高中数学《余弦定理》教案
高中数学余弦定理教案5篇
高中数学余弦定理教案5篇作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
高中数学余弦定理教案篇1一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。
本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。
其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具普通教学工具、多媒体工具 (以上均为命题教学的准备)高中数学余弦定理教案篇2一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。
通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 理解余弦定理的定义和表达式。
2. 学会运用余弦定理解决三角形中的边角问题。
3. 掌握余弦定理在实际问题中的应用。
二、教学内容1. 余弦定理的定义和表达式。
2. 余弦定理的应用举例。
三、教学重点与难点1. 重点:余弦定理的定义和表达式,余弦定理的应用。
2. 难点:余弦定理在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解余弦定理的定义和表达式。
2. 采用案例分析法,通过举例让学生学会运用余弦定理解决实际问题。
3. 采用练习法,巩固学生对余弦定理的理解和应用。
五、教学过程1. 导入:通过复习正弦定理和余弦函数的知识,引出余弦定理的概念。
2. 新课讲解:讲解余弦定理的定义和表达式,举例说明余弦定理的应用。
3. 案例分析:分析实际问题,让学生运用余弦定理解决问题。
4. 练习巩固:布置练习题,让学生巩固余弦定理的知识。
5. 总结:对本节课的内容进行总结,强调余弦定理的重要性和应用。
教案仅供参考,具体实施可根据实际情况进行调整。
六、教学评估1. 课堂问答:通过提问方式检查学生对余弦定理的理解和掌握程度。
2. 练习题:布置课堂练习题,评估学生运用余弦定理解决实际问题的能力。
3. 课后作业:布置课后作业,巩固学生对余弦定理的知识。
七、教学拓展1. 引导学生思考余弦定理在现实生活中的应用,如测量三角形的角度和边长。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
八、教学反思1. 反思本节课的教学效果,检查学生对余弦定理的掌握程度。
2. 分析学生的反馈意见,调整教学方法和策略。
九、教学资源1. 教案、PPT、教材等教学资料。
2. 练习题、测试题等教学资源。
3. 互联网资源,如相关学术文章、教学视频等。
十、教学计划1. 下一节课内容:介绍余弦定理在实际问题中的应用,如几何图形中的角度计算。
2. 教学目标:让学生学会运用余弦定理解决实际问题,提高解决问题的能力。
余弦定理的教案(通用3篇)
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
高中数学余弦定理教案
中学数学余弦定理教案在一年的数学教学任务中,作为中学数学老师的你知道怎样写中学数学余弦定理教案吗?来写一篇中学数学余弦定理教案吧,它会对你的数学教学工作起到不菲的帮助。
下面是为大家收集有关于中学数学余弦定理教案,希望你喜爱。
中学数学余弦定理教案1【考纲要求】了解双曲线的定义,几何图形和标准方程,知道它的简洁性质。
【自学质疑】1.双曲线的轴在轴上,轴在轴上,实轴长等于,虚轴长等于,焦距等于,顶点坐标是,焦点坐标是,渐近线方程是,离心率,若点是双曲线上的点,则,。
2.又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是3.经过两点的双曲线的标准方程是。
4.双曲线的渐近线方程是,则该双曲线的离心率等于。
5.与双曲线有公共的渐近线,且经过点的双曲线的方程为【例题精讲】1.双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上随意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3.设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
【矫正巩固】1.双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3.若双曲线上一点到它的右焦点的距离是,则点到轴的距离是4.过双曲线的左焦点的直线交双曲线于两点,若。
则这样的直线一共有条。
【迁移应用】1. 已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率2. 已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3. 双曲线的焦距为4. 已知双曲线的一个顶点到它的一条渐近线的距离为,则5. 设是等腰三角形,,则以为焦点且过点的双曲线的离心率为.6. 已知圆。
以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为中学数学余弦定理教案2教学目标(1)使学生正确理解组合的意义,正确区分排列、组合问题;(2)使学生驾驭组合数的计算公式;(3)通过学习组合学问,让学生驾驭类比的学习方法,并提高学生分析问题和解决问题的实力;教学重点难点重点是组合的定义、组合数及组合数的公式;难点是解组合的应用题.教学过程设计(-)导入新课(老师活动)提出下列思索问题,打出字幕.[字幕]一条铁路途上有6个火车站,(1)需打算多少种不同的一般客车票?(2)有多少种不同票价的一般客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?(学生活动)探讨并回答.答案提示:(1)排列;(2)组合.[评述]问题(1)是从6个火车站中任选两个,并按肯定的依次排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无依次关系,要求出不同的组数,属于组合问题.这节课着重探讨组合问题.设计意图:组合与排列所探讨的问题几乎是平行的.上面设计的问题目的是从排列学问中发觉并提出新的问题.(二)新课讲授[提出问题创设情境](老师活动)指导学生带着问题阅读课文.[字幕]1.排列的定义是什么?2.举例说明一个组合是什么?3.一个组合与一个排列有何区分?(学生活动)阅读回答.(老师活动)对比课文,逐一评析.设计意图:激活学生的思维,使其将所学的学问迁移过渡,并尽快适应新的环境.【归纳概括建立新知】(老师活动)承接上述问题的回答,展示下面学问.[字幕]模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.如前面思索题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.组合数:从个不同元素中取出个元素的全部组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.[评述]区分一个排列与一个组合的关键是:该问题是否与依次有关,当取出元素后,若变更一下依次,就得到一种新的取法,则是排列问题;若变更依次,仍得原来的取法,就是组合问题.(学生活动)倾听、思索、记录.(老师活动)提出思索问题.[投影] 与的关系如何?(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:第1步,先求出从这个不同元素中取出个元素的组合数为;第2步,求每一个组合中个元素的全排列数为.依据分步计数原理,得到[字幕]公式1:公式2:(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的一般客车票.设计意图:本着以相识概念为起点,以问题为主线,以培育实力为核心的宗旨,逐步展示学问的形成过程,使学生思维层层被激活、渐渐深化到问题当中去.【例题示范探求方法】(老师活动)打出字幕,给出示范,指导训练.[字幕]例1 列举从4个元素中任取2个元素的全部组合.例2 计算:(1) ;(2) .(学生活动)板演、示范.(老师活动)讲评并指出用两种方法计算例2的第2小题.[字幕]例3 已知,求的全部值.(学生活动)思索分析.解首先,依据组合的定义,有①其次,由原不等式转化为即解得②综合①、②,得,即[点评]这是组合数公式的应用,关键是公式的选择.设计意图:例题教学按部就班,让学生巩固学问,强化公式的应用,从而培育学生的综合分析实力.【反馈练习学会应用】(老师活动)给出练习,学生解答,老师点评.[课堂练习]课本P99练习第2,5,6题.[补充练习][字幕]1.计算:2.已知,求.(学生活动)板演、解答.设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.(三)小结(师生活动)共同小结.本节主要内容有1.组合概念.2.组合数计算的两个公式.(四)布置作业1.课本作业:习题10 3第1(1)、(4),3题.2.思索题:某学习小组有8个同学,从男生中选2人,女生中选1人参与数学、物理、化学三种学科竞赛,要求每科均有1人参与,共有180种不同的选法,那么该小组中,男、女同学各有多少人?3.探讨性题:在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?(五)课后点评在学习了排列学问的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培育学生分析问题、解决问题的实力.中学数学余弦定理教案3教学目标(1)正确理解排列的意义。
《余弦定理》教案(含答案)
《余弦定理》教案(含答案)章节一:余弦定理的定义与表达式教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的表达式。
3. 能够运用余弦定理解决实际问题。
教学内容:1. 余弦定理的定义。
2. 余弦定理的表达式:a^2 = b^2 + c^2 2bccosA。
3. 余弦定理的应用实例。
教学活动:1. 引入余弦定理的概念,通过几何图形引导学生理解余弦定理的定义。
2. 推导余弦定理的表达式,并通过实例解释其含义。
3. 运用余弦定理解决实际问题,如已知三角形两边和夹角,求第三边的长度。
作业布置:1. 复习余弦定理的定义和表达式。
2. 完成课后练习题,如已知三角形ABC中,AB = 5cm,BC = 8cm,AC = 10cm,求角A的余弦值。
章节二:余弦定理的应用教学目标:1. 掌握余弦定理在三角形中的应用。
2. 能够运用余弦定理解决三角形的不全信息问题。
教学内容:1. 余弦定理在三角形中的应用。
2. 余弦定理解决三角形不全信息问题的方法。
教学活动:1. 通过几何图形引导学生理解余弦定理在三角形中的应用。
2. 讲解余弦定理解决三角形不全信息问题的方法,如已知两边和夹角,求第三边和两个角。
作业布置:1. 复习余弦定理在三角形中的应用。
2. 完成课后练习题,如已知三角形ABC中,AB = 5cm,BC = 8cm,角A = 30°,求AC的长度。
章节三:余弦定理在实际问题中的应用教学目标:1. 了解余弦定理在实际问题中的应用。
2. 能够运用余弦定理解决实际问题。
教学内容:1. 余弦定理在实际问题中的应用实例。
2. 运用余弦定理解决实际问题的方法。
教学活动:1. 通过实际问题引导学生理解余弦定理的应用。
2. 讲解运用余弦定理解决实际问题的方法,如测量三角形的边长和角度。
作业布置:1. 复习余弦定理在实际问题中的应用。
2. 完成课后练习题,如已知三角形ABC中,AB = 5cm,BC = 8cm,角A = 30°,求AC的长度。
人教版高中数学余弦定理教案
人教版高中数学余弦定理教案第一章:余弦定理的概念与表达式1.1 引入余弦定理通过实际问题引入余弦定理的概念,让学生了解余弦定理在几何中的应用。
引导学生思考如何用余弦定理来解决三角形中的问题。
1.2 余弦定理的表述给出余弦定理的数学表达式:a^2 = b^2 + c^2 2bccosA解释余弦定理中的各个符号代表的意思,让学生理解余弦定理的构成。
1.3 余弦定理的应用通过例题讲解如何使用余弦定理来解决三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。
第二章:余弦定理在直角三角形中的应用2.1 直角三角形的余弦定理引入直角三角形的余弦定理:a^2 = b^2 + c^2解释直角三角形中余弦定理的特殊性,让学生理解直角三角形中的余弦定理与一般三角形不同。
2.2 直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决直角三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在直角三角形中的应用,培养学生的实际问题解决能力。
第三章:余弦定理在非直角三角形中的应用3.1 非直角三角形的余弦定理引入非直角三角形的余弦定理:a^2 = b^2 + c^2 2bccosA解释非直角三角形中余弦定理的应用,让学生理解余弦定理在非直角三角形中的重要性。
3.2 非直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决非直角三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在非直角三角形中的应用,培养学生的实际问题解决能力。
第四章:余弦定理在实际问题中的应用4.1 实际问题的引入通过实际问题引入余弦定理在实际中的应用,让学生了解余弦定理在现实生活中的重要性。
引导学生思考如何将实际问题转化为余弦定理问题。
4.2 实际问题中余弦定理的应用通过例题讲解如何使用余弦定理来解决实际问题,如测量三角形的边长、角度等。
引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。
高中数学余弦定理教学设计
高中数学余弦定理教学设计一、教学任务及对象1、教学任务本教学设计的任务是向高中学生传授余弦定理的知识。
余弦定理是解析几何中的重要内容,是解决三角形问题的有力工具。
通过本节课的学习,学生应能掌握余弦定理的推导过程,理解余弦定理的内涵,能够运用余弦定理解决实际问题,并培养他们的逻辑思维能力和空间想象能力。
2、教学对象教学对象为高中二年级的学生。
经过之前的学习,他们已经掌握了平面几何的基本知识,了解了三角函数的基本概念,具有一定的数学基础和分析问题的能力。
在此基础上,学生将通过本节课的学习,进一步深化对三角函数及其应用的理解,为后续学习复数、立体几何等内容打下基础。
同时,考虑到学生的个体差异,教学过程中将注重因材施教,使不同层次的学生都能得到提高。
二、教学目标1、知识与技能(1)理解余弦定理的概念,掌握余弦定理的表达式及其推导过程;(2)能够运用余弦定理解决三角形中的角度和边长问题,特别是在非直角三角形中的应用;(3)掌握余弦定理在实际问题中的应用,如测量、建筑等领域;(4)通过余弦定理的学习,提高学生的逻辑思维能力和空间想象能力;(5)培养学生运用数学知识解决实际问题的能力,增强他们的数学应用意识。
2、过程与方法(1)采用以退为进的教学策略,引导学生从已知的三角函数知识出发,逐步推导出余弦定理;(2)通过以点带面的方法,让学生从特殊到一般,理解余弦定理的普遍适用性;(3)采用以动带静的教学手段,利用多媒体演示余弦定理的推导过程,增强学生的直观感受;(4)通过小组讨论、合作探究,培养学生的团队合作能力和交流表达能力;(5)设计丰富的例题和练习题,让学生在实践中掌握余弦定理的应用。
3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养他们的学习热情和主动性;(2)通过解决实际问题,使学生认识到数学知识在现实生活中的重要作用,增强他们的数学价值观;(3)培养学生面对困难时勇于挑战、积极进取的精神,提高他们克服困难的能力;(4)引导学生形成正确的学习态度,注重知识的学习与技能的培养,同时关注情感、态度与价值观的塑造;(5)通过本节课的学习,使学生体会到团队合作的力量,培养他们的集体荣誉感和社会责任感。
余弦定理优秀教学设计
余弦定理优秀教学设计余弦定理优秀教学设计作为一名为他人授业解惑的教育工作者,编写教学设计是必不可少的,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
那么应当如何写教学设计呢?下面是小编为大家整理的余弦定理优秀教学设计,欢迎阅读与收藏。
余弦定理优秀教学设计1一、教学设计1、教学背景在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。
建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。
我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。
2、教材分析“余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。
本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。
布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。
教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。
高中数学《余弦定理》教案
高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。
引导学生思考如何用数学表达式来描述这个关系。
1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。
用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。
第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。
通过画图和几何推理,引导学生理解并证明余弦定理。
可以使用三角形的正弦定理和余弦定理的平方关系来证明。
2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。
引导学生理解余弦定理与其他定理之间的关系。
第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。
引导学生运用余弦定理计算三角形的边长和角度。
3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。
第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。
4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。
第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。
引导学生运用余弦定理解决不同类型的问题。
5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。
第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。
引导学生理解解三角形的重要性。
6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。
引导学生运用余弦定理计算三角形的边长和角度。
第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。
高中数学余弦定理教案范例
高中数学余弦定理教案范例
一、教学目标:
1. 了解余弦定理的概念和原理。
2. 掌握余弦定理的公式及应用。
3. 能够运用余弦定理解决相关问题。
二、教学重点:
1. 余弦定理的概念和公式。
2. 余弦定理在解决实际问题中的应用。
三、教学难点:
1. 如何灵活运用余弦定理解决实际问题。
四、教学内容:
1. 余弦定理的引入:介绍余弦定理的概念和原理。
2. 余弦定理的公式推导:通过几何推导,得出余弦定理的公式。
3. 余弦定理的应用:通过一些实际问题示例,让学生掌握余弦定理的应用技巧。
五、教学方法:
1. 讲解与演示相结合,提高学生的理解力。
2. 引导学生思考,激发学生学习的积极性。
3. 练习与实践相结合,巩固知识点。
六、教学步骤:
1. 引入:通过一个实际问题引入余弦定理的概念。
2. 理论讲解:介绍余弦定理的公式及推导过程。
3. 实例讲解:通过几个例题,演示如何运用余弦定理解决问题。
4. 练习与讨论:让学生进行练习,并讨论解题思路。
5. 总结与反思:总结本节课的重点内容,引导学生思考。
6. 作业布置:布置相关作业,巩固所学知识。
七、教学资源:
1. 课本、习题册等相关教材。
2. 多媒体设备。
八、教学反馈:
1. 学生课堂表现情况。
2. 学生作业完成情况。
九、教学评价:
1. 教学效果评价。
2. 学生学习情况评价。
以上是余弦定理的教案范例,希望对您有所帮助。
祝教学顺利!。
(完整版)《余弦定理》教案完美版
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。
2. 培养学生运用余弦定理解决三角形问题的能力。
3. 培养学生的逻辑思维能力和数学素养。
二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。
2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。
三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。
2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。
2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。
3. 准备相关练习题,用于巩固所学知识。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。
2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。
3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。
4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。
5. 练习巩固:让学生解答相关练习题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。
7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。
六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。
2. 强调余弦定理在解决三角形问题中的重要性。
八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。
九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。
数学必修五余弦定理教案(可编辑
数学必修五余弦定理教案(可编辑教案:数学必修五,余弦定理一、教学目标:1.理解余弦定理的概念及原理;2.学会运用余弦定理解决三角形中的实际问题;3.培养学生的逻辑思维和推理能力。
二、教学重点:1.理解余弦定理的概念及原理;2.运用余弦定理解决三角形中的实际问题。
三、教学难点:1.运用余弦定理解决具体问题。
四、教学过程:Step 1 引入与导入(5分钟)1.利用平面上两点间距离公式引入余弦定理;2.通过几个具体实例让学生感触余弦定理的作用。
Step 2 定理说明与证明(10分钟)1.介绍余弦定理的概念和原理;2.利用几何图示证明余弦定理。
Step 3 理解与运用(20分钟)1.引导学生理解余弦定理;2.利用余弦定理计算未知角度的大小;3.利用余弦定理计算未知边长的长度。
Step 4 实际问题的应用(25分钟)1.给出一些实际生活中的问题,如解决航海、测距等问题;2.分组讨论,利用余弦定理解决问题;3.学生进行展示,互相评价讨论,找出最佳解决方案。
Step 5 拓展与应用(15分钟)1.将余弦定理与三角函数的其他定理进行对比;2.引导学生思考余弦定理在其他数学领域的应用。
五、教学辅助手段及教学资源1.平面图示,辅助教学;2.三角量角器,用于演示与实践;3.教学PPT,展示定理证明与解题方法;4.实际问题的示例。
六、教学评估及反馈1.课堂练习,检测学生对概念和原理的理解程度;2.实际问题的解答,评价学生的应用能力;3.学生互相评价讨论,提供解决方案改进的建议。
七、教学延伸1.学生通过解决实际问题,培养分析和解决问题的能力;2.鼓励学生进一步探索余弦定理在其他数学领域的应用。
八、教学反思通过本节课的教学,学生对余弦定理有了更深入的理解,尤其是在解决实际问题的过程中,学生能够灵活运用余弦定理解决问题。
同时,在教学中引入实例和思考问题的环节,激发了学生的学习兴趣和思辨能力,培养了他们的创新思维和问题解决能力。
高中数学余弦定理教案(优秀5篇)
高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
《余弦定理》教案(含答案)
《余弦定理》教案(含答案)第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的表达式。
3. 能够运用余弦定理解决简单的问题。
教学内容:1. 余弦定理的定义:在一个三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边长度与它们夹角的余弦值的乘积的两倍。
2. 余弦定理的表达式:c²= a²+ b²2ab cos(C),其中c为斜边,a和b为其他两边,C为斜边与a边的夹角。
教学活动:1. 引入三角形的基本概念,引导学生思考三角形中边与角之间的关系。
2. 给出余弦定理的定义,通过示例解释余弦定理的含义和应用。
3. 推导余弦定理的表达式,并解释各符号的含义。
4. 引导学生进行实际例题的计算,巩固余弦定理的应用。
作业:a. ∠A = 30°, a = 5, b = 12b. ∠B = 45°, b = 8, c = 10第二章:余弦定理在直角三角形中的应用教学目标:1. 掌握余弦定理在直角三角形中的应用。
2. 能够解决直角三角形中涉及边长和角度的问题。
教学内容:1. 直角三角形的特殊性质:在一个直角三角形中,余弦定理可以简化为c²= a ²+ b²(其中c为斜边,a和b为直角边)。
2. 利用余弦定理解决直角三角形中的问题:通过已知的边长和角度,求解其他边长和角度。
教学活动:1. 回顾直角三角形的基本概念,引导学生思考直角三角形中边与角之间的关系。
2. 给出余弦定理在直角三角形中的应用,通过示例解释余弦定理在直角三角形中的简化形式。
3. 引导学生进行实际例题的计算,巩固余弦定理在直角三角形中的应用。
作业:a. ∠A = 30°, a = 3, 求解b和c的值。
b. ∠B = 45°, b = 5, 求解a和c的值。
第三章:余弦定理在非直角三角形中的应用教学目标:1. 掌握余弦定理在非直角三角形中的应用。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义及其在几何中的应用。
2. 培养学生运用余弦定理解决实际问题的能力。
3. 引导学生通过探究、合作、交流的方式,发现余弦定理的规律。
二、教学内容1. 余弦定理的定义及公式。
2. 余弦定理在直角三角形中的应用。
3. 余弦定理在非直角三角形中的应用。
三、教学重点与难点1. 重点:余弦定理的定义及其应用。
2. 难点:余弦定理在非直角三角形中的应用。
四、教学方法1. 采用探究式教学法,引导学生主动发现余弦定理的规律。
2. 运用案例教学法,以实际问题为例,讲解余弦定理的应用。
3. 利用多媒体辅助教学,直观展示余弦定理的应用场景。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考。
2. 新课讲解:(1)介绍余弦定理的定义及公式。
(2)讲解余弦定理在直角三角形中的应用。
(3)引导学生探究余弦定理在非直角三角形中的应用。
3. 案例分析:分析实际问题,运用余弦定理解决问题。
4. 练习与讨论:布置相关习题,让学生巩固所学知识,并进行讨论交流。
六、课后作业1. 复习本节课的内容,掌握余弦定理的定义及应用。
2. 完成课后习题,巩固所学知识。
3. 探索余弦定理在生活中的应用,下周分享给大家。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
2. 作业完成情况:检查学生课后作业的完成质量。
3. 课后分享:评价学生在探索余弦定理在生活中应用的成果。
八、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,确保教学效果。
针对学生的掌握情况,适当增加拓展内容,提高学生的数学素养。
九、教学进度安排1. 第一课时:介绍余弦定理的定义及公式。
2. 第二课时:讲解余弦定理在直角三角形中的应用。
3. 第三课时:引导学生探究余弦定理在非直角三角形中的应用。
4. 第四课时:案例分析,运用余弦定理解决实际问题。
十、教学资源1. PPT课件。
余弦定理教案(5篇)
余弦定理教案(5篇)余弦定理教案(5篇)余弦定理教案范文第1篇【关键词】学习方式;预习方式;科技手段;教学效率课堂教学效率是关于学习收益和教学时间的综合概念,是指在课堂单位时间内同学的学习收益与老师、同学的教学活动量在时间尺度上的量度。
同学的学习方式,会直接影响到学习收益,从而影响到教学效率。
传统的课堂教学过于强调同学的接受学习、机械训练和对结果学问的教学,表面上看似教学效率高,实质忽视了很重要的一个方面,即同学对过程学问与方法的理解与获得,长远来看不利于同学今后的学习与进展。
同学学问的猎取与力量的提高基本上是在课堂内完成的,所以课堂上应通过老师的设计与引导,使同学能够转变传统的学习方式,从而提高课堂教学效率。
通过实践,我们发觉是现阶段比较符合新课程改革课堂教学基本理念的一种模式,具有很大的研讨价值与空间,是一种理念的革新。
“学案导学”突出同学的自学行为,注意学法指导,培育同学学习力量、情感态度,做到把学习的主动权真正还给了同学,从而提高了课堂教学效率,也解决了课时紧急的冲突。
1 转变备课和预习方式“工欲善其事,必先利其器”,备课是上好课的先决条件,要想提高课堂教学效率,课前不仅老师要做好充分的预备,而且同学也要做相应的预备或预习。
1.1 师生共同备课。
在传统备课模式下,备课时老师对同学的设想,与其在课堂教学实施中的实际状况,有的时候出入较大。
师生共同备课转变了传统备课中,老师依据自己的理解和以往的主观阅历来“备同学”的状况。
老师在集体备课的基础上,实行每班选出三名具有不同数学学业水平的同学,事先让他们依据课本进行初步预习,然后以座谈的方式,了解他们在预习中的困惑,这样更简单在“导学案”编制过程中有的放矢,以提高它在实施过程中的效率,从而使“备同学”这一环节更加客观、精确。
1.2 同学依据“导学案”进行预习。
老师历来强调课前预习的重要性,但由于同学没有具体、周密的预习指导性材料,导致他们对预习缺乏乐观性与主动性,更是由于最重要的检查环节较弱,使同学的课前预备工作有很强的随便性,有的同学走过场。
教案高中数学余弦定理
教案高中数学余弦定理
1. 理解余弦定理的概念和公式;
2. 掌握余弦定理在解决三角形边长或角度问题中的应用;
3. 培养学生分析问题、解决问题的能力。
教学重难点:
1. 余弦定理的公式推导及应用;
2. 能够灵活运用余弦定理解决实际问题。
教学准备:
1. PowerPoint课件;
2. 教学板书;
3. 三角板(如有)。
教学过程:
一、导入新知识(5分钟)
1. 引入余弦定理的概念和重要性;
2. 回顾正弦定理和余弦定理的区别和联系。
二、讲解余弦定理(15分钟)
1. 展示余弦定理的公式:$a^2 = b^2 + c^2 - 2bc\cos A$;
2. 分析余弦定理的应用场景和解题思路;
3. 演示如何利用余弦定理求解三角形的边长或角度。
三、练习与讲解(20分钟)
1. 给学生几个实际问题,要求他们利用余弦定理解答;
2. 鼓励学生展示解题思路,与同学一起讨论交流。
四、总结与拓展(10分钟)
1. 总结余弦定理的重点和要点;
2. 提出一些挑战性问题,拓展学生的思维能力。
五、作业布置(5分钟)
1. 布置相关练习题目,巩固学生对余弦定理的理解和运用;
2. 鼓励学生自主探索更多余弦定理的应用场景。
教学反思:
通过本节课的学习,学生对余弦定理有了更深入的理解,同时也提高了他们解决实际问题的能力。
在以后的教学中,需要继续引导学生拓展数学知识,培养其问题分析和解决的能力。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2余弦定理(1)
一、教学内容分析
《余弦定理》第一课时。
通过利用平面几何法,坐标法(两点的距离公式),向量的模,正弦定理等方法推导余弦定理,正确理解余弦定理的结构特征,初步体会余弦定理解决“边、角、边”和“边、边、边”问题,理解余弦定理是勾股定理的特例,从多视角思考问题和发现问题,形成良好的思维品质,激发学生学习数学的积极性和浓厚的兴趣,培养学生思维的广阔性。
二、学生学习情况分析
本课之前,学生已经学习了两点间的距离公式,三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
在此基础上利用多种方法探求余弦定理,学生已有一定的学习基础和学习兴趣。
三、教学目标
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会多种方法特别是向量方法推导余弦定理的思想;通过例题运用余弦定理解决“边、角、边”及“边、边、边”问题;理解余弦定理是勾股定理的特例,理解余弦定理的本质。
四、教学重点与难点
教学重点:余弦定理的证明过程特别是向量法与坐标法及定理的应用; 教学难点:用正弦定理推导余弦定理的方法
五、教学过程:
1.知识回顾
正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即
正弦定理可以解什么类型的三角形问题
(1)已知两角和任意一边,可以求出其他两边和一角(AAS,ASA);
(2)已知两边和其中一边的对角,可以求出三角形的其他的一边和另外两角(SSA)。
2.提出问题
已知三角形两边及其夹角如何求第三边
(SAS 问题)
在三角形ABC 中,已知边a,b,夹角C, 求边c
C
c B b A a sin sin sin ==
3.解决问题
通过预习由学生给出自己的证明方法。
学生甲:利用和正弦定理证明相似的方法
法一:平面几何法(作高法)
学生乙:由于涉及边长问题,可考虑求两点的距离。
利用坐标法来推导余弦定理:
法二:坐标法
解:以C 为原点,BC 为x 轴建立直角坐标系
学生丙:由于涉及边长问题,从而可以考虑用向量来研究这个问题。
利用向量法推导余弦定理:
法三:向量法 解:
教师:由于我们才学习了正弦定理,那么用正弦定理可以证明余弦定理吗
C
B
A
c a b A 222222:sin ,cos cos ,(sin )(cos )
2cos A AD BC BC D AD b C CD b C BD BC CD a b C ABC c b C a b C c a b ab C
⊥∴==∴=-=-=+-∴=+-解过点作交于点在直角三角形中由勾股定理得C B A
c a b A D
c ∴=2222cos c a b ab C =+-C B A c a b A
,,CA b CB a AB c ===令c a b =-由三角形法则有22||()c c a b ==-222222||22cos c a b a b
c a b ab C
=+-⋅∴=+-
法四:
法五:
法六:
4.归纳概括 余弦定理:A bc c b a cos 2222-+=
B ac c a b cos 2222-+= 作用:SAS 问题
C ab b a c cos 2222-+=
三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍。
推论:
5.余弦定理的简单应用 例1:.在三角形ABC 中,已知b=8,c=3,A=600
(1)求a;
(2)求三角形中最大角的余弦值;
sin sin a c A C = 由得sin sin (1)c A a C =sin sin (2)
B b
C =同理c ()(2)B C A B π=-+利用代入消去角得cos cos (3)c A b a C =-22(1)A 利用+(3)消去即得证222
:2cos c a b ab C =+-求证222:(2sin )(2sin )8sin sin cos R A R B R A B C =+-证明右边()C A B π=-+224sin ()
R A B =+右边2sin c R C =利用证明
()C A B π=-+由得2222224(sin cos cos sin 2sin cos sin cos )c R A B A B A A B B =++2222cos 1sin ,cos 1sin A A B B =-=-把代入得2222cos c a b ab C
=+-222cos 2a b c C ab +-=222cos 2a c b B ac +-=222cos 2b c a A bc +-=作用:SSS (已知三边求三个夹角)
(3)判断三角形的形状.(用锐角,钝角,直角三角形回答)
6.余弦定理与勾股定理的关系:
余弦定理是一般三角形中边与角的平方关系,引导学生联想到勾股定理。
余弦定理
勾股定理
例2:用>,<,=填空
勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系。
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例
7.课堂小结 c 2 =a 2+ b 2-2abcosC
一、余弦定理是任意三角形边和角之间的规律,勾股定理是它的特殊形式。
222222:(1)2cos 83283cos60497
a b c bc A a a =+-=+-⨯⨯︒=∴=解由得222(2)49964122737b a c a c b ac >>+-+-∴==-⨯⨯由得角B 最大cosB=(3)cos 090.
B B AB
C <∴>︒
∆所以为钝角三角形2222cos c a b ab C =+-222
c a b =+22
,,ABC C a b ∆+(1)在中当为锐角时22
,,ABC C a b ∆+(2)在中当为直角时22,,ABC C a b
∆+(3)在中当为钝角时22222
:
(1)090,cos 0
2cos C C c a b ab C a b ︒<<︒>∴=+-<+例2.解当时22222
(2)90,cos 02cos C C c a b ab C a b =︒=∴=+-=+当时22222
(3)90180,cos 02cos C C c a b ab C a b ︒<<︒<∴=+->+当时
二、
余弦定理可解决两类问题:
(1)已知两边和它们的夹角,求第三边(SAS);(2)已知三边,求三个角(SSS)。
12.课后作业
P10 习题A组 3题,4题。