锂电池充电电路详解

合集下载

磷酸铁锂电池 充电电路

磷酸铁锂电池 充电电路

磷酸铁锂电池充电电路
磷酸铁锂电池充电电路通常由以下几个部分组成:
1. 充电器:充电器是将电源电压转换为适合磷酸铁锂电池充电的电压和电流的装置。

充电器通常包含一个电源适配器、变压器、整流器和电流控制电路。

2. 充电管理芯片:充电管理芯片用于控制充电过程中的电流和电压,并监测电池的温度和电池状态。

它可以确保充电电流和电压在安全范围内,并提供过充保护、过放保护和温度保护等功能。

3. 充电电流控制电路:充电电流控制电路用于控制充电器输出的电流。

它可以根据充电管理芯片发出的指令来调节电流的大小,以确保电池充电的稳定性和安全性。

4. 充电电压控制电路:充电电压控制电路用于控制充电器输出的电压。

它可以根据充电管理芯片发出的指令来调节电压的大小,以适应电池充电过程中的不同阶段。

5. 保护电路:保护电路用于保护电池免受过充、过放、过流和短路等异常情况的影响。

它通常包括过充保护、过放保护、过流保护和短路保护等功能模块。

6. 充电指示灯:充电指示灯用于显示电池充电状态。

它通常包括充电中、充满和故障等状态的指示。

以上是磷酸铁锂电池充电电路的一般组成部分,具体的实现方式可以根据需求和应用场景的不同而有所差异。

2串锂电池7.4v充电电路工作原理

2串锂电池7.4v充电电路工作原理

2串锂电池7.4V充电电路工作原理
2串锂电池7.4V充电电路是一种专为锂电池设计的充电电路,它可以对2串锂电池进行安全、高效的充电。

本文将介绍2串锂电池7.4V充电电路的工作原理。

电路组成
2串锂电池7.4V充电电路主要由以下部分组成:
1.输入电源:为充电电路提供稳定的直流电源。

2.充电控制器:负责控制充电过程,保证电池充电的安全和稳定。

3.电流传感器:检测充电电流,为充电控制器提供实时反馈。

4.电池组:由2串锂电池组成,需要充电以补充能量。

工作原理
1.输入电源提供稳定的直流电源,经过充电控制器后,为电池组提供充电电流。

2.充电控制器负责控制充电过程,它会根据电池组的电压和电流状态调整充电参数,保证电池充电的安全和稳定。

3.电流传感器实时检测充电电流,将检测到的电流值反馈给充电控制器。

4.电池组在充电过程中,电压逐渐上升,当达到预设的满电电压时,充电控制器会停止充电,保护电池组不过充。

注意事项
1.使用2串锂电池7.4V充电电路时,请确保输入电源的电压和电流符合电路要求,以免损坏电路。

2.为了保证充电安全和稳定,请勿使用劣质充电器或擅自改动充电参数。

3.在充电过程中,请远离高温、潮湿等恶劣环境,以免影响充电效果和安全。

4.充电完成后,请及时断开充电电路,以免电池组过充或损坏。

锂电池 充放电 电路

锂电池 充放电 电路

锂锂电池充放电电路
“锂电池充放电电路”指的是实现锂电池充放电功能的电路。

具体来说,锂电池充放电电路负责将电能传输到锂电池中,同时控制充电和放电的过程,确保锂电池的安全使用。

在实际应用中,根据不同的应用场景和需求,有多种不同类型的锂电池充放电电路可供选择。

以下是其中几种常见的锂电池充放电电路:
1.线性充电电路:线性充电电路是一种简单的充电方式,通过电阻器和开关
的组合实现电流的控制。

这种电路结构简单,成本较低,但在充电过程中会消耗一定的能量,因此充电效率较低。

2.开关电源充电电路:开关电源充电电路利用开关管和高频变压器来实现电
压的转换和电流的控制。

这种电路充电效率高,但电路结构相对复杂,成本较高。

3.多阶段充电电路:多阶段充电电路根据锂电池的特性和充电状态,采用不
同的充电方式进行多阶段的充电过程。

这种电路可以在不同阶段采用不同的电流和电压值,从而达到最佳的充电效果。

4.智能充电电路:智能充电电路通过检测锂电池的充电状态和温度等参数,
自动调整充电电流和电压,实现智能化的充电管理。

这种电路结构复杂,成本较高,但具有更高的充电效率和安全性。

总的来说,“锂电池充放电电路”是指实现锂电池充放电功能的电路,有多种不同类型可供选择。

这些不同类型的充放电电路在实际应用中发挥着重要的作用,确保了锂电池的安全使用和高效能量传输。

锂电池充电管理电路

锂电池充电管理电路

锂电池充电管理电路锂电池充电管理电路,这就像是锂电池的贴心小管家,默默地守护着锂电池的充电过程,让锂电池能够健康地工作,就像我们身边那些默默付出的朋友一样。

咱们先来说说锂电池为啥需要这个充电管理电路呢?锂电池这东西啊,可娇贵了,不像那些皮实的老电池。

它就像是一个特别敏感的小宝贝,充电的时候要是没有好好照顾,那可就容易出问题。

比如说,如果充电的电压太高,那就好比是你给一个小水杯拼命地倒水,水满了还倒,那肯定就会溢出来,锂电池可能就会鼓包,甚至爆炸呢。

这可不得了,就像家里突然出了个大灾祸一样吓人。

再比如说,要是充电电流太大,那就像是一群人一下子冲进一个小房间,不把房间挤坏才怪呢,锂电池内部的结构可能就会被破坏。

所以啊,充电管理电路就像一个严格又细心的门卫,控制着进来的“电量客人”,不让太多也不让太少,电压和电流都得刚刚好。

那这个充电管理电路到底是怎么工作的呢?它里面有好多聪明的小设计呢。

有一种叫线性充电管理芯片的东西,这个芯片啊,就像是一个经验丰富的老工匠。

它通过调整自身的电阻来控制充电电流,就像老工匠根据材料的特性慢慢打磨一样。

这个芯片在充电过程中,会一点点地把电流调整得稳稳当当的,就像老工匠把东西做得精致又完美。

还有一种开关型充电管理芯片,这就像是一个高效的快递员。

它不是像线性芯片那样慢慢调整,而是快速地把电能以合适的方式传递给锂电池,就像快递员快速又准确地把包裹送到目的地一样。

不管是线性的还是开关型的,它们的目的都是一样的,就是让锂电池能安全又高效地充满电。

在实际的电路设计里,还有很多小细节得注意呢。

比如说,电路里得有检测电池电压的部分,这就像是给锂电池量体温一样。

只有时刻知道电池的电压情况,才能知道什么时候该停止充电,什么时候该调整充电的速度。

要是没有这个检测的部分,那就像是医生给病人看病却不量体温一样,完全不知道病人的情况,那怎么能行呢?再比如说,充电管理电路还得有保护功能,就像给锂电池穿上了一层防护服。

锂电池充电电路原理

锂电池充电电路原理

锂电池充电电路原理
锂电池充电电路原理主要涉及锂离子在电池正负极之间的移动。

以下是锂电池充电电路原理的简要介绍:
1.涓流充电:当电池电压低于3V左右时,采用涓流充电。

此时,充电电流是恒流充电电流的十分之一。

即0.1C(以恒定充电电流为1A为例,涓流充电电流为100mA)。

涓流充电用来对完全放电的电池单元进行预充,也称为恢复性充电。

2.恒流充电:当电池电压上升到涓流充电阈值以上时。

提高充电电流进行恒流充电。

恒流充电的电流在0.2C至1.0C之间。

电池电压随若恒流充电过程逐步升高,一般单节电池设定的此电压为
3.0-
4.2V。

3.恒压充电:当电池电压上升到
4.2V时,恒流充电结束,开始恒压充电阶段。

在恒压充电阶段,充电电压保持恒定。

充电电流逐渐下降。

当电流下降至设定充电电流的1/10时,充电结束。

总之,锂电池的充电原理是锂离子在电池正负极之间的移动。

在充电过程中,锂离子从正极脱嵌出来,通过电解质传递到负极。

同时发生正负极材料的氧化还原反应。

充电过程通过连接电池正负极与电源来完成。

具体的电路设计和元件选择将根据实际应用需求和电池特性而定。

制表:审核:批准:。

锂电池充电电路及电源自动切换电路的设计

锂电池充电电路及电源自动切换电路的设计

BATTBATT-8.4V图1 锂电池充电电路原理图输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A1、充电电流的设置恒流充电电流由下式决定:CSCH R mVI 200=,取A I CH 25.1=,得 Ω=16.0CS R选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150200200=== 2、充电结束电流的设置在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。

充电结束电流由下式决定:610)314350(278.1×+×=CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择在正常工作时,瞬态电感电流是周期性变化的。

在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。

电感的纹波电流随着电感值的减小而增大,随着输入电压的增大而增大。

较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。

所以电感的纹波电流应该被限制在一个合理的范围内。

电感的纹波电流可由下式估算:)1(1VCC V V Lf I BAT BAT L −×××=Δ其中:f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。

4、电源自动切换电路VOUT给后续电路供电图2 电源自动切换电路当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

三款经典7.4v锂电池充电电路图详解(7.4v锂电池充电芯片)

三款经典7.4v锂电池充电电路图详解(7.4v锂电池充电芯片)

三款经典7.4v锂电池充电电路图详解(7.4v锂电池充电芯片)7.4V锂电池充电电路设计(一)1、7.4V锂电池7.4V为标称电压,最低电压是7V,最高电压是8.4V。

内部是2节锂电池构成,单节锂电池的最高电压是4.2V,最低3.5V,如果电压低于3.5V,电池就作废了,不能给它充电,否则会有危险。

同样单节锂电池也不能充到4.2V以上,否则也会有危险。

因此要设计一个充电器,保证单节锂电池不会超过4.2V,充电输入端,12V的电源。

三款经典7.4v锂电池充电电路图详解(7.4v锂电池充电芯片)充电时红色指示灯亮,充满后绿色指示灯亮。

2、电路设计3、主控充电芯片:TP5100这部分电路是为了输出8.4V让锂电池进行充电。

TP5100是一款开关降压型双节8.4V/单节4.2V锂电池充电管理芯片。

TP5100具有5V~18V宽输入电压,对电池充电分为涓流预充、恒流、恒压三个阶段,涓流预充电电流、恒流充电电流都通过外部电阻调整,最大充电电流达2A。

第13脚CS和第10脚VREGCS(引脚13):锂离子状态片选输入端。

CS端高输入电平(VREG)将使TP5100处于锂离子电池充电8.4V关断电压状态。

CS 端悬空使TP5100处于锂离子电池4.2V关断电压状态。

低输入电平使TP5100处于停机状态。

CS端可以被TTL或者CMOS电平驱动控制。

这里因为要对8.4V充电,因此把CS连接到VREG引脚。

TP5100支持1.5A充电电流,RS(R1)用来调节充电电流。

RTRICK(引脚12):涓流预充电流设置端。

将RTRICK引脚接地则预充电电流为10%设置恒流,通过外接电阻可以设置预充电电流。

如果RTRICK悬空则预充电电流等于恒流电流。

当接入电池时,芯片会检测电池的电压如果低于6V(8.4V充电模式)时,就会进行涓流预充电,如果把RTRICK接地,涓流预充电时的电流为原来设置充电电流的百分之十进行恒流充电。

PWR_ON-(引脚6):电源切换控制引脚。

锂电池充电电路

锂电池充电电路

锂电池充电电路简介锂电池是一种常用的充电电池,其具有高能量密度、长寿命和轻巧便携等优点,因此广泛应用于移动电源、电子设备和无线传感器等领域。

为了正确、高效地充电锂电池,并确保其安全性和寿命,我们需要设计合适的锂电池充电电路。

本文将介绍锂电池充电电路的基本原理和实现方法。

基本原理锂电池充电电路的基本原理是通过控制充电电流和充电电压,将电能转化为化学能储存到锂电池中。

充电电流通常分为恒流充电和恒压充电两种方式。

恒流充电恒流充电是指在一定的充电时间内,通过控制充电电流的大小来给锂电池供电。

通常情况下,初始阶段会以较高的电流给锂电池充电,以使其快速充满至一定程度,然后逐渐降低充电电流,直到锂电池充电完成。

恒流充电的优点是充电速度快,缺点是在充电完成前需要精确计算充电时间,否则可能导致过冲。

恒压充电是指在一定的充电电压下,通过控制充电电流的大小来给锂电池供电。

充电过程中,充电电流会逐渐减小直到达到设定的充电电压。

恒压充电的优点是充电完成后不会有过冲现象,但充电速度较恒流充电略慢。

充电电路设计在设计锂电池充电电路时,需要考虑以下因素:充电电流充电电流的选择对锂电池的安全性和寿命有重要影响。

过大的充电电流会导致电池温升过快,从而影响电池寿命甚至引发安全事故;过小的充电电流则会导致充电时间过长。

因此,我们需要根据锂电池的额定电流和充电要求选择合适的充电电流。

充电电压充电电压是控制锂电池充电过程的重要参数。

在充电过程中,充电电压应逐渐增加到设定的充电电压,直到锂电池充电完成。

过高或过低的充电电压都会对锂电池的安全性和寿命产生负面影响。

在锂电池充电过程中,需要设置相应的保护机制,以保证充电过程的安全性。

常见的充电保护措施包括过流保护、过压保护、过热保护等。

这些保护机制可以通过使用保护芯片和传感器来实现。

充电指示为了方便用户了解充电过程和状态,可以在充电电路中设计充电指示灯或显示屏。

充电指示功能可以告诉用户锂电池充电是否正常进行,以及充电是否完成。

七款经典4.2v锂电池充电电路图详解

七款经典4.2v锂电池充电电路图详解

七款经典4.2v锂电池充电电路图详解描述4.2v锂电池充电电路图(一):锂电池充电均衡电路这个均衡电路用的是三个一模一样的并联稳压电路组成的,每个电池上并一个。

电路原理图如下:每个稳压电源都调节到4.2V。

均衡的原理是,当电池电压都小于4.2V时,并联稳压电路不起作用,充电电流都从电池上通过:如果电池不均衡,其中有一个先充满(到达了4.2V),那么并联稳压电路就开始工作,起到分流作用,会把电压一直稳定到4.2V,即充电电流就不再经过充满的电池了:原理就这么简单,再看看并联稳压电路的原理。

下面是单个的电路,TL431是基准电压,通过调节可变电阻,把电压调节到4.2V。

如果电池两端小于4.2V,TL431不吸收电流,即下面的Ib=0,所以Ic=0,三级管关闭,充电电流就还是通过电池。

如果电池两端到达4.2V,TL431开始吸收电流,Ib》0,充电电流(即Ic)通过三极管,就不通过电池了,即不再给电池充电了。

另外说明一下,这个电路中的三个串联的二极管IN4001,是起分压作用的,可以减少散耗在三极管TIP42上的功率。

如果不接这三个二极管IN4001,那么三极管TIP42上散耗的功率P=4.2V×充电电流,加上之后,P=(4.2V-3×0.7V)×充电电流最右边的发光二极管有指示作用,灯亮,表示电压已经达到4.2V,即这个均衡电路对应的电池已经充满电了。

实际做好的电路板:电路调试也比较简单,就是先不接电池,均衡电路直接接恒流电源(如果电源不支持恒流,可以串一个电阻,慢慢的把电源电压调上来)。

然后一个一个调节可变电阻,让每个均衡电路的两端都是4.20V.实际使用效果还不错,每个电池电压被严格限制到了4.20V。

4.2v锂电池充电电路图(二)锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。

最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li MnO2=LiMnO2该反应为氧化还原反应,放电。

(完整版)锂电池充电电路详解

(完整版)锂电池充电电路详解

锂电池充电电路图锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于:手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。

一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。

充电时锂离子由正极向负极运动而嵌入石墨层中。

放电时,锂离子从石墨晶体内负极表面脱离移向正极。

所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现.因而这种电池叫做锂离子电池,简称锂电池。

锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。

镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。

镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制.二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3。

6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应.锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。

正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。

锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高.与其它可充电池相比,锂电池价格较贵.三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型.电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。

正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。

负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成.电池内充有有机电解质溶液。

一款最简易、成本最低、应用最广泛的锂离子电池充电电路

一款最简易、成本最低、应用最广泛的锂离子电池充电电路

一款最简易、成本最低、应用最广泛的锂离子电池充电电路锂离子电池使用广泛,在很多电子产品上都有应用。

锂离子电池对应的电子充电电路也各种各样,今天来介绍一个最简单的锂离子电池充电电路,也是成本最低的锂离子电池充电电路,在很多廉价电子产品上有广泛应用。

锂离子电池标称电压为3.7V,充电电压限制在4.2V以内,充电电流一般限制在1A以内。

根据锂离子电池的特性可以设计如下充电电路(嘿嘿,这个电路其实是从老年人唱戏机上抄出来的):锂离子电池充电电路本电路的基本功能是使用5V电源(USB供电)给锂离子电池充电,电路带有充电指示功能,电池充满指示灯熄灭。

接下来分析一下电路的运行原理:5V电源通过D1后电压为5V-0.7V=4.3V,4.3V通过R1(阻值为1Ω)为锂离子电池充电。

其中D1的作用主要是降压,将5V电压降为4.3V,R1的作用是限流,将电流限制在(4.3V-3.7V)/1Ω=0.6A以内。

随着充电进行电池电压升高,5V电源与电池之间的压差越来越小,充电电流也越来越小,当电池充满后电路停止充电。

充电电路的指示灯部分是由R2、Q1、R3和D3组成。

当电池未充满时,5V电源与电池之间有5V-3.7V=1.3V的压差,这个压差可以是Q1导通,D3点亮。

随着充电的进行,电池电压随之升高,当电池充满电时,5V电源与电池之间的压差降为5V-4.2V=0.8V,这个压差不能使Q1导通,D3随之熄灭。

注意事项:1、R1在充电时自身最高消耗功率为(0.6Ax0.6A)x1Ω=0.36W,所以R1电阻推荐选用1/2W的电阻(1812封装电阻)。

2、如果想降低充电电流可以适当加大R1的电阻阻值,当R1=2Ω时,充电最大电流为(4.3V-3.7V)/2Ω=0.3A,此时R1电阻可选用1/3W的电阻(1210封装电阻)。

网友疑问:有网友提出电池在充到4.2V以后并不能断开充电,一直浮充对电池会造成损伤。

现在对此做一下解释。

1、从理论来说,此电路最高充电电压能到4.3V,虽然锂电池标称最大充电电压是4.2V,但4.3V对锂电池也不会造成损伤。

关于浅谈锂电池充电电路原理及应用的专业论文

关于浅谈锂电池充电电路原理及应用的专业论文

关于浅谈锂电池充电电路原理及应用的专业论文锂电池是一种常见的电池类型,具有高能量密度、长循环寿命和低自放电率等优点,因此在各种应用领域得到了广泛的应用。

为了正常使用锂电池,充电电路是至关重要的,它可以确保电池在充电过程中的安全性和高效性。

本文将深入浅出地介绍锂电池充电电路的原理及应用。

首先,我们来了解一下锂电池的基本原理。

锂电池是通过锂离子在正、负极之间的迁移来完成电荷和放电过程的。

在充电过程中,外部电源将正极与负极连接,电流从外部电源流向正极,经过电解质,锂离子从正极脱嵌,并在负极嵌入。

而在放电过程中,锂离子从负极脱嵌,在电解质中迁移至正极,完成放电过程。

基于锂电池的特点,锂电池充电电路的设计需要考虑以下几个方面。

首先,充电电路应能提供合适的充电电流,以满足电池容量的要求,并尽可能减少充电时间。

其次,充电电路应具有适当的充电终止机制,以防止过充、过放和过高温现象的发生,从而保护电池的安全性。

最后,充电电路应能进行电池的均衡充电,避免电池在充电过程中的电压差异增大,以提高电池的寿命和性能。

根据以上要求,我们可以设计一个简单的锂电池充电电路。

这个电路由三个关键部分组成:充电电流控制单元、电池保护单元和均衡充电单元。

充电电流控制单元的主要功能是限制电池的充电电流,在安全范围内提供足够的充电电流。

一种常见的控制方式是使用恒流充电器,该充电器通过固定的电流源将恒定电流提供给电池,直到电池达到设定的充电终止电压。

这种方式简单易行,但需要充分考虑控制电路的稳定性和充电终止机制,确保充电过程中的安全性和高效性。

电池保护单元的主要作用是监测和保护电池,防止过充、过放和过高温。

该单元通常包括电压检测电路、温度检测电路和短路保护电路等。

电压检测电路可以实时监测电池的电压,当电压达到设定的过充或过放电压时,采取相应的措施,如切断电池与外部电源的连接,以防止电池受到损害。

温度检测电路可以检测电池的温度变化,并在温度过高时采取保护措施。

(完整版)锂电池充电电路详解

(完整版)锂电池充电电路详解

锂电池充电电路图锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。

一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。

充电时锂离子由正极向负极运动而嵌入石墨层中。

放电时,锂离子从石墨晶体内负极表面脱离移向正极。

所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。

因而这种电池叫做锂离子电池,简称锂电池。

锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。

镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。

镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。

二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。

锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。

正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。

锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。

与其它可充电池相比,锂电池价格较贵。

三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。

电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。

正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。

负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。

电池内充有有机电解质溶液。

3.7v锂电池充电电路及负载保护

3.7v锂电池充电电路及负载保护

37v锂电池充电电路及负载保护一、3.7v锂电池充电电路3.7v锂电池的充电电路通常由充电电源、充电控制器、电池保护板等组成。

充电电源一般采用恒压恒流电源,以确保电池能够正常充电。

充电控制器一般采用芯片来实现,例如常用的LTC4000、TWL6016等芯片。

在充电电路中,电池保护板是必不可少的组件,它能够防止电池过充、过放、短路等危险情况的发生,从而保护电池的安全。

电池保护板一般由MOS 管、电阻、电容等元件组成。

二、负载保护负载保护是电路中非常重要的一部分,它可以确保电路在遇到负载异常情况时能够及时切断电源,以保护电路和电池的安全。

对于3.7v锂电池的负载保护,一般采用保险丝和MOS管来实现。

当电路中的电流超过保险丝的额定值时,保险丝会自动熔断,从而切断电源,保护电路和电池的安全。

而当电路中的电压超过MOS管的额定值时,MOS管会自动导通,使电流从MOS管中流过,从而保护电路和电池不受损坏。

除了以上两种常见的负载保护方式,还有其他的负载保护方式,例如采用继电器、晶闸管等元件来实现负载保护。

但是,这些负载保护方式相对来说比较复杂,需要更多的元件和电路设计。

三、保护板的设计与调试在设计3.7v锂电池的充电电路和负载保护时,需要考虑以下几个因素:1.电池的容量和充电电流的大小;2.充电电源的电压和电流的大小;3.负载的电流和电压的大小;4.保护板的功耗和散热情况;5.保护板的可靠性和稳定性。

在设计好充电电路和负载保护后,需要进行调试以确保其正常工作。

调试过程中需要注意以下几点:1.检查充电电源的电压和电流是否正常;2.检查充电控制器的芯片是否正常工作;3.检查电池保护板的MOS管是否正常工作;4.检查负载保护是否正常工作;5.检查整个电路的功耗和散热情况是否正常。

通过以上步骤,可以设计出一个可靠、稳定的3.7v锂电池充电电路及负载保护。

简单可靠的锂电池充电方案(电路图)

简单可靠的锂电池充电方案(电路图)

简单可靠的锂电池充电方案(电路图)A:图1电路特点:相对简单,容易理解,元件容易取得,功能完善,特性理想。

Vin是直流,蒸馏稳压即可,但需要保证最小输入比vout 高2V。

图2为改进型,从功能上,可充1~4节锂电池(通过R2来转换),充电电流0.1~3A连续可调(通过R5),方式是高精度的恒流恒压(CC/CV)。

指示方面,分别用白色、红色、橙色、绿色LED指示电源、快充、慢充、充满、提供短路保护、过电压保护、反接保护、断电保护。

CC/CV方式本身保证充电不会过呀、过流。

图2电路的设计中,感觉比较得意的有两点:1.LED1和LED2兼做"与门"罗技。

2.充满指示,与电流设定值无关,都是到最大充电电流的5%,感觉不安的有:1.LED2必须用红色,要求5mA下压降不要超过1.8V,否则短路电流(设计为很小)仍然较大。

2.还是复杂了些(主要考虑在保证性能,功能前提下的简化问题)。

Q:那直接把LM324换成IM339不久可以了?还有,那个电流源怎么做?难道真的做个恒流电路?A:是的,LM324和LM339通用,开始我的确使用OC的LM339来解决"或"关系,但后来把LED插进来,发现也可以用LM324,而且我手边只有LM324,如果省去充电指示功能(很多充电器没有或者不是真正的,例如飞毛腿),可以用8脚的双比较器LM393,并可以省去另外4个元件。

电流源可以这样做:1.用成品电流源,我手里有两个。

2.用小功率结型场效应管,直接把S和G(即源极和栅极)接到一起。

3.用1个二极管、2个电阻和一个PNP三极管。

若不用恒流源也可以凑合使用,改为一个店主(1KΩ),但效果差一些。

Q:此电路充电电流也是0.6A吗?多长时间能充满7.2V、1360mAh的锂电池?A:电流是可以通过店主来调节的。

当调节到700mA时,充满为两个多小时,一般充电电流都取0.5C,太大了对寿命不理,太小了充电时间太长。

最简单的锂电池充电电路

最简单的锂电池充电电路

最简单的锂电池充电电路锂电池充电电路是一种相对较新的充电系统,它可以通过电压和电流控制的方式快速充电锂电池,是减少低耗能设备的最佳选择。

建立锂电池充电电路,一般有两种方式:一是使用集成电路,并通过温度控制以确保安全运行;二是组装端到端的充电电路。

本文主要介绍第二种方式,使用简单的端到端充电电路来充电锂电池,建立起一个最简单的锂电池充电电路。

首先,需要准备一块锂电池,它必须包含一个压缩电路板。

然后,组装一个简单的端到端的锂电池充电电路,需要在电路板上安装一个小电流型电源,它可以提供1.5V-2.2V的直流电,以及一个桥式整流电路。

此外,还需要安装一个恒流恒压控制电路,可以控制电流和电压,以及一个示波器,可以监控电路工作情况。

安装完上述元器件后,可以通过控制和观察恒流恒压控制电路和示波器的所有参数,以确保锂电池在最安全的条件下充电。

具体来说,需要把桥式整流电路的输出电压设置为大于1.5V,以保证能够正常充电。

通过调整电流控制电路,可以有效控制电流,并通过观察示波器,可以掌握当前电路的实时电流、电压以及其他参数。

最后,将锂电池接入端到端的充电电路,将整流电源处于开机状态下,就可以开始充电了。

在充电过程中,可以不断通过观察示波器上电流和电压以及其他参数,确保锂电池运行安全可靠。

在电流和电压满足要求的情况下,锂电池就可以充满电并停止充电了。

以上是我们如何建立一个简单的锂电池充电电路的步骤,要想实现自动充电和智能控制,则可以采用更复杂的方法。

另外,锂电池充电电路也有一些特殊场合也可以考虑使用,比如家庭影院类应用中,需要考虑建立多个锂电池充电电路,以满足不同的时间要求。

锂电池充电器 多路电压充电电路原理

锂电池充电器 多路电压充电电路原理

锂电池充电器多路电压充电电路原理一、概述随着电子产品的普及和发展,锂电池作为一种轻量、高能量密度和无记忆效应的蓄电池,被广泛应用于无线终端、平板电脑、数码相机、电动工具等领域。

充电器作为锂电池的重要配套设备,其充电效率和安全性对于用户的使用体验和安全保障至关重要。

在实际应用中,不同种类的锂电池需要采用不同的充电电路,而多路电压充电电路则是为了满足不同种类锂电池的需求而设计。

二、多路电压充电电路原理1. 单一电压充电电路在传统的锂电池充电器中,常采用单一电压充电电路,即通过一个固定电压的充电器对锂电池进行充电。

这种充电方式简单直接,但对于不同种类的锂电池则无法进行精准充电,易导致充电效率低、充电时间长、甚至损坏锂电池的情况发生。

2. 多路电压充电电路多路电压充电电路是为了解决单一电压充电电路对不同种类锂电池充电效果不佳的问题而设计。

其原理是根据不同种类的锂电池在充电时所需的电压和电流进行动态调整,以达到最佳的充电效果。

具体来说,多路电压充电电路可分为两种工作方式:(1) 串联充电串联充电即采用多组电池串联的方式进行充电,每组电池对应一个充电电压。

通过对每组电池的充电电压进行独立控制,可以实现对不同种类的锂电池进行个性化的充电。

而在实际充电过程中,通过电路中的监测装置对电池状态进行实时监测,可调整充电电压和电流,保证锂电池能够在最佳充电状态下充电。

(2) 并联充电并联充电即采用多路并联的方式进行充电,每路对应一个充电电压。

不同于串联充电的独立调控,并联充电更注重充电电压的平衡控制。

在并联充电电路中,会通过电压采样和控制电路对每路电池进行实时监测并调整各路电池的充电电压和电流,以保证各个电池在充电过程中能保持相同的电压和电流,避免出现过充或者过放的情况。

三、多路电压充电电路的优势1. 适应性强多路电压充电电路可根据不同种类的锂电池进行个性化的充电调整,适应性强。

无论是锂离子电池、聚合物锂离子电池、磷酸铁锂电池还是锰酸锂电池,都可以通过多路电压充电电路进行精准充电。

锂电池充电电路

锂电池充电电路

离子电池充电要求较高.过充会造成电池报废。

采用图1所示最简充电电路绝无过充之虞。

该电路通过1μF电容将充电电流限制在70mA左右。

将TL431接成4.2V的电压源并联在电池两端。

当电池电压低于4.2V时,TL431截止.电流全部充入电池。

当电池电压升高到接近4.2V时,TL431开始发挥分流作用,当电池电压为4.2V时,电流全部流入TL431。

此时,TL431的功耗为0.3W,不超过最大功耗。

由于充电电流较小.故充电时间较长是其不足之处。

电路中,R2和R3的阻值一定要准确。

可在接入电池前测一下TL431两端是否为4.2V。

本电路同220V交流电之间无变压器隔离,所以应在接好电池后再插人插座,以保证人身安全。

简述:自制一个简单实用的锂电池充电器,改变图中4欧的电阻可以改变充电电流,D1是电源指示,D2是充电指示兼限流。

简单实用的锂电充电器自制一个简单实用的锂电池充电器改变图中4欧的电阻可以改变充电电流,D1是电源指示,D2是充电指示兼限流。

调试时6.8K电阻用一10K微调电阻代换,用数字表监视电池电压到4.2V时,调10K微调电阻到内置充放电控制与保护电路的半导体照明锂电池矿用帽灯发布时间:2007-5-14 14:25:001 概述为了减小体积和重量,近年来矿用帽灯开始采用锂离子电池。

在电池组内加装过充电、过放电和短路保护电路后,不仅保护锂离子电池,而且开灯、关灯甚至外部短路时,都不会产生火花,实现了本质安全工作。

在实际推广应用中,这种新型矿灯暴露出许多较严重的问题。

主要表现在锂离子电池的安全性能较差,尽管加入了保护电路,但仍出现了电池组燃烧和爆炸的严重事故。

此外,矿灯改用锂离子电池后,原有的充电架不能对锂电池矿灯充电,矿山必须更换充电架,造成巨大的资源浪费。

另外,锂离子电池的价格较高,矿灯用的8Ah锂电池组的价格在90元左右,矿灯的零售价为250多元,为现有铅酸电池矿灯的3~4倍。

因此大量普及这种新型矿灯的难度很大。

锂电池充电电路详解

锂电池充电电路详解

For personal use only in study and research; not for commercial use锂电池充电电路图锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。

一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。

充电时锂离子由正极向负极运动而嵌入石墨层中。

放电时,锂离子从石墨晶体内负极表面脱离移向正极。

所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。

因而这种电池叫做锂离子电池,简称锂电池。

锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。

镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。

镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。

二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。

锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。

正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。

锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。

与其它可充电池相比,锂电池价格较贵。

三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。

电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。

正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。

锂离子电池充电器电路图讲解

锂离子电池充电器电路图讲解

锂离子电池充电器电路图讲解
我们可以简单地通过串联一个(电阻)来限制(电源)的(电流)来为镍镉或镍氢电池充电,从而实现高效负载。

但(锂离子电池)(Li-Ion)则不然,它的容量比以往任何时候都大,充电时不需要完全放电,但需要严格控制充电。

如果我们谈论锂离子电池对一组镍氢电池或六分之一的相同镉进行第三次充电。

但这需要在充电过程中向电池提供相对较高的电源电流,并且必须在轨脉冲控制中提供。

在这种类型的电池充电不受控制的滴水(例如,常见于报警系统中)或与电源线串联的负载电阻中,无一例外,它会自行毁坏。

但有许多有源元件、(半导体)能够承载、控制和维护这些电池,几乎不需要额外的外部元件。

在图中,我们看到了典型的锂离子电池充电器电路,它发现更容易实现与分立(电子)器件类似的性能。

该(芯片)负责测量电池的状态(通过其FeedB(ac)k(端子))并由控制电压输出端子(Out)发送。

(电容器)允许充当寄生(RF)(滤波器)和(电位器)50以根据电池的工作电压来调整系统。

该锂离子充电器电路可由6 至10V 之间的直流电压(供电),电流等于待充电电池容量的1.5 倍。

一旦打开电源或将电池放入电路中,请检查其充电状态,如有必要,请检查负载的充电状态。

电路负载进入待机模式后,定期检查电池的状态是否应继续充电。

锂离子电池充电器电路专为带有锂离子电池的电池而设计。

重要的是,这种电池不能串联或并联充电,因此必须为要同时充电的每个电池组装系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂电池充电电路详解四、锂电池的充放电要求;1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。

其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。

通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

充电电流(mA)=0.1,1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135,2025mA之间)。

常规充电电流可选择在0.5倍电池容量左右,充电时间约为2,3小时。

2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。

否则,电池寿命就相应缩短。

为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。

放电终止电压通常为3.0V/节,最低不能低于2.5V/节。

电池放电时间长短与电池容量、放电电流大小有关。

电池放电时间(小时)=电池容量/放电电流。

锂电池放电电流(mA)不应超过电池容量的3倍。

(如1000mAH电池,则放电电流应严格控制在3A以内)否则会使电池损坏。

目前市场上所售锂电池组内部均封有配套的充放电保护板。

只要控制好外部的充放电电流即可。

五、锂电池的保护电路:两节锂电池的充放电保护电路如图一所示。

由两个场效应管和专用保护集成块S--8232组成,过充电控制管FET2和过放电控制管FET1串联于电路,由保护IC 监视电池电压并进行控制,当电池电压上升至4.2V时,过充电保护管FET1截止,停止充电。

为防止误动作,一般在外电路加有延时电容。

当电池处于放电状态下,电池电压降至2.55V时,过放电控制管FET1截止,停止向负载供电。

过电流保护是在当负载上有较大电流流过时,控制FET1使其截止,停止向负载放电,目的是为了保护电池和场效应管。

过电流检测是利用场效应管的导通电阻作为检测电阻,监视它的电压降,当电压降超过设定值时就停止放电。

在电路中一般还加有延时电路,以区分浪涌电流和短路电流。

该电路功能完善,性能可靠,但专业性强,且专用集成块不易购买,业余爱好者不易仿制。

六、简易充电电路:现在有不少商家出售不带充电板的单节锂电池。

其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。

有兴趣的读者可参照图二制作一块充电板。

其原理是:采用恒定电压给电池充电,确保不会过充。

输入直流电压高于所充电池电压3伏即可。

R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。

随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止, LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。

使用时请给Q2、Q3装上合适的散热器。

本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池(通过改变W1可以对多节串联锂电池充电,改变W,可以对充电电流进行大范围调节。

缺点是:无过放电控制电路。

图三是该充电板的印制板图(从元件面看的透视图)。

锂电池需充足电后保存。

在20?下可储存半年以上,可见锂电池适宜在低温下保存。

曾有人建议将充电电池放入冰箱冷藏室内保存,的确是个好注意。

锂电池绝对不可解体、钻孔、穿刺、锯割、加压、加热,否则有可能造成严重后果。

没有充电保护板的锂电池不可短路,不可供小孩玩耍。

不能靠近易燃物品、化学物品。

报废的锂电池要妥善处理。

四、锂电池的充放电要求;1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。

其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。

通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

充电电流(mA)=0.1,1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135,2025mA之间)。

常规充电电流可选择在0.5倍电池容量左右,充电时间约为2,3小时。

2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。

否则,电池寿命就相应缩短。

为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。

放电终止电压通常为3.0V/节,最低不能低于2.5V/节。

电池放电时间长短与电池容量、放电电流大小有关。

电池放电时间(小时)=电池容量/放电电流。

锂电池放电电流(mA)不应超过电池容量的3倍。

(如1000mAH电池,则放电电流应严格控制在3A以内)否则会使电池损坏。

该电路很简洁,采用了一块软封装的集成块并标有AE3102字样,通过对其8个引脚分析,是集成了两个运放。

开关电源部分采用抑制振荡型开关电源,它的简单工作原理是把220V交流电整流滤波成峰值电压300V左右的三角波(滤波电容C不用),利用稳压器组成电平开关,控制开关管1Q的振荡与停止。

此开关电源初级电流很小,Q的C极反峰电压也较低,因此可以使用Vceo11大于300V的TO-92封装的小型开关管,以缩小体积降低成本。

开关电源部分:Q和开关变压器组成间歇振荡器。

充电器加电后,220V市电经D半波整流后在Q的C极111上形成一个300V左右的直流电压,经过变压器初级加到Q的C极,同时该电压还经启动1电阻R为Q的B极提供一个偏置电压。

由于正反馈作用,Q的I迅速上升而饱和,在Q211C1进入饱和期间,开关变压器次级绕组产生的感应电压使D导通,向负载输出一个约9V左2右的直流电压。

开关变压器的反馈绕组产生的感应脉冲经D整流、C滤波后产生一个与振32荡脉冲个数呈正比的直流电压。

此电压若超过稳压管Z的稳压值,Z便导通,此负极性整11流电压便加在Q的B极,使其迅速截止。

Q的截止时间与其输出电压呈反比。

Z 的导通,111截止直接受电网电压和负载的影响:电网电压越低或负载电流越大,Z 的导通时间越短,1Q的导通时间越长,反之,电网电压越高或负载电流越小,D的整流电压越高,Z的导通131时间越长,Q的导通时间越短。

1充电部分:手机电池残留电压(约3V)经R、R分压后,(1.3V)加至IC(AE3102)?脚,手机1715电池残留电压同时经R点亮LED,经LED稳压后的电压(1.8V)加至IC?脚,此电压低于1611IC?脚电压,IC?脚输出低电平。

此低电平使Q导通,进行充电。

R的作用是使LED的281稳压值更稳定,LED同时作电源指示。

1IC内第?运放与?脚的C组成振荡电路。

由?脚输出振荡方波,通过R使LED闪烁,指5122示充电。

随着电池电压上升,当经R、R分压后的(?脚)电压高于LED的稳压(?脚)电压时,17151IC?脚输出高电平,使Q截止,并点亮LED指示充电结束。

此时,LED熄灭。

232D是防止电池反接损坏电路;R是过流保险电阻;R是在充电结束后进行小电流补充之用,4186说明书要求此时间约为0.5小时。

多功能部分:该充电器使用了方便的电池夹,其两个电极可任意分开大小,适应多种手机锂电。

在充电器侧面还留有小灵通充电接口。

在充电器的另一个侧面,有一个极性转换开关,只有电池极性与充电极性相符时,测试灯LED才会点亮 1该电路主要由锂电池保护专用集成电路,,,,,充、放电控制,,,,,,,(内含两只,沟道,,,,,,)等部分组成,单体锂电池接在,,和,,之间,电池组从,,和,,输出电压。

充电时,充电器输出电压接在,,和,,之间,电流从,,到单体电池的,,和,,,再经过充电控制,,,,,,到,,。

在充电过程中,当单体电池的电压超过,(,,,时,专用集成电路,,,,的,,脚输出信号使充电控制,,,,,,关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到,(,,,时,,,,,的,,脚输出信号使放电控制,,,,,,关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,,,,,的,,脚为电流检测脚,输出短路时,充放电控制,,,,,,的导通压降剧增,,,脚电压迅速升高,,,,,输出信号使充放电控制,,,,,,迅速关断,从而实现过电流或短路保护。

锂电池保护板工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。

此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。

此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。

2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。

此时电芯的B-与保护板的P-之间处于断开状态。

即电芯的放电回路被切断,电芯将停止放电。

保护板处于过放电状态并一直保持。

等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。

4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。

此时电芯的B-与保护板的P-之间处于断开状态。

即电芯的充电回路被切断,电芯将停止充电。

保护板处于过充电状态并一直保持。

等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 5.保护板短路保护控制原理:如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。

相关文档
最新文档