 0.23 35 220 Benzene(苯) 3 0.65 80 280 Isobutyl alcohol(异丁醇) 3 4.7 108 220 Methylene chloride(二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride(二氯化乙烯) 3.5 0.78 84 228 n-butanol(正丁醇) 3.7 2.95 117 210 n-butyl acetate(醋酸丁酯;乙酸丁酯) 4 - 126 254 n-propanol(丙醇) 4 2.27 98 210 Methyl isobutyl ketone(甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran(四氢呋喃) 4.2 0.55 66 220 Ethyl acetate(乙酸乙酯) 4.3 0.45 77 260 i-propanol(异丙醇) 4.3 2.37 82 210 Chloroform(氯仿) 4.4 0.57 61 245 Methyl ethyl ketone(甲基乙基酮) 4.5 0.43 80 330 Dioxane(二恶烷; 二氧六环; 二氧杂环己烷) 4.8 1.54 102 220 Pyridine(吡啶) 5.3 0.97 115 305 Acetone(丙酮) 5.4 0.32 57 330 Nitromethane(硝基甲烷) 6 0.67 101 330

吸附剂

吸附剂(吸收剂) 用以选择性吸附气体或液体混合物中某些组分的多孔性固体物质称吸附剂。吸附剂通常制成球形、圆柱形或无定形的颗粒或粉末。优良吸附剂应具有的特性主要是单位质量吸附剂具有较大的表面积,对吸附质具有较大的吸附能力(即平衡吸附量大)。并且具有良好的选择性,即能优先吸附混合物中某些组分。此外,还要求容易再生(即平衡吸附量对温度或压力的变化敏感),具有足够的强度和耐磨性等。 常用的吸附剂有:①活性白土、硅藻土等天然物质。常用于油品和糖液的脱色精制;②活性炭。由各种含炭物质经炭化和活化处理而成,耐酸碱但不耐高温,吸附性能良好,多用于气体或液体的除臭、脱色、以及溶剂蒸气回收和低分子烃类的分离;③硅胶。由硅酸钠水溶液脱钠离子制成的坚硬多孔的凝胶颗粒,能大量吸收水分,吸附非极性物质量很少,常用于气体或有机溶剂的干燥以及石油制品的精制;④活性氧化铝。由氧化铝的水合物加热脱水制成的多孔凝胶和晶体的混合物,常用于气体和有机物的干燥;⑤合成沸石。又称分子筛,人工合成的硅铝酸盐,具有均匀的孔径,热稳定性高,选择性好,用于气体和有机溶剂的干燥及石油馏分的吸附分离等;⑥合成树脂。具有巨型网状结构,常用的有非极性树脂,如苯乙烯-二乙烯基苯共聚体;极性树脂,如聚甲基丙烯酸酯,用于废水处理、维生素的分离、药剂的脱色和净制等。

9.1.1、吸附现象及其工业应用 1、吸附分离应用背景: 吸附操作在化工、轻工、炼油、冶金和环保等领域都有着广泛的应用。如气体中水分的脱除,溶剂的回收,水溶液或有机溶液的脱色、脱臭,有机烷烃的分离,芳烃的精制等。 2、吸附的定义及概念: 固体物质表面对气体或液体分子的吸着现象称为吸附。其中被吸附的物质称为吸附质,固体物质称为吸附剂。3、吸附机理的分类: 根据吸附质和吸附剂之间吸附力的不同,吸附操作分为物理吸附与化学吸附两大类。 ⑴、物理吸附或称范德华吸附:它是吸附剂分子与吸附质分子间吸引力作用的结果,因其分子间结合力较弱,故容易脱附,如固体和气体之间的分子引力大于气体内部分子之间的引力,气体就会凝结在固体表面上,吸附过程达到平衡时,吸附在吸附剂上的吸附质的蒸汽压应等于其在气相中的分压。 ⑵、化学吸附:是由吸附质与吸附剂分子间化学健的作用所引起,其间结合力比物理吸附大得多,放出的热量也大得多,与化学反应热数量级相当,过程往往不可逆。化学吸附在催化反应中起重要作用。本章主要讨论物理吸附。 4、吸附机理的判断依据: ⑴、化学吸附热与化学反应热相近,比物理吸附热大得多。如二氧化碳和氢在各种吸附剂上的化学吸附热为83740J/mol和62800J/mol,而这两种气体的物理吸附热约为25120J/mol和8374J/mol。 ⑵、化学吸附有较高的选择性。如氯可以被钨或镍化学吸附。物理吸附则没有很高的选择性,它主要取决于气体或液体的物理性质及吸附剂的特性。 ⑶、化学吸附时,温度对吸附速率的影响较显著,温度升高则吸附速率加快,因其是一个活化过程,故又称活化吸附。而物理吸附即使在低温下,吸附速率也可能较大,因它不属于活化吸附。 ⑷、化学吸附总是单分子层或单原子层,而物理吸附则不同,低压时,一般是单分子层,但随着吸附质分压增大,吸附层可能转变成多分子层。 5、吸附剂的再生及方法:

键的极性与分子极性

键的极性与分子极性 一、非极性键、极性键、非极性分子、极性分子的比较 非极性键极性键非极性分子极性分子 定义共用电子对不发 生偏移的共价键 共用电子对发生 偏移的共价键 正、负电荷重心重 合,正、负电荷分 布均匀的分子 正、负电荷重心不重 合,正、负电荷分布 不均匀的分子 研究对象属于分子组成部 分的共价键 属于分子组成部 分的共价键 分子分子 主要特征无电性无极性有电性有极性无电性无极性有电性有极性 相互关系极性键、非极性键均属于化学键中的 共价键 极性分子、非极性分子都是电中性分子。 键无极性分子也无极性,键有极性分子不 一定有极性,分子有极性必含极性键。 二、键的极性与分子极性的关系 化学键的极性是分子极性产生的原因之一。当分子中所有化学键都是非极性键时,分子为非极性分子。当分子内的化学键为由于分子中电荷的空间分布不对称,即各键的极性无法抵消时为极性分子;由于分子中电荷的空间分布对称,使各个键的极性互相抵消时,形成非极性分子。所以,原子间的极性键形成的分子如NH3,分子中的电荷空间分布不对称,键的极性无法抵消,是极性分子。极性分子中一定存在极性键。但有的极性分子中可以存在非极性键,如H2O2。由非极性键形成的双原子分子,一定是非极性分子。如C12、O2等。而CH4、CO2分子中虽然存在极性键,但由于分子中电荷空间分布对称,正负电荷重心重合,键的极性相互抵消,亦属于非极性分子。正负电荷重心是否重合,键的极性能否相互抵消,则取决于分子的空间构型。所以AB n型多原子分子的极性需视分子的空间构型而定,键的极性与 构型原子数举例结构式对称性键的极性 非极性分子 直线型双原子H2、O2、N2、X2 H-H、Cl-Cl 对称非极性直线型三原子CO2、CS2 O=C=O 对称极性 平面正三 角型 四原子BF3、BCl3 对称极性 正四面体 型 五原子CH4、CCl4 对称极性 极性分子 直线型双原子HX H-Cl 不对称极性直线型三原子HCN H-C≡N 不对称极性 折线型三原子H2O、H2S 不对称极性三角锥型四原子NH3、PCl3 不对称极性四面体型五原子CH3Cl、CH2Cl2 不对称极性

常见的溶剂极性表有机溶剂表

常见的溶剂极性表有机溶剂表一般有机溶剂根据“相似相溶”的原理来进行选择 化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220 Toluene(甲苯) 2.4 0.59 111 285 p-xylene(对二甲苯) 2.5 0.65 138 290 Chlorobenzene(氯苯) 2.7 0.8 132 - o-dichlorobenzene(邻二氯苯) 2.7 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.9 0.23 35 220 Benzene(苯) 3 0.65 80 280 Isobutyl alcohol(异丁醇) 3 4.7 108 220 Methylene chloride(二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride(二氯化乙烯) 3.5 0.78 84 228 n-butanol(正丁醇) 3.7 2.95 117 210 n-butyl acetate(醋酸丁酯;乙酸丁酯) 4 - 126 254 n-propanol(丙醇) 4 2.27 98 210 Methyl isobutyl ketone(甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran(四氢呋喃) 4.2 0.55 66 220 Ethyl acetate(乙酸乙酯) 4.30 0.45 77 260 i-propanol(异丙醇) 4.3 2.37 82 210 Chloroform(氯仿) 4.4 0.57 61 245

吸附剂的种类

常用吸附剂简介 (发稿时间:2009-02-17 阅读次数:715) 常用的吸附剂有:活性炭、天然有机吸附剂、天然无机吸附剂、合成吸附剂。 1、活性炭 活性炭是从水中除去不溶性漂浮物(有机物、某些无机物)最有效的吸附剂,有颗粒状和粉状两种状态。清除水中泄漏物用的是颗粒状活性炭。被吸附的泄漏物可以通过解吸再生回收使用,解吸后的活性炭可以重复使用。影响吸附效率的关键因素是被吸附物分子的大小和极性。吸附速率随着温度的上升和污染物浓度的下降而降低。所以必须通过实验来确定吸附某一物质所需的炭量。试验应模拟泄漏发生时的条件进行。 2、天然有机吸附剂 天然有机吸附剂由天然产品,如木纤维、玉米秆、稻草、木屑、树皮、花生皮等纤维素和橡胶组成,可以从水中除去油类和与油相似的有机物。天然有机吸附剂具有价廉、无毒、易得等优点,但再生困难。 3、天然无机吸附剂 天然无机吸附剂是由天然无机材料制成的,常用的天然无机材料有黏土、珍珠岩、蛭石、膨胀页岩和天然沸石。根据制作材料分为矿物吸附剂和黏土类吸附剂。 矿物吸附剂可用来吸附各种类型的烃、酸及其衍生物、醇、醛、酮、酯和硝基化合物;黏土类吸附剂能吸附分子或离子,并且能有选择地

吸附不同大小的分子或不同极性的离子。天然无机材料制成的吸附剂主要是粒状的,其使用受刮风、降雨、降雪等自然条件的影响。 4、合成吸附剂 合成吸附剂是专门为纯的有机液体研制的,能有效地清除陆地泄漏物和水体的不溶性漂浮物。对于有极性且在水中能溶解或能与水互溶的物质,不能使用合成吸附剂清除。能再生是合成吸附剂的一大优点。常用的合成吸附剂有聚氨酯、聚丙烯和有大量网眼的树脂。 聚氨酯有外表敞开式多孔状、外表面封闭式多孔状及非多孔状几种形式。所有形式的聚氨酯都能从水溶液中吸附泄漏物,但外表面敞开式多孔状聚氨酯能像海绵一样吸附液体。吸附状况取决于吸附剂气孔结构的敞开度、连通度和被吸附物的黏度、湿润力,但聚氨酯不能用来吸附处理大泄漏或高毒性泄漏物。 聚丙烯是线性烃类聚合物,能吸附无机液体或溶液。分子量结晶度较高的聚丙烯具有更好的溶解性和化学阻抗,但其生产难度和成本费用高。不能用来吸附处理大泄漏或高毒性泄漏物。 最常用的两种树脂是聚苯乙烯和聚甲基丙烯酸甲酯。这些树脂能与离子类化合物发生反应,不仅具有吸附性,还表现出离子交换。 (摘自:《环境应急响应实用手册》) 吸附剂 目录[隐藏] 一、概述 二、吸附剂的种类 1.硅胶 2.活性炭 3.沸石分子筛 4.碳分子筛 三、吸附剂的物理性质

常用有机溶剂的极性排列顺序

常用有机溶剂极性表 化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220 Toluene(甲苯) 2.4 0.59 111 285 p-xylene(对二甲苯) 2.5 0.65 138 290 Chlorobenzene(氯苯) 2.7 0.8 132 - o-dichlorobenzene(邻二氯苯) 2.7 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.9 0.23 35 220 Benzene(苯) 3 0.65 80 280 Isobutyl alcohol(异丁醇) 3 4.7 108 220 Methylene chloride(二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride(二氯化乙烯) 3.5 0.78 84 228 n-butanol(正丁醇) 3.7 2.95 117 210 n-butyl acetate(醋酸丁酯;乙酸丁酯) 4 - 126 254 n-propanol(丙醇) 4 2.27 98 210 Methyl isobutyl ketone(甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran(四氢呋喃) 4.2 0.55 66 220 Ethyl acetate(乙酸乙酯) 4.30 0.45 77 260 i-propanol(异丙醇) 4.3 2.37 82 210 Chloroform(氯仿) 4.4 0.57 61 245 Methyl ethyl ketone(甲基乙基酮) 4.5 0.43 80 330 Dioxane(二恶烷; 二氧六环; 二氧杂环己烷) 4.8 1.54 102 220

非极性分子和极性分子

https://www.360docs.net/doc/6c14385146.html, 你的首选资源互助社区贵州省贵阳一中2011届高三化学一轮复习教学案第14讲: 非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价)

(3)常见AB n型分子中极性分子与非极性分子比较: 分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。

新高中化学 2.3.1键的极性和分子的极性课后作业 新人教版选修3

第三节分子的性质第1课时键的极性和分子的极性[目标要求] 1.掌握键的极性和分子极性的实质及其相互关系。2.会判断分子的极性,并知道分子极性对物质性质的影响。 一、键的极性 1.写出下列分子的结构式 (1)H2O ____________ (2)NH3 ________________ (3)CO2 ____________ (4)CCl4________________ (5)HCN ______________ (6)CH3Cl ______________ 2.共价键有两种:________共价键和____________共价键。 3.极性共价键是指______________________共价键,电子对会____________,电负性较大的原子呈________电性,电负性较小的原子呈________电性,简称极性键。 4.非极性共价键是指由__________________共价键,电子对______________,又简称非极性键。 二、分子的极性 1.极性分子中______________________________,使分子的某一个部分呈________,另一部分呈________。 2.非极性分子是指________________________________________。 3.分子的极性是分子中化学键的________________。当分子中各个键的极性的向量和为________时,该分子是非极性分子,否则是极性分子。 4.只含非极性共价键的分子________是非极性分子。只含极性键的分子________是极性分子,________是非极性分子。如H2O是________分子,而CH4是________分子。 5.极性分子中________含有非极性键,如H2O2;非极性分子中________含有极性键,如C2H4。 1.下列说法中不正确的是( ) A.共价化合物中不可能含有离子键 B.有共价键的化合物,不一定是共价化合物 C.离子化合物中可能存在共价键 D.以极性键结合的分子,肯定是极性分子 2.下列叙述中正确的是( ) A.以非极性键结合起来的双原子分子一定是非极性分子 B.以极性键结合起来的分子一定是极性分子 C.非极性分子只能是双原子单质分子 D.非极性分子中,一定含有非极性共价键 3.根据科学人员探测,在海洋深处的沉积物中含有可燃冰,主要成分是甲烷水合物。有关其组成的两种分子的下列说法正确的是( ) A.它们都是极性键构成的极性分子 B.它们都只有π键 C.它们的成键电子的原子轨道都是sp3-s D.它们的立体结构都相同 4.下列叙述不正确的是( ) A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强 B.以极性键结合的分子,不一定是极性分子 C.判断A2B或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构 D.非极性分子中,各原子间都应以非极性键结合 5.A、B、C、D、E是相邻三个周期中的五种元素,它们的原子序数依次增大,B、C、D

常见有机溶剂极性表

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等; ②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序: 水(极性最大) > 甲酰胺 > 乙腈 > 甲醇 > 乙醇 > 丙醇 > 丙酮 > 二氧六环 > 四氢呋喃 > 甲乙酮 > 正丁醇 > 醋酸乙酯 > 乙醚 > 异丙醚 > 二氯甲烷 > 氯仿 > 溴乙烷 > 苯 > 氯丙烷 > 甲苯 > 四氯化碳 > 二硫化碳 > 环己烷 > 己烷 > 庚 烷 > 煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

过柱子总结(吸附剂与洗脱剂)

过柱子总结(吸附剂与洗脱剂) 吸附剂与洗脱剂 (一)吸附剂与洗脱剂 根据待分离组分的结构和性质选择合适的吸附剂和洗脱剂是分离成败的关键。 1.吸附剂的要求 ①对样品组分和洗脱剂都不会发生任何化学反应,在洗脱剂中也不会溶解。 ②对待分离组分能够进行可逆的吸附,同时具有足够的吸附力,使组分在固定相与流动相之间能最快地达到平衡。 ③颗粒形状均匀,大小适当,以保证洗脱剂能够以一定的流速(一般为1.5mL·min-1)通过色谱柱。 ④材料易得,价格便宜而且是无色的,以便于观察。 2、常用吸附剂的种类:氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。 3、几种常见吸附剂的特性 (1)氧化铝:市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目。 碱性氧化铝(pH9—10):适用于碱性物质(如胺、生物碱)和对酸敏感的样品(如缩醛、糖苷等),也适用于烃类、甾体化合物等中性物质的分离。但这种吸附剂能引起被吸附的醛、酮的缩合。酯和内酯的水解、醇羟基的脱水、乙酰糖的去乙酰化、维生素A和K等的破坏等不良副反应。所以,这些化合物不宜用碱性氧化铝分离。 酸性氧化铝(pH3.5—4.5):适用于酸性物质如有机酸、氨基酸等以及色素和醛类化合物的分离。 中性氧化铝(pH7—7.5):适用于醛、酮、醌、苷和硝基化合物以及在碱性介质中不稳定的物质如酯、内酯等的分离,也可以用来分离弱的有机酸和碱等。 (2)硅胶:硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。柱色谱用硅胶一般不含粘合剂。 适用范围:非极性和极性化合物,适用于芳香油、萜类、甾体、生物碱、强心甙、蒽醌类、酸性、酚性化合物、磷脂类、脂肪酸、氨基酸,以及一系列合成产品如有机金属化合物等。(3)聚酰胺:色谱用聚酰胺主要又锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺)两种,分子量一般在16000~20000,其亲水性和亲脂性均较好,因此既可分离水溶性成份,也可分离脂溶性成分。可溶于浓盐酸、甲酸及热的乙酸、甲酰胺和二甲基甲酰胺中;微溶于乙酸和苯酚等;不溶于醇、氯仿、丙酮、乙醚、苯等;对碱稳定,对强酸可水解。 聚酰胺色谱的原理:兼具吸附色谱和分配色谱的功能。采用强极性洗脱剂时主要为吸附色谱——正相色谱;采用弱极性洗脱剂时主要为分配色谱——反相色谱。 分离对象:能与聚酰胺形成氢键的化合物,如酚类、酸类、醌类、硝基化合物及含羟基、氨基、亚氨基的化合物及腈和醛等类化合物。 聚酰胺在水中吸附能力的规律: 形成氢键的基团(如:酚经基、按基、酪基、硝基等)越多, 则吸附力越强。如:丁二酸>丁酸 形成氢键的位置与吸附力有很大关系。对位、间位酚羟基使吸附力增大,邻位使吸附力减小。芳香核、共轭双键多者吸附力大,少者吸附人小。

非极性分子和极性分子

非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价) (3)常见AB n型分子中极性分子与非极性分子比较:

分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。 易错点: 。

第二章第三节第1课时键的极性和分子的极性范德华力和氢键

第三节分子的性质 第1课时键的极性和分子的极性范德华力和氢键 1.了解共价键的极性和分子的极性及产生极性的原因。 2.知道范德华力、氢键对物质性质的影响。 3.能应用分子结构的知识判断分子的极性。 键的极性和分子的极性[学生用书P28] 1.键的极性 2.分子的极性 3.键的极性和分子的极性的关系 (1)一般只含非极性键的分子是非极性分子。 (2)含有极性键的分子,若分子结构是空间对称的,则为非极性分子,否则是极性分子。 1.判断正误(正确的打“√”,错误的打“×”)。 (1)极性分子中不可能含有非极性键。( )

(2)离子化合物中不可能含有非极性键。( ) (3)非极性分子中不可能含有极性键。( ) (4)一般极性分子中含有极性键。( ) (5)H2O、CO2、CH4都是非极性分子。( ) 答案:(1)×(2)×(3)×(4)√(5)× 2.下列各组物质中,都是由极性键形成极性分子的一组是( ) A.CH4和Br2B.NH3和H2O C.H2S和CCl4D.CO2和HCl 解析:选B。CH4、CCl4、CO2都是由极性键形成的非极性分子,NH3、H2O、H2S都是由极性键形成的极性分子,Br2是由非极性键形成的非极性分子。 分子极性的判定 1.判断分子极性的一般思路 2.判断AB n型分子极性的方法 (1)化合价法:AB n型分子中,中心原子的化合价的绝对值等于该原子的价电子数时,该分子为非极性分子,此时分子的空间结构对称;若中心原子的化合价的绝对值不等于其价电子数,则分子的空间结构不对称,该分子为极性分子。具体实例如下: 分子BF3CO2SO3(g) H2O NH3SO2中心原子的化 合价的绝对值 3 4 6 2 3 4 中心原子的 价电子数 3 4 6 6 5 6 分子极性非极性非极性非极性极性极性极性 类型实例键的极性立体构型分子极性 X2H2、N2非极性键直线形非极性分子 XY HCl、NO 极性键直线形极性分子 XY2 (X2Y) CO2、CS2极性键直线形非极性分子SO2极性键V形极性分子

常用用有机溶剂的相对极性

常用用有机溶剂的相对极性 常用用有机溶剂的相对极性 solvent polarity Viscosity(cp20℃) Boiling point(℃) UV cutoff(nm) i-pentane戊烷 0.00 -- 30 -- n-pentane 0.00 0.23 36 210 Petroleum ether石油醚0.01 0.30 30-60 210 Hexane己烷0.06 0.33 69 210 Cyclohexane环己烷 0.10 1.00 81 210 Isooctane异辛烷 0.10 0.53 99 210 Trifluoroacetic acid三氟乙酸 0.10 -- 72 -- Trimethylpentane三甲基戊烷0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.00 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane (三氯三氟代乙烷) 1.90 0.71 48 231 i-propyl ether (丙基醚; 丙醚) 2.40 0.37 68 220 T oluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290 Chlorobenzene(氯苯) 2.70 0.80 132 -- o-dichlorobenzene (领二氯苯) 2.70 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.90 0.23 35 220 Benzene(苯) 3.00 0.65 80 280 Isobutyl alcohol(异丁醇) 3.00 4.70 108 220 Methylene chloride(二氯甲烷) 3.40 0.44 40 245 Ethylene dichloride(二氯化乙烯)3.50 0.79 84 228 n-butanol(丁醇) 3.90 2.95 117 210 n-butyl acetate(醋酸丁酯; 乙酸丁酯)4.00 --- 126 254 n-propanol(丙醇) 4.00 2.27 98 210 Methyl isobutyl ketone 4.20 -- 119 330 T etrahydrofuran( 四氢呋喃)4.20 0.55 66 220 ethanol 4.30 1.20 79 210 Ethyl acetate 4.30 0.45 77 260 i-propanol(丙醇) 4.30 2.37 82 210 Chloroform(氯仿) 4.40 0.57 61 245 Methyl ethyl ketone(甲基乙基酮)4.50 0.43 80 330

相关文档
最新文档