吸附分离高分子材料66页PPT
合集下载
功能高分子05第2章吸附性高分子材料PPT
特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。
第2章 吸附性高分子材料 PPT
大孔型离子交换树脂得孔径一般为几纳米至几 百纳米,比表面积可达每克树脂几百平方米,因此其 吸附功能十分显著。
3)载体型离子交换树脂
载体型离子交换树脂就是一种特殊用途树脂,主 要用作液相色谱得固定相。
一般就是将离子交换树脂包覆在硅胶或玻璃珠等 表面上制成。它可经受液相色谱中流动介质得高 压,又具有离子交换功能。
大家有疑问得,可以询问与交流
可以互相讨论下,但要小声点
离子交换树脂发展史上得另一个重大成果就是 大孔型树脂得开发。
20世纪50年代末,国内外包括我国得南开大学化 学系在内得诸多单位几乎同时合成出大孔型离子 交换树脂。
与凝胶型离子交换树脂相比,大孔型离子交换树 脂具有机械强度高、交换速度快与抗有机污染得 优点,因此很快得到广泛得应用。
在无水状态下,凝胶型离子交换树脂得分子链紧缩, 体积缩小,无机小分子无法通过。
所以,这类离子交换树脂在干燥条件下或油类中将丧 失离子交换功能。
2)大孔型离子交换树脂
大孔型离子交换树脂外观不透明,表面粗糙,为非 均相凝胶结构。
即使在干燥状态,内部也存在不同尺寸得毛细孔, 因此可在非水体系中起离子交换与吸附作用。
离子交换树脂可以使水不经过蒸馏而脱盐,既简 便又节约能源。
因此根据Adams与Holmes得发明,带有磺酸基与 氨基得酚醛树脂很快就实现了工业化生产,并在水 得脱盐中得到了应用。
1944年 D’Alelio 合成了具有优良物理与化学性 能得苯乙烯-二乙烯苯共聚物离子交换树脂及交联 聚丙烯酸树脂,奠定了现代离子交换树脂得基础。
CH CH2
CH2 CH
+
COOH
CH CH2
CH2 CH CH2 CH COOH CH2 CH
3)载体型离子交换树脂
载体型离子交换树脂就是一种特殊用途树脂,主 要用作液相色谱得固定相。
一般就是将离子交换树脂包覆在硅胶或玻璃珠等 表面上制成。它可经受液相色谱中流动介质得高 压,又具有离子交换功能。
大家有疑问得,可以询问与交流
可以互相讨论下,但要小声点
离子交换树脂发展史上得另一个重大成果就是 大孔型树脂得开发。
20世纪50年代末,国内外包括我国得南开大学化 学系在内得诸多单位几乎同时合成出大孔型离子 交换树脂。
与凝胶型离子交换树脂相比,大孔型离子交换树 脂具有机械强度高、交换速度快与抗有机污染得 优点,因此很快得到广泛得应用。
在无水状态下,凝胶型离子交换树脂得分子链紧缩, 体积缩小,无机小分子无法通过。
所以,这类离子交换树脂在干燥条件下或油类中将丧 失离子交换功能。
2)大孔型离子交换树脂
大孔型离子交换树脂外观不透明,表面粗糙,为非 均相凝胶结构。
即使在干燥状态,内部也存在不同尺寸得毛细孔, 因此可在非水体系中起离子交换与吸附作用。
离子交换树脂可以使水不经过蒸馏而脱盐,既简 便又节约能源。
因此根据Adams与Holmes得发明,带有磺酸基与 氨基得酚醛树脂很快就实现了工业化生产,并在水 得脱盐中得到了应用。
1944年 D’Alelio 合成了具有优良物理与化学性 能得苯乙烯-二乙烯苯共聚物离子交换树脂及交联 聚丙烯酸树脂,奠定了现代离子交换树脂得基础。
CH CH2
CH2 CH
+
COOH
CH CH2
CH2 CH CH2 CH COOH CH2 CH
第六章-吸附分离PPT课件
吸下来。 – 对于易挥发溶质可用热水或蒸汽解吸。
36
• 从离子交换介质上洗脱
• 阶段洗脱法 分段改变洗脱液中的pH或盐浓度,使吸附在
柱上的各组分洗脱下来。
洗 脱 剂 浓 度
操作时间
37
• 梯度洗脱法 连续改变洗脱液中的pH或盐浓度,使吸附在
柱上的各组分被洗脱下来。通常采用一种低浓度 的盐溶液为起始溶液,另一种高浓度的盐溶液做 为最终溶液。两者通过一混合器混合。优于阶段 法。
20
• 离子交换容量:单位质量或单位体积的离 子交换剂所能吸附的一价离子的量(毫摩 尔数),是表征离子交换能力的主要参数。
21
• 吸附剂的制备
苯乙烯和二乙烯苯聚合而成的聚合物最为常用,对其 侧链进行改造也可成为离子交换介质。
聚合过程中加入一种惰性成分,不参与反应,但能与 单体互溶,当用悬浮聚合合成时,它还必需不溶于水或微 溶于水。这种惰性组分可以是线性高分子聚合物,也可以 是能溶胀或不能溶胀聚合物的溶剂,其中以不能溶胀聚合 物的溶剂效果最好,用的也较普遍,称为致孔剂。在聚合 过程中,在聚合的液滴内,逐渐形成无数的凝胶微粒,四 周为惰性组分所包围。聚合结束后,利用溶剂萃取或水蒸 气蒸馏的方式将溶剂去除,因而留下了孔隙,形成大网格 结构。一般大网格吸附剂的颗粒直径为0.5mm~数mm左右。
45
• 6.7 移动床和模拟移动床吸附
• 移动床(moving bed) 希望能象气体吸收操作的液相那样,吸附操
作中的固相可以连续输入和排出吸附塔,与料液 形成逆流接触流动,则可实现连续稳态的吸附操 作。
46
47
• 模拟移动床
由于固相吸附剂移动不便且易造成堵塞。可 固定吸附剂,而移动切换液相(包括料液和洗脱 液)的入口和出口位置,如同移动固相一样,产 生与移动床相同的效果。
36
• 从离子交换介质上洗脱
• 阶段洗脱法 分段改变洗脱液中的pH或盐浓度,使吸附在
柱上的各组分洗脱下来。
洗 脱 剂 浓 度
操作时间
37
• 梯度洗脱法 连续改变洗脱液中的pH或盐浓度,使吸附在
柱上的各组分被洗脱下来。通常采用一种低浓度 的盐溶液为起始溶液,另一种高浓度的盐溶液做 为最终溶液。两者通过一混合器混合。优于阶段 法。
20
• 离子交换容量:单位质量或单位体积的离 子交换剂所能吸附的一价离子的量(毫摩 尔数),是表征离子交换能力的主要参数。
21
• 吸附剂的制备
苯乙烯和二乙烯苯聚合而成的聚合物最为常用,对其 侧链进行改造也可成为离子交换介质。
聚合过程中加入一种惰性成分,不参与反应,但能与 单体互溶,当用悬浮聚合合成时,它还必需不溶于水或微 溶于水。这种惰性组分可以是线性高分子聚合物,也可以 是能溶胀或不能溶胀聚合物的溶剂,其中以不能溶胀聚合 物的溶剂效果最好,用的也较普遍,称为致孔剂。在聚合 过程中,在聚合的液滴内,逐渐形成无数的凝胶微粒,四 周为惰性组分所包围。聚合结束后,利用溶剂萃取或水蒸 气蒸馏的方式将溶剂去除,因而留下了孔隙,形成大网格 结构。一般大网格吸附剂的颗粒直径为0.5mm~数mm左右。
45
• 6.7 移动床和模拟移动床吸附
• 移动床(moving bed) 希望能象气体吸收操作的液相那样,吸附操
作中的固相可以连续输入和排出吸附塔,与料液 形成逆流接触流动,则可实现连续稳态的吸附操 作。
46
47
• 模拟移动床
由于固相吸附剂移动不便且易造成堵塞。可 固定吸附剂,而移动切换液相(包括料液和洗脱 液)的入口和出口位置,如同移动固相一样,产 生与移动床相同的效果。
第八章-吸附分离法PPT课件
第八章 吸附分离法
第一节 概 述
2021
1
前言
利用适当的吸附剂,在一定的pH条件下,吸 附样品中的目标物质,然后再以适当的洗脱剂 将吸附的物质从吸附剂上解吸下来,达到浓缩 和提纯的目的。
广泛应用在各种生物行业,如酶、蛋白质、核 苷酸、抗生素、氨基酸等的分离纯化中。
2021
2
吸附法的特点
1、可不用或少用有机溶剂
2、操作简便、安全、设备简单
3、生产过程pH变化小,适用于稳定性较差的物质。
缺点:选择性差,收率不高,特别是无机吸附剂 性能不稳定,不能连续操作,劳动强度大。
应用:如需要的成分易吸附,可在吸附后除去不 吸附和不易吸附的杂质,再将样品洗脱;当需要 的成分较难吸附,则将杂质吸附除去,故吸附法 常用来除杂。
D 氢键力 另一种特殊的分子间作用力是氢键力。它是一种 介于库仑引力与范德华引力之间的特殊定向力,比诱导 力、色散力都大。
吸附等温线
固体在溶液中的吸附,是溶质和溶剂分子争夺表 面的净结果,即在固液界面上,总是被溶质和溶剂两 种分子占满,如果不考虑溶剂的吸附,当固体吸附剂 与溶液中的溶质达到平衡时,其吸附量m应与溶浓中 溶质的浓度和温度有关。
q* mc
m为分配系数。
适应条件:在低浓度范围之内 成立。当浓度较高时,上式无 效。
2021
19
吸附等温线
B)、Freundlich type 其经验公式为
q* kc1/n 其 中 , k 和 n 为 常 数 , n 一 般 在 110之间。 Freundlich等温线可以 描述大多数抗生素、类固醇、甾 类激素等在溶液中的吸附过程。
离子的电荷是交换吸附的决定因素,离子所带电荷越多, 它在吸附剂表面的相反电荷点上的吸附力就越强,电荷 相同的离子,其水化半径越小,越易被吸附。
第一节 概 述
2021
1
前言
利用适当的吸附剂,在一定的pH条件下,吸 附样品中的目标物质,然后再以适当的洗脱剂 将吸附的物质从吸附剂上解吸下来,达到浓缩 和提纯的目的。
广泛应用在各种生物行业,如酶、蛋白质、核 苷酸、抗生素、氨基酸等的分离纯化中。
2021
2
吸附法的特点
1、可不用或少用有机溶剂
2、操作简便、安全、设备简单
3、生产过程pH变化小,适用于稳定性较差的物质。
缺点:选择性差,收率不高,特别是无机吸附剂 性能不稳定,不能连续操作,劳动强度大。
应用:如需要的成分易吸附,可在吸附后除去不 吸附和不易吸附的杂质,再将样品洗脱;当需要 的成分较难吸附,则将杂质吸附除去,故吸附法 常用来除杂。
D 氢键力 另一种特殊的分子间作用力是氢键力。它是一种 介于库仑引力与范德华引力之间的特殊定向力,比诱导 力、色散力都大。
吸附等温线
固体在溶液中的吸附,是溶质和溶剂分子争夺表 面的净结果,即在固液界面上,总是被溶质和溶剂两 种分子占满,如果不考虑溶剂的吸附,当固体吸附剂 与溶液中的溶质达到平衡时,其吸附量m应与溶浓中 溶质的浓度和温度有关。
q* mc
m为分配系数。
适应条件:在低浓度范围之内 成立。当浓度较高时,上式无 效。
2021
19
吸附等温线
B)、Freundlich type 其经验公式为
q* kc1/n 其 中 , k 和 n 为 常 数 , n 一 般 在 110之间。 Freundlich等温线可以 描述大多数抗生素、类固醇、甾 类激素等在溶液中的吸附过程。
离子的电荷是交换吸附的决定因素,离子所带电荷越多, 它在吸附剂表面的相反电荷点上的吸附力就越强,电荷 相同的离子,其水化半径越小,越易被吸附。
吸附分离高分子材料课件
正相悬浮交联
高分子化合物作为反应物,成本较高 主要用于天然高分子,如壳聚糖用戊二醛交联成球,葡
聚糖采用环氧氯丙烷交联 优点:
交联密度均匀 孔结构分散性好
2、吸附树脂的成孔技术
要使吸附树脂有足够的吸附容量,必须在使用状态下有较高的比表面积。
提高比表面积
提高吸附容量
大量微孔
成孔技术
孔的形成及孔径大小
苯乙烯、二乙烯基苯,悬浮聚合,制成凝胶(不 加致孔剂)或多孔性的低交联度(<1%)共聚物
用氯甲醚进行氯甲基化反应(傅-克反应) 自交联
大网均孔结构,比表面积>1000m2/g
3、吸附树脂的主要品种
按照高分子主链的化学结构,主要有: 聚苯乙烯型 聚丙烯酸酯型 其他类型
(1)聚苯乙烯型
水
甜叶菊
FeSO4絮凝
过滤 AB-8吸附 废水
70%
浓缩 大孔阴离子交换树脂
乙 醇
大孔阳离子交换树脂
干燥 产品
(4)在制酒工业中的应用 酒中的高级脂肪酸脂易溶于乙醇而不溶于水。当制备低度 白酒时,需向高度酒中加水稀释。高级脂肪酸脂类溶解度 降低,容易析出而呈浑浊现象,影响酒的外观。吸附树脂 可选择性地吸附酒中分子较大或极性较强的物质,较小或 极性较弱的分子不被吸附而存留。如棕榈酸乙酯、油酸乙 酯和亚油酸乙酯等分子较大的物质被吸附,而己酸乙酯、 乙酸乙酯、乳酸乙酯等相对分子质量较小的香味物质不被 吸附而存留,达到分离、纯化的目的。
无机小分子的 半径<1nm
➢ 在水中会溶胀成凝胶状,并呈现大分子链的间隙孔,2-4nm
➢ 无水状态分子链紧缩,体积缩小,无机小分子无法通过
➢ 在干燥条件下或油类中将丧失离子交换功能。
第三章吸附分离功能高分子材料
第三章 吸附分离功能高分子材料
3.2.2 吸附树脂的结构 吸附树脂的外观一般为直径为0.3~1.0 mm的小圆
球,表面光滑,根据品种和性能的不同可为乳白色、 浅黄色或深褐色。吸附树脂的颗粒的大小对性能影响 很大。粒径越小、越均匀,树脂的吸附性能越好。但 是粒径太小,使用时对流体的阻力太大,过滤困难, 并且容易流失。粒径均一的吸附树脂在生产中尚难以 做到,故目前吸附树脂一般具有较宽的粒径分布。
第三章 吸附分离功能高分子材料
2)大孔型离子交换树脂 针对凝胶型离子交换树脂的缺点,研制了大孔型
离子交换树脂。大孔型离子交换树脂外观不透明,表 面粗糙,为非均相凝胶结构。即使在干燥状态,内部 也存在不同尺寸的毛细孔,因此可在非水体系中起离 子交换和吸附作用。大孔型离子交换树脂的孔径一般 为几纳米至几百纳米,比表面积可达每克树脂几百平 方米,因此其吸附功能十分显著。
离子交换树脂是指具有离子交换基团的高分子化 合物。它具有一般聚合物所没有的新功能——离子交 换功能,本质上属于反应性聚合物。吸附树脂是指具 有特殊吸附功能的一类树脂。
离子交换树脂是最早出现的功能高分子材料,其 历史可追溯到上一世纪30年代。1935年英国的Adams 和Holmes发表了关于酚醛树脂和苯胺甲醛树脂的离子 交换性能的工作报告,开创了离子交换树脂领域,同 时也开创了功能高分子领域。
第三章 吸附分离功能高分子材料
3)载体型离子交换树脂 载体型离子交换树脂是一种特殊用途树脂,主要
用作液相色谱的固定相。一般是将离子交换树脂包覆 在硅胶或玻璃珠等表面上制成。它可经受液相色谱中 流动介质的高压,又具有离子交换功能。
此外,为了特殊的需要,已研制成多种具有特殊 功能的离子交换树脂。如螯合树脂、氧化还原树脂、 两性树脂等。