掺铥光纤激光器的应用

掺铥光纤激光器的应用

掺铥光纤激光器的应用

光纤激光器具有理想的光束质量、超高的转换效率、免维护、高稳定性以及冷却效率高、体积小等优点,具有许多其他激光器无可比拟的技术优越性。

2μm掺铥光纤激光器由于其高效率、高输出功率、对人眼安全、且位于透过率良好的“大气窗口”等特性在科研领域有着巨大吸引力,它在材料处理、遥感、生物医学和国防领域有着广泛应用前景。

掺铥光纤激光器的应用

随着光纤制作技术的日臻成熟、成本逐渐降低,2μm波段掺铥光纤激光器的应用也越来越广泛,下面介绍几个2μm波段掺铥光纤激光器的典型应用。

一军事上

2μm波段位于透过率良好的“大气窗口”,在激光武器中具有广阔的应用前景。陆军可将高功率2μm光纤激光器安装在未来战斗系统(FCS)的地面车辆上,然后利用这种激光武器对付空对地导弹、火箭弹、迫击炮等。空军则可进行地对空导弹打击、导弹防御、反卫星等。海军利用激光武器系统主要对付反舰导弹、有人机、无人机、小型舰艇等目标。海军陆战队则可在保证附加破坏效应最小的条件下实现精确打击。在防空、光电对抗等活动中,光纤激光器更有短期实现的可能。

高功率2μm光纤激光器正成为一种将来安装在运输飞机、地面车辆、甚至可能是便携式系统的有前途的武器级固体激光器系统。

在飞机和导弹导航中,2μm光纤激光器可用做激光雷达。

二生物医学

医学上,可作为一种高精度的眼睛手术刀,由于人眼中的水分子对2μm

IPG官方就光纤激光器问题解答

IPG官方问题解答 光纤激光器常见问题解答 1. 我现在使用的是灯泵浦YAG激光器,改用光纤激光器会给我带来哪些好处? ?光纤激光器的电光转换效率高达28 %,而灯泵浦YAG激光只有1.5%~2% ?不用更换灯管,因而更加省钱:光纤激光器中使用了寿命长达10万小时的电信级单芯结半导体激光管 ?所有功率级的光斑大小和形状都是固定的 ?免维护或低维护 ?备件极少 ?风冷或基本不需要冷却 ?体积相当小 ?工作距离更长 ?不需要调整 ?无需预热,立即可用 2. 光纤激光器有质保服务吗? 在业内,IPG提供的质保期最长:光纤激光器的标准质保期为购买后整2年时间,IPG最长可提供8年质保期,详情请与我们的销售人员联系。 3. 你们的竞争对手说你们的光纤激光器存在后向反射的问题,是真的吗? 说这些话的人并不熟悉光纤激光器技术,如果传送光纤选择合适的话,我们的数千瓦功率低模光纤激光器不会发射后向反射问题。单模激光都很少出现这种问题。但是,如果后向反射太高的话,设备一旦检测到会自动关闭。使用隔离器也能消除该问题。IPG已经有无数的设备应用在铜和铝等高反光材料的切割和焊接领域。 4. 如何确定光斑大小? 方法非常简单,对于光纤激光器而言,这是一个光纤输出在工件上成像的过程。光斑大小等于光纤直径乘以准直器的放大率和最终聚焦透镜直径。例如,如果光纤直径等于50μm,准直器的焦距等于60 ,最终聚焦透镜的焦距等于300mm,则最终光斑尺寸等于SS= 50x 300/60= 250微米。光纤直径、准直器、最终聚焦透镜可根据光斑大小要求进行调整。光斑大小不随额定功率的5% ~105%动态范围发生变化,对于单模激光器,在使用低阶模激光遮蔽装置时,光斑大小为高斯光束光斑。5. IPG最近为什么又推出了CO2激光器? IPG最近推出了第一代CO2气体激光器,输出功率1 ~3 kW,光谱范围10.6μm。这款新的IPG CO2激光器的专利权属于IPG,与现在市面上传统的CO2 激光器相比效率更高、体积更小,非常适合处理非金属材料。 虽然光纤激光器在金属焊接、熔覆、烧结和钎焊等众多领域内正在逐步取代包括CO2激光器在内的传统激光器,但是像聚合物和有机材料等非金属材料使用10.6μm光谱范围的CO2气体激光器处理效果会更好。另外,无数的客户都表达了以更加现代的产品取代自己传统CO2激光器的兴趣。IPG希望随着这款经过改进的CO2激光器的推出能够满足这些客户的需要。 6. 为什么光纤激光器比固态和气体激光器效率更高? 答案很简单――在设计上,光纤激光器产生的热量更少,对所产生热量的管理更为有效。掺镱半导体泵浦光纤激光器(泵浦波长980 nm)比掺钕YAG二极管泵浦激光器(泵浦波长808 nm)的量子亏损(即泵浦能量和发生能量之差)低。另外,光纤激光器的光光转换效率通常为70-80%,而泵浦YAG仅约为4%,半导体泵浦YAG和盘形激光器约为40%。由于激光始终被包含在光纤内,因而激光腔内不会存在其它导致激光损失的因素。 7. 如果我改用光纤激光器会节省多少成本? 用户如果在生产中采用光纤激光器会节约相当大的成本,具体节约多少取决于用户的当前工艺、材料、生产环境、电气和劳动力成本。节约主要体现在以下方面: a. 电光转换效率更高:现有传统激光器技术的效率与光纤激光器是无法相比的。 类型电光转换效率

2_m波段全光纤保偏被动锁模掺铥光纤激光器_曹丁象

第26卷第9期强激光与粒子束Vol.26,No.9 2014年9月HIGH POWER LASER AND PARTICLE BEAMS Sep.,2014  2μm波段全光纤保偏被动锁模掺铥光纤激光器* 曹丁象1,2,3, 张宝夫4, 王兴龙1 (1.光库通讯(珠海)有限公司,广东珠海519080; 2.天津大学精密仪器与光电子工程学院,天津300072; 3.解放军75731部队,广东深圳518112; 4.中山大学物理科学与工程技术学院,广州510275) 摘 要: 报道了2μm波段的全光纤保偏锁模掺铥光纤激光器,通过在法布里-珀罗(F-P)腔内加入半导 体可饱和吸收镜做为被动锁模器件,采用主振-放大构型,获得了最高输出平均功率为1.08W,重复频率为10. 24MHz,脉冲宽度为15.24ps,中心波长为2054.68nm,光谱宽度约为0.3nm的2μm线偏振激光脉冲输出, 激光脉冲的消光比为24.17dB。 关键词: 光纤激光器; 被动锁模; 半导体可饱和吸收镜; 掺铥光纤 中图分类号: TN248.1 文献标志码: A doi:10.11884/HPLPB201426.091014 2μm波段光纤激光器在军事对抗、医疗、先进制造业及光伏太阳能等产业中均有着广泛的应用需求[1-3]。在医疗方面,2μm波长高功率掺铥光纤激光器成为高精度外科手术的优良候选光源。在材料处理方面,2μm激光器在材料处理特别是塑料处理方面非常具有吸引力。激光传感和自由空间光通信方面,2μm激光波长是人眼安全的波长,该波长会被晶状体吸收而不会达到视网膜,对眼睛的损伤阈值比短波长更高,因此人眼安全的2μm波长激光器具有非常大的潜在市场。杨末强等研究了增益开关锁模2μm铥钬共掺光纤激光器[4],该激光器腔内不需要锁模器件,结构简单、紧凑,但是输出功率受限于泵浦功率。王雄等研究了全光纤主动锁模2μm掺铥脉冲激光器[5]。基于半导体可饱和吸收体(SESAM)的锁模光纤激光器具有环境稳定性高、易于自启动等优点,其已经成为被动锁模的研究热点之一[6-8]。刘江等研究了全光纤结构SESAM被动锁模2.0μm掺铥光纤激光器[7],得到了8nJ的高能量ps脉冲,但是该激光脉冲为非偏振光。 本文采用SESAM作为激光锁模器件,双包层单模掺铥光纤(TDF)作为激光增益介质,通过“全光纤嵌入结构”保偏、锁模掺铥光纤激光器的设计,实现了2μm波段ps激光脉冲偏振光输出。 1 实验装置 掺铥双包层大模场光纤锁模激光器的实验装置如图1和图2所示。考虑到锁模激光脉冲的稳定性及SESAM的损伤问题,激光器采取了“种子源振荡器+功率放大器”(MOPA)结构,首先通过主振荡器(MO)获得数十mW量级的锁模脉冲输出,然后经功率放大器(PA)将激光功率提升至目标功率水平。锁模掺铥光纤激光振荡器采用输出波长为793nm的半导体激光器作为泵浦源,其最大功率为5W。泵浦光通过泵浦合束器耦合进长度为2.1m的10/130μm(“/”符号前后分别代表芯径直径和内包层直径)的高掺杂浓度、双包层大模场掺铥光纤中。在增益光纤之后通过熔接3m长的SMF-28光纤来增加激光器腔长,以调节锁模激光的重复频率,同时该光纤也起到了剥离残余泵浦光的作用。SESAM作为激光器系统的锁模元件,与另 Fig.1 Schematic of the polarized,passively mode-locked thulium doped fiber seed laser 图1 保偏锁模掺铥光纤激光器种子源示意图 *收稿日期:2013-12-16; 修订日期:2014-05-07 基金项目:广东省中国科学院全面战略合作项目(2010B090300063)

掺铒光纤激光器的设计

2 掺铒光纤激光器的设计 一、实验目的 1、完成环形腔掺铒光纤激光器谐振腔的设计,通过选择环形腔中耦合器的不同耦合比,优化设计激光器的阈值特性和输出效率。 2、通过使用不同滤波特性的滤波器,完成环形腔掺铒光纤激光器输出纵模特性的设计和选择。 3、完成光纤激光器的构建,并进行相关性能参数的测试。 二、实验原理 1.掺铒光纤(EDF)与掺铒光纤放大器(EDFA) 当泵浦光通过掺杂光纤中的稀土离子(Er3+、Nd3+、Tm3+、Yb3+等)时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现通常所说的粒子数反转。反转后的高能态粒子在外界光场的诱使下,以光辐射的形式从高能级转移到基态,完成受激光辐射。 图2.1铒粒子能级图 掺铒光纤在0.5~1.6μm 波长范围内有几个吸收峰,分别对应的铒离子能级(铒离子能级图如图 2.1所示)是0.5~0.60μm (2 /1132/154 ~H I )、0.63μm (2/942/154 ~F I )、0.8μm μm ( 2 /942/154 ~I I )、0.98μm ( 2 /1142/154 ~I I )和1.48μm ( 2 /1342/154 ~I I )直接吸收峰。 掺铒光纤放大器主要由波分复用器、大功率泵浦激光器、光隔离器和掺铒光

纤构成。根据泵浦光和信号光传播方向的相对关系, 掺铒光纤放大器的结构可分为正向泵浦、反向泵浦和双向泵浦三种形式。EDFA 是利用掺铒光纤中掺杂的稀土离子在泵浦光(波长980nm 或1480nm ) 的作用下, 形成粒子数反转, 产生受激辐射, 辐射光随入射光的变化而变化, 进而对入射光信号提供光增益。其放大范围为1530~ 1565 nm , 增益谱比较平坦的部分是1540~ 1560nm , 几乎可以覆盖整个1550nm工作窗口。 2.掺铒光纤激光器(EDFL) 掺铒光纤激光器是在掺铒光纤放大器技术基础上发展起来的。目前掺稀土元素光纤激光器的研究受到了世界各国的普遍重视,成为国际激光器技术研究领域一个十分活跃的前沿研究方向。 和传统的固体、气体激光器一样,掺稀土光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器( LD) , 增益介质为掺稀土光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射。所产生的自发辐射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。 由于掺稀土光纤激光器在增益介质和器件结构等方面的特点,与传统的激光技术相比,在很多方面显示出独特的优点: (1) 较高的泵浦效率。通过对掺杂光纤的结构、掺杂浓度和泵浦光强度和泵浦方式的适当设计,可以使激光器的泵浦效率得到显著提高。例如采用双包层光纤结构,使用低亮度、廉价的多模LD泵浦光源即可实现超过60%的光光转换效率。 (2) 易于获得高光束质量的千瓦甚至兆瓦级超大功率激光输出。光纤激光器表面积/体积比大,其工作物质的热负荷小,易于散热和冷却。 (3) 易实现单模、单频运转和超短脉冲(fs级)。 (4) 工作物质为柔性介质,使得激光器的腔结构设计、整机封装和使用均十分方便。 (5) 激光器可在很宽光谱范围内(455~3500nm)设计与运行, 应用范围广泛。

中红外光纤激光器

中红外光纤激光器 摘要 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的 重要应用。利用固体激光器泵浦稀土离子掺杂的玻璃光纤产生荧光发射是 直接获得2~5 μm 波段中红外激光的有效途径,具有光束质量好、体积 小、转换效率高、散热效果好等优点。本文介绍了中红外光纤激光器的原 理、研究现状和发展前景。对中红外光纤激光器的发展和研究方向进行了 阐述。 关键词:中红外;光纤激光器;稀土离子;硫化物光纤;氟化物光纤 一、中红外光纤激光器简介 1.1 中红外激光 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的重 要应用。它位于大气“透明窗口”,处于大多数军用探测器的工作波段, 可 以进行战术导弹尾焰红外辐射模拟、人眼安全的激光雷达、激光定向红外 干扰等军事用途。在民用领域可用于遥感化学传感、空气污染控制,它还 可以用于新一代激光手术,使血液迅速凝结,手术创面小、止血性好(水分 子在3μm附近有很强的吸收峰)此外,采用2~5 μm 替代目前广泛使用 的1.55 μm 作为光纤通信工作波长也是一项极具研究价值的课题,由于 材料的Rayleigh 散射与光波长的四次方成反比,采用2~5 μm 作为工 作波长可以有效降低光纤损耗,增加无中继通信的距离。因此,研发中 红外波段的激光器对于国家安全和国民经济建设具有十分重要的意义。 获得中红外激光的方法有间接方法和直接方法。其中间接方法包括: (1) CO2激光器的倍频及差频输出 (2) 利用非线性红外晶体采用非线性频率变换或光学参量振荡技术 将其它波段激光调谐到中红外波段 直接方法包括: (1)以氟化氘等为介质的化学激光器 (2) 以AlGaAsSb,InGaAsSb,InAs/(In)GaSb 等锑化物窄禁带半导 体、过渡金属离子掺杂的Ⅱ–Ⅵ族半导体制作的中红外激光器 (3)近红外半导体激光泵浦的稀土离子或过渡金属离子掺杂的玻璃、

光纤通信技术实验报告-掺铒光纤激光器

得分:_______ 光纤通信技术实验 (2) 掺铒光纤激光器的设计 实验报告

一、实验目的 1、完成环形腔掺铒光纤激光器谐振腔的设计,通过选择环形腔中耦合器的不同耦合比,优化设计激光器的阈值特性和输出效率。 2、通过使用不同滤波特性的滤波器,完成环形腔掺铒光纤激光器输出纵模特性的设计和选择。 3、完成光纤激光器的构建,并进行相关性能参数的测试。 二、实验原理与背景知识 1.掺铒光纤(EDF)与掺铒光纤放大器(EDFA) 当泵浦光通过掺杂光纤中的稀土离子(Er3+、Nd3+、Tm3+、Yb3+等)时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现通常所说的粒子数反转。反转后的高能态粒子在外界光场的诱使下,以光辐射的形式从高能级转移到基态,完成受激光辐射。 掺铒光纤放大器主要由波分复用器、大功率泵浦激光器、光隔离器和掺铒光纤构成。根据泵浦光和信号光传播方向的相对关系, 掺铒光纤放大器的结构可分为正向泵浦、反向泵浦和双向泵浦三种形式。EDFA 是利用掺铒光纤中掺杂的稀土离子在泵浦光(波长980nm 或1480nm ) 的作用下, 形成粒子数反转, 产生受激辐射, 辐射光随入射光的变化而变化, 进而对入射光信号提供光增益。其放大

范围为1530~1565 nm , 增益谱比较平坦的部分是1540~1560nm , 几乎可以覆盖整个1550nm工作窗口。 2.掺铒光纤激光器(EDFL) 掺铒光纤激光器是在掺铒光纤放大器技术基础上发展起来的。目前掺稀土元素光纤激光器的研究受到了世界各国的普遍重视,成为国际激光器技术研究领域一个十分活跃的前沿研究方向。 和传统的固体、气体激光器一样,掺稀土光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器( LD) , 增益介质为掺稀土光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射。所产生的自发辐射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。 由于掺稀土光纤激光器在增益介质和器件结构等方面的特点,与传统的激光技术相比,在很多方面显示出独特的优点: (1) 较高的泵浦效率。通过对掺杂光纤的结构、掺杂浓度和泵浦光强度和泵浦方式的适当设计,可以使激光器的泵浦效率得到显著提高。例如采用双包层光纤结构,使用低亮度、廉价的多模LD泵浦光源即可实现超过60%的光光转换效率。 (2) 易于获得高光束质量的千瓦甚至兆瓦级超大功率激光输出。光纤激光器表面积/体积比大,其工作物质的热负荷小,易于散热和冷却。 (3) 易实现单模、单频运转和超短脉冲(fs级)。 (4) 工作物质为柔性介质,使得激光器的腔结构设计、整机封装和使用均十分方便。 (5) 激光器可在很宽光谱范围内(455~3500nm)设计与运行, 应用范围广泛。 (6) 与现有通信光纤匹配,易于耦合,可方便地应用于光纤通信和传感系统。 上述特点使得光纤激光器在很多应用领域有着广泛的用途。特别是掺铒光纤近40nm宽的增益谱范围与光纤通信的最佳窗口(1550nm窗口)相吻合,因而掺铒光纤激光器的研究和开发在光纤通信领域得到了极大的重视。

掺铥光纤激光器

掺铥光纤激光器 1、掺铥光纤激光器 掺铥光纤激光器的光谱可调谐范围更宽(~1600 nm-2200 nm),该波段处于人眼安全波段且包含了1940 nm附近的水吸收峰,对组织的穿透深度浅,且还包含几个大气窗口及特殊气体的吸收峰。与同时处于人眼安全波段掺铒或铒镱共掺1550 nm激光器相比,掺铥光纤激光器的光光转换效率可达60%以上;且位于铥离子吸收带的790 nm半导体激光器技术成熟,可提供高功率泵浦源;此外,此波段泵浦时,量子转换效率为200%。掺铥基质为石英光纤,也容易实现高功率输出。 对于掺铥光纤激光器的研究,连续输出已达千瓦量级,如:飞秒150 W的功率输出,皮秒也达到百瓦的输出功率水平,相比之下,单脉冲能量较高的纳秒量级脉冲输出平均功率较低,且多数为空间泵浦结构,最高仅为110 W。793 nm 半导体泵浦激光器的输出功率已达数百瓦,所以掺铥光纤激光器的输出功率可更高。且与掺镱光纤激光器相比,掺铥光纤激光的受激布里渊散射和受激拉曼散射的产生阈值要高4倍以上,光纤端面的损伤阈值也高出近10倍,在高功率输出方面优势更加明显。目前高功率、可调谐掺铥光纤激光器正处于研究的热点。 2、研究进展 (1)、纳秒脉冲掺铥光纤激光器研究进展(主动调Q): 输出参数 (脉冲能量/功率、斜率效率/重频、脉宽) 是否 全光纤结构 研究单位 4 W,4 kHz,130 ns 否加拿大信息技术研究12.3 W,100 kHz,4 5 ns 否法德研究所 33 W,13.9 kHz,15 ns 否耶拿大学应用物理研究所52 W,50 kHz,822 ns 是新加坡南洋理工大学 (2)、皮秒/飞秒脉冲掺铥光纤激光器研究进展(锁模): 平均功率,重复频率,脉宽,实现方式 是否 全光纤结构 研究单位 3.1 W,100 MHz,108 fs,CPA 否美国IMRA公司5.4 W,100 kHz,300 fs,SESAM/CPA 是美国PolarOnyx公司 7 W,2 MHz,33 ps,电流调制否英国南安普顿大学 152 W,49.1MHz,~700 fs,CPA 否德国耶拿大学

光纤激光器的特点与应用

光纤激光器的特点与应用 光纤激光器是在EDFA技术基础上发展起来的技术。近年来,随着光纤通信系统的极大的应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。光纤激光器在降低阂值、振荡波长范围、波长可调谐性能等方面,已明显取得进步。它是目前光通信领域的新兴技术,它可以用于现有的通信系统,使之支持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。 1.光纤激光器工作原理 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图1所示。 掺稀土元素的光纤放大器推动了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时,就会被稀土离子所吸收,这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转。反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有两种,即自发辐射和受激辐射,其中受激辐射是一种同频率、同相位的辐射,可以形成相干性很好的激光。激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转,因此要求参与过程的能级应超过两个,同时还要有泵浦源提供能量。光纤激光器实际上也可以称为是一个波长转化器,通过它可以将泵浦波长光转化为所需的激射波长光。例如掺饵光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。激光的输出可以是连续的,也可以是脉冲形式的。 光纤激光器有两种激射状态,三能级和四能级激射。三能级和四能级的激光原理如图2所示,泵浦(短波长高能光子)使电子从基态跃迁到高能态E4或者E3,然后通过非辐射方式跃迁过程跃迁到激光上能级E43或者E3 2,当电子进一步从激光上能级跃迁到下能级E扩或者E3,时,就会出现激光的过程。

多波长掺铒光纤激光器

如图为短脉冲高功率1.5微米光纤激光器 平均功率能达到1W,可调节的脉冲宽度达到ns 可调节的重复频率达到MHz 可以应用于激光雷达/雷达、遥感、测距 什么是光纤激光器 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。光纤激光器的特点 光纤作为导波介质,纤芯直径小,纤内易形成高功率密度,可方便地与目前的光纤通信系统高效连接,构成的激光器具有高转换效率、低阈值、高增益、输出光束质量好和线宽窄等特点; 由于光纤具有极好的柔绕性,激光器可设计得相当小巧灵活、结构紧凑、体积小、易于系统集成、性能价格比高; 与固体、气体激光器相比:能量转换效率高、结构紧凑、可靠性高、适合批量生产;与半导体激光器相比:单色性好,调制时产生的啁啾和畸变小,与光纤耦合损耗小。 光纤激光器的分类 按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔等。 按激光输出波长数目分类为单波长光纤激光器和多波长光纤激光器。 按输出激光特性分类为连续光纤激光器和脉冲光纤激光器 按光纤材料分为晶体光纤激光器、非线性光学型光纤激光器、稀土类(如铒)掺杂光纤激光器、塑料光纤激光器等 随着高容量光纤通信网的发展,波分复用技术得以广泛的采用,它要求多波长光源 具有波长间隔小、线宽窄、功率谱平坦等特点。因此满足波分复用技术要求的多波长光 纤激光器成为研究的重点 多波长光纤激光器基本结构 1、增益介质 就增益介质而言,多波长光纤激光器通常采用光纤放大器(如掺稀土光纤放大器和拉曼光纤放大器作为增益介质,这将使得其具有结构紧凑、灵活方便等优点。值得注意的是,多个波长同时共用同一增益介质将导致较强的模式竞争,要获得多波长同时稳定振荡,这是首先必须考虑的问题。然而,大多掺稀土光纤放大器为均匀展宽的增益介质,对实现稳定的多波长运转是非常不利的,必须采用一些辅助手段来抑制或削弱它们的均匀展宽特性。 (EDFA)多波长掺铒光纤激光器常采用液氮制冷光纤至77k、声光频移位调制和非线性光学效应等辅助技术来抑制掺饵光纤的均匀展宽。 2、谐振腔 在多波长光纤激光器中,谐振腔起到至关重要的作用—完成多波长选模。在大多实际情况下,多波长激光器要求相等波长间隔(ITU叮标准通信间隔200GHz、100GHz、50GHz 和25GHz)激射。为实现这一目的,通常需要借助梳状滤波器才能满足要求

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

激光20wmopa系列光纤激光器应用介绍2018.2.22

20W MOPA光纤激光器应用介绍 应用工程师:无锡创永激光刘工 2016年7月18日

20W MOPA参数表 长脉宽单脉冲能量高,热效应明显,窄脉宽单脉冲能量低,热效应弱;高频率,平均功率高,热效应明显,低频率(10KHz),平均功率低,热效应弱;低扫描速度,低填充密度,激光能量集中,热效应明显,高扫描速度,中等填充密度(),激光能量分散,热 效应弱。

固定脉宽,100%功率,频率由小增大,平均功率线性增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,功率趋于稳定。 固定脉宽,100%功率,频率由小增大,峰值功率增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,峰值功率呈反比例函数递减。 其他脉宽类似。 MOPA光纤激光器,脉宽可调,脉冲频率范围大,应用范围十分广泛,本文中介绍了20W MOPA光纤激光器部分常见应用,用于20W MOPA应用介绍和推广。其中不同材料参数设置有所差异,文中参数

可作为参考,如有不同之处,敬请谅解。

1. 阳极氧化铝标刻 小米手机壳阳极氧化铝标刻黑色LOGO 小米充电宝阳极氧化铝标刻白色LOGO 阳极氧化铝上标刻黑色二维码,显微镜下可扫描 2. 304不锈钢标刻 304不锈钢打彩色LOGO 304不锈钢名牌标刻黑色 304不锈钢深雕 3.部分高分子材料标刻 公牛插座、苹果手机数据线等某些白色高分子材料标刻深色 PA66+、PE等某些黑色高分子材料标刻浅色 4. 电子器件标刻 电解电容标记黑色参数 PCB板标刻白色二维码和参数 电镀电子器件标刻 IC芯片等电子器件参数标刻 5. 漆剥除 汽车、电脑、手机等透光件漆剥除 亚克力瓶、橡胶按键表面漆剥除 电脑铝制外壳导通处漆剥除 6. 铜制器件标刻 黄铜件标记白色尺寸参数 7. 微弧氧化铝合金标刻黑色名牌 8. 碳钢轴承标记黑色参数 9. 铝箔、锡箔、铜箔切割

掺铒光纤激光器

掺铒光纤激光器 一、设计背景 激光器的发明是二十世纪科学技术的一项重大成就。1960年梅曼根据受激辐射光量子放大理论研制出第一台红宝石激光器,童年年底研制出He-Ne气体激光器,1962年又报导了砷化镓半导体激光器的研制成功。我国于1961年研制成功红宝石激光器,1966年试制出Nd:YAG激光器。到70年代末,各种激光器技术已经比较成熟,并得到实际应用。经过四十多年的发展,特别是最近十几年,激光技术高速发展,种类众多,现在已经广泛应用于工业加工、通讯、信息处理、医疗卫生、军事国防、文化教育以及科学研究等众多领域,并取得了很好的经济效益和社会效益,对国民经济及社会发展发挥着愈来愈重要的作用。 单纵模(SLM)掺铒光纤激光器(EDFL)由于可以应用在光通信、激光光谱学、光纤传感等领域而备受关注并得到了迅猛发展。掺铒光纤激光器具有结构简单、激射波长可以精确预定、可实现宽带调谐和窄线宽输出等优点,且与其他激光器相比具有许多优良特点:高增益、低阈值(几十毫瓦量级)、低噪声、高效率、抽运寿命长、有很好的单色性和高稳定性、小型化、易与传输光纤耦合[1]。 光纤通信的突飞猛进得益于光线放大器和光线激光器的不断发展光纤放大器的研究始于1964 年,从真正的使用从1986 年开始,这归功于低损耗稀土掺杂光纤工作特性和制造技术的发展其中掺铒光纤放大器格外引人瞩目因为它的工作波长在1550nm 附近适合于现代光通信系统早在1961 年就研制了的一台光纤激光器经过20 世纪七十年代到八十年代初期的酝酿从20世纪八十年代中期开始光纤激光器得到了长足的发展光纤激光器的输出波长范围在400 3400 纳米之间可应用于光学数据存储光通讯传感技术光谱研究和医学等多个领域[2]。

被动调Q锁模掺镱光纤激光器

第33卷 第8期2006年8月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.8 August ,2006   文章编号:025827025(2006)0821021204被动调Q 锁模掺镱光纤激光器 甘 雨1,2,向望华1,2,周晓芳1,2,张贵忠1,2,张 喆1,2,王志刚 1,2 (天津大学1精密仪器与光电子工程学院, 2 教育部光电信息技术科学重点实验室,天津300072) 摘要 报道了基于偏振旋转技术等效快可饱和吸收体的被动调Q 锁模光纤激光器,采用976nm 半导体激光器作为抽运源,高掺杂浓度的Yb 3+光纤作为增益介质构成环形腔,通过调节抽运光功率和偏振控制器的角度得到了调 Q ,调Q 锁模与锁模三种稳定的输出脉冲。获得的锁模脉冲中心波长为1.05μm ,重复频率为20M Hz ,脉冲光谱宽 度为13.8nm ,抽运功率为270mW 时,锁模平均输出功率为15.82mW ;调Q 频率为17.54k Hz ,调Q 脉冲宽度为 8μs ,光谱宽度为4.7nm ;调Q 锁模中调Q 重复频率为300k Hz 。 关键词 激光器;调Q;锁模;偏振旋转;Yb 3+光纤激光器中图分类号 TN 248.1 文献标识码 A Passive Q 2Switching and Modelocking Yb 3+2Doped Fiber Laser GAN Yu 1,2,XIAN G Wang 2hua 1,2,ZHOU Xiao 2fang 1,2,ZHAN G Gui 2zhong 1,2,ZHAN G Zhe 1,2,WAN G Zhi 2gang 1,2 1 College of Precision I nst rument and O ptoelect ronics Engineering , 2 Key L aboratory of O ptoelect ronics I nf ormation and Technical S cience (M inist ry of Education ),Tianj in Universit y ,Tianj in 300072, China Abstract An all fiber laser based upon nonlinear polarization rotation as an effective fast saturable absorber for mode 2locking is reported.The absorber can act as passive Q 2switching and modelocking.The ring laser with a highly Yb 3+2doped fiber as the gain medium ,pumped by a semiconductor laser of 976nm wavelength ,can operate in three different stable regimes by proper adjustments of pump power and polarizer orientations :Q 2switched ,Q 2switched mode 2locked and continuous wave (CW )mode 2locked.The center wavelength of the CW mode 2locked pulse is 1.05μm with a f ull width at half maximum (FW HM )spectrum of 13.8nm ,the pulse repetition rate is 20M Hz ,and an average output power is 15.82mW with 270mW pump power.In Q 2switched regime ,the laser generates 8μs duration pulses of 4.7nm FW HM spectrum at a repetition rate of 17.54k Hz.The Q 2switched repetition rate is 300k Hz in Q 2switched mode 2locked regime.K ey w ords lasers ;Q 2switched ;mode 2locked ;polarization rotation ;Yb 3+fiber laser 收稿日期:2005212201;收到修改稿日期:2006202227 基金项目:天津市科委基金(043601011)和高等学校博士学科点专项科研基金(20050056004)项目资助。 作者简介:甘 雨(1978— ),男,黑龙江牡丹江人,天津大学精密仪器与光电子工程学院博士研究生,主要从事超短脉冲激光器和超高速光通信的研究。E 2mail :rainmangy @https://www.360docs.net/doc/6c16500633.html, 导师简介:向望华(1947— ),男,湖南溆浦人,天津大学精密仪器与光电子工程学院教授,博士生导师,目前研究方向为光电子技术、超快激光与光通信技术方面的研究。E 2mail :wanghuaxiang @https://www.360docs.net/doc/6c16500633.html, 1 引 言 稳定、低噪声的超短脉冲光源在超快光谱学、多光子显微学、超快生物学和光通信等领域具有很重要的应用价值。锁模光纤激光器以其结构紧凑、小型化、成本低、易于实现全固化等优良的性能有望在许多应用中替代传统的固体锁模激光器。基于以上的特点,在过去的10年中,锁模光纤激光器得到了 极大的发展,大量的研究工作主要围绕掺铒光纤和 掺钕光纤进行[1~3]。近年来,同其他掺杂粒子相比,以镱元素作为增益粒子的掺镱光纤具有高的量子效率,没有基态和激发态吸收,长的上能级寿命,宽的吸收谱,在915nm 和976nm 处具有吸收峰,高掺杂时无浓度淬灭,便于半导体激光器抽运等优点,将取代掺钕光纤,成为1μm 波段的主要工作物质。在超

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

高功率掺镱双包层光纤激光器

第36卷 第9期 激光与红外 V o.l 36,N o .9 2006年9月 LA SER & I NFRAR ED Septe m ber ,2006 文章编号:1001-5078(2006)09-0833-04 高功率掺镱双包层光纤激光器 赵玉辉1,2 ,郑 义1 ,詹 仪1 ,杨洪杰 1 (1.郑州大学河南省激光与光电信息技术重点实验室,河南郑州450052;2.山东理工大学,山东淄博255049) 摘 要:简要地概述高功率双包层掺镱光纤激光器的基本原理和关键技术,介绍其在工业、通 信、医疗等领域的应用,并对国内外的近期进展作了综述。关键词:双包层光纤激光器;包层泵浦;高功率中图分类号:TN248.1 文献标识码:A H i gh -power Yb -doped Double -clad F i ber Laser ZHAO Yu -hu i 1,2 ,Z H E NG Y i 1 ,Z HAN Y i 1 ,YANG H ong -jie 1 (1.H enan K ey L aboratory of Laser and O ptoe l ectronics Infor m a tion T echnology of Zhengzhou U n i v ers it y ,Zheng z hou 450052,Ch i na ;2.Shandong U n i versity o f T echno l ogy ,Z i bo 255049,Ch i na)Ab stract :T he pr i nciples and key techni que o f h i gh -pow er Y b -doped double -c lad fi ber l ase r are briefl y descr i bed .Its applica ti ons i n i ndustry ,comm un i cation ,m ed i ca l treat m ent are i ntroduced .T he latest progresses and deve lop m ent trends in the a rea are prospected .K ey w ords :doub l e -c lad fi ber laser ;c laddi ng -pu m p ;h i gh po w er 1 引 言 光纤激光器由于其诸多优点而倍受青睐。自20世纪80年代中期开发出掺稀土离子单模光纤制造技术以来,光纤激光器成为激光技术领域研究的热点。但是,由于泵浦光较难有效耦合到纤芯中,因此,光纤激光通常被认为是一种低功率光源。近年来,国际上发展了一种以双包层光纤为基础的包层泵浦技术,提高了光纤激光器的输出功率,改变了光纤激光器仅仅是小功率光子器件的历史。目前,掺镱双包层光纤激光器的输出功率与单模光纤激光器相比提高了几个数量级,而且具有光束质量好、结构紧凑小巧、全固化、低阈值、高效率等优点,因此,在工业加工、光通信、医学、印刷、激光测距等领域具有 广泛的应用前景[1-2] 。本文简要介绍了高功率掺镱光纤激光器的机理、关键技术与应用、以及近几年的研究进展和发展方向。 2 掺镱双包层光纤激光器的基本原理和特点 图1为一个纵向泵浦的光纤激光器的基本结构图。一段掺镱离子的双包层光纤放置于两反射率经过选择的腔镜间,泵浦光从光纤激光器的左边腔镜耦合进光纤。光纤激光器是一个波导型的谐振装置,光波的传输介质是光纤,这种结构实际上是 Fabr y -Po r o t 谐振腔结构。在光纤激光器中,非常细 的掺镱光纤纤芯就充当了光纤激光器的增益介质,由于外加泵浦光的作用,在光纤内便很容易形成高功率密度,从而引起激光工作物质的粒子数反转,从纤芯输出激光。 图1 双包层光纤激光器原理示意图F i g .1 sche m atic d iagra m of pri n ci p l e confi gu ration f or doub le -cl ad fi b er l aser 由于双包层掺镱光纤激光器是波导式结构,因 而具有可容强泵浦和高增益的特点,而且光纤本身具有良好的柔绕性、小尺寸和可掺杂等特点,从而使其具有很多优异的性能和特点。主要表现在: a)输出激光的光束质量好,激光器可以实现光 束质量达到近衍射极限(M 2 U 1)的单模高功率激光输出; b)掺镱双包层光纤激光器具有量子效率高、增 基金项目:河南省创新人才培训对象基金资助项目;河南省杰出青年基金资助项目(No .121001200)。 作者简介:赵玉辉(1973-),男,硕士生,主要从事光纤激光器技术的研究。E-m ai:l z haoyhs @163.co m 收稿日期:2006-03-09;修订日期:2006-04-11

蓝光光纤激光器的原理及发展讲解

蓝光光纤激光器的原理及发展 一、前言 蓝光波段激光在高密度数据存储、海底通信、大屏幕显示(需要蓝绿光构造全色显示、检测、生命科学、激光医疗等领域有着广泛的应用价值。目前商业化的固体激光器激光波长主要在近红外和红外波段。在固体激光器中欲获得蓝色激光输出,主要有以下三种方法: (1利用宽禁带半导体材料直接制作蓝光波段的半导体激光器; (2利用非线性频率变换技术对固体激光进行倍频; (3利用上转换技术在掺稀土的晶体、玻璃或光纤中实现蓝激光输出。对于可 见波段的半导体激光二极管(LD,蓝光LD的研制需要昂贵的设备和衬底材料,同时LD的光束质量不尽人意,在许多应用领域受到了限制。由LD泵浦的倍频固体激光器,需要非线性晶体材料进行频率转换,虽然光束质量很好,输出功率也很高,但系统较复杂。 近年来,人们利用发光学中的频率上转换机制,大力发展具有蓝绿光输出上转换发光材料,所采用的泵浦源一般为近红外高功率半导体激光器。另外,与稀土掺杂的玻璃和晶体相比,光纤具有输出波长多、可调谐范围宽等优点。利用上转换光纤制作的光纤激光器还具有结构简单、效率高、成本低的优点。近两年来,国外对蓝光上转换光纤激光器研究很活跃,并且其商业化进程也相当迅速。 二、工作原理 蓝光光纤激光器是利用稀土离子上转换的发光机理,即采用波长较长的激发光照射掺杂的稀土离子的样品时,发射出波长小于激发光波长的光。稀土离子的上转换发光机制一般可以分为激发态吸收、能量转移和光子雪崩三种过程。蓝光上转换光纤的输出波长一般在450~490nm之间,目前能获得蓝光输出稀土离子主要有 Tm3+,Pr3+两种,但大多数情况下,为了提高泵浦吸收效率和上转换发光效率,往往采

相关文档
最新文档