循环冷却水系统结垢问题及控制方法

合集下载

循环水(冷却水)腐蚀结垢及微生物问题探讨

循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀!腐蚀发生原因:金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。

最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。

a.铁材质与水中氧气作用而腐蚀,其反应如下:氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。

点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。

b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。

沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。

图 : pitting 会导致设备快速破损c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。

双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。

双金属腐蚀d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。

!腐蚀控制方法:腐蚀之控制不外是改变系统金属材质,就是改变系统环境。

改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。

然改变系统环境是目前广泛被用到控制腐蚀的方法。

在水系统内,有三种方式改变水中环境来有效抑制腐蚀;用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。

利用化学或机械方法将溶存于水中之氧气去除。

加入腐蚀抑制剂 。

如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施1.水中硬度高:水中含有大量以碳酸钙和碳酸镁为主的硬度成分,当水循环过程中温度升高后,硬度成分就会析出形成垢。

处理措施:使用软水,通过水处理设备如软化器或反渗透系统来减少水中的硬度成分。

2.水中含有有机物:循环冷却水中含有有机物,这些有机物在温度变化条件下会发生化学反应,生成沉淀物。

处理措施:使用适当的水处理试剂来稳定有机物,并保持水体的清洁。

3.循环冷却水中含有微生物:水中的微生物如藻类、细菌和真菌会在换热器内壁形成生物膜,进而导致结垢。

处理措施:使用杀菌剂来抑制微生物的生长,定期清洗换热器。

4.放热水性质变化:放热水循环过程中,温度升高,水中盐类溶解度增加,导致结垢。

处理措施:控制水质中的含盐量,定期检测水质。

1.氧腐蚀:水中含有氧气,当水接触金属表面时,氧气可以与金属发生氧化反应,导致金属腐蚀。

处理措施:使用氧化剂来控制水中的氧含量,或者使用缓蚀剂来形成保护膜。

2.酸腐蚀:循环冷却水中可能含有酸性物质,如硫酸、盐酸等,这些酸性物质会导致金属腐蚀。

处理措施:控制水质的酸性物质含量,使用缓蚀剂来形成保护膜。

3.碱腐蚀:循环冷却水中可能含有碱性物质,如氢氧化钠、氢氧化钙等,这些碱性物质会导致金属腐蚀。

处理措施:控制水质的碱性物质含量,使用缓蚀剂来形成保护膜。

4.废气腐蚀:有些工业过程中会产生含有腐蚀性气体的废气,这些废气经过冷却后溶解在水中,导致金属腐蚀。

处理措施:使用除气设备来除去废气中的腐蚀性气体,使用缓蚀剂来形成保护膜。

对于循环冷却水换热器结垢和腐蚀问题的处理措施主要有以下几点:1.定期检测和监测换热器水质,包括PH值、硬度、溶解氧等指标,并根据结果采取相应措施。

2.定期清洗换热器内部,使用适当的清洗剂和工艺来去除结垢和沉积物。

3.定期对换热器进行维护和检修,包括清洗管道、更换损坏的部件等。

4.使用适当的水处理设备,如软化器、反渗透系统等来处理水质。

循环冷却水常见问题的预防、判断及处理

循环冷却水常见问题的预防、判断及处理

循环冷却水常见问题的预防、判断及处理一、空冷塔喷淋头冷垢1.判断低温水喷淋头是否结垢:查看最近3~6个月的低温冷却水喷淋流量和阀门开度;如果喷淋流量未变,但阀门开度逐步上升(如从50%逐渐上升到80%),那说明低温水在逐渐形成低温垢,空冷塔喷淋头也有明显堵塞;如果阀门开度是固定的,但是喷淋流量明显减少(如从60m3/h下降到40m3/h),那也说明喷淋头已经明显堵塞。

2.在喷淋头堵塞不严重的情况下(未影响生产),先降低循环水的浓缩倍数,将低温水中的钙硬度控制在300mg/l之内,碱度在300mg/L以下,PH控制在8.5以下,总磷控制在5mg/l以下。

然后往低温小循环加入低温阻垢剂,通过调整喷淋流量(时大时小),将喷头缓慢逐步疏通(周期较长,2~3个月);3.如果喷淋头已经严重堵塞(已影响生产),在停机的情况下,打开空冷塔顶部的人孔,带好氧气面罩(封闭空间,安全第一),派人将喷淋管全部拆卸下来,通过物理办法(敲击、通泡)将冷垢去除。

二、水冷塔冷垢1.判断水冷塔是否有冷垢:查看最近3~6个月的数据,在同等污氮的情况下,低温水的降温率是否一致;在检修时低温水泵前过滤网上也可见低温垢。

2.水冷塔填料比较松散,一般情况下不会影响到生产,可以通过降低循环水浓缩倍数,然后在低温小循环投加低温阻垢剂缓慢剥离(3~6个月)。

三、冷冻机软垢1.判断冷冻机是否有冷垢:a.查看最近3~6月的冷冻机端差(出油温度-出水温度),如果有明显上升,说明存在问题;b.暂停冷冻机,打开冷冻机出水管,查看是否有冷垢析出;c.打开冷冻机端盖;2.冷冻机冷垢的处理:A.轻微冷垢(<0.5mm):a.快速处理:提高水温或用热蒸汽加热;b.日常处理:添加高分子分散剂,同时增大低温阻垢剂的用量。

B.严重冷垢(>1mm):a.物理方法:.用电钻夹硬毛刷,一根根铜管清洗;b..化学方法:使用化学药剂,对冷冻机进行单机清洗;清洗之前,最好做一下垢样分析。

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法一、循环冷却水系统为什么会结垢1.一般解释冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。

如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:Ca(HCO3)2→CaCO3↓+ H2O + CO2↑当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32-难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。

方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。

2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。

所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固)在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。

若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。

若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。

注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP二、抑制为结垢的方法(一)化学方法1.加酸:目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小,效果比较明显缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.2.软化目的:降低水中至垢阳离子的含量优点:防止结垢效果好缺点:操作复杂、软化后水腐蚀性增强.3.加阻垢剂:目的:使碳酸钙的过饱和溶液保持稳定。

工业循环水系统中结垢和腐蚀现象分析及控制方案

工业循环水系统中结垢和腐蚀现象分析及控制方案

工业循环水系统中结垢和腐蚀现象分析及控制方案摘要:工业水处理是使用化学和物理方法去除水中杂质的过程。

电石生产的特点是很复杂的过程,生产环节与水密不可分。

电石炉是将电能转化为热能的设备,这就决定了它时刻处在高温环境状态下运行。

为了保证电石炉长周期安全运行,对设备各系统进行冷却必不可少。

循环冷却水的再利用尤其可以提高用水过程的效率,循环水的再利用将产生盐分积聚的问题,这些问题会污染并损坏热交换器,降低传热效率并增加设备成本和安全隐患。

关键词:工业循环水系统;结垢;腐蚀前言工业循环水系统中传热面上的结垢现象一直被人们关注,有效降低管线中的结垢速率,实现持续的稳产高产,已成为电石生产领域研究的热点之一。

为保持油藏压力,提高采收率。

为了节约水资源,多数企业目前采用循环冷却水代替普通工业用水,冷却水在对设备降温的同时,其自身温度也在不断上升,有时在夏季设备冷却水出口温度高达60℃以上,这样的工作温度极易形成水垢粘接在设备内壁,从而造成设备换热效果差,而且水垢还会局部脱落、堆积阻塞管路和阀门,导致水流阻力增加,设备壁厚被腐蚀减薄,另一方面会造成垢下腐蚀,甚至穿孔,必须每隔一段时间对结垢严重的管段进行酸洗或停产维修,增加了管线维护费用,严重影响了电石的正常生产和经济效益。

1产生结垢的原因1.1硬垢天然水中溶解有各种盐类物质,有重碳酸盐、硫酸盐、氯化物、硅酸盐等。

其中溶解的重碳酸盐为最多,也最不稳定,容易分解成碳酸盐。

在使用重碳酸盐含量较多的水作为冷却水时,当通过换热器传热面时会受热分解。

当循环水经过冷却塔冷却时,溶解在水中的CO2会逸出,水的PH会升高。

重碳酸盐在碱性条件下会发生以下反应。

Ca(HCO3)2+2OH-=CaCO3↓+2H2O+CO2-3当水中溶解有氯化钙时,还会产生置换反应。

CaCl2+CO2-3=CaCO3↓+2Cl-当水中溶解有磷酸盐时,磷酸根和钙离子还会生成磷酸钙。

3Ca2++2PO3-4=Ca3(PO4)2↓当循环水在冷却蒸发过程中,水分不断蒸发而浓缩,浓缩倍数提高,原来溶解于水中的盐类浓度会不断增加,当其浓度超过同等条件下的饱和溶解度时就会出现结晶析出,形成水垢。

循环水结垢原因与防止

循环水结垢原因与防止

循环水结垢原因与防止循环水结垢是指循环水系统中,由于水中存在的溶解性固体物质(如钙、镁等)与水中的碳酸盐反应产生的沉淀物,而形成的一层或多层覆盖在管道壁上的硬垢,会严重影响循环水系统的运行效率与设备的正常运行。

下面将从结垢的原因、结垢对系统的影响以及防止结垢的措施进行阐述。

一、结垢的原因:1.水源因素:循环水系统的水源中常常含有溶解的硬度物质,特别是钙、镁等离子,这些硬度物质容易形成结垢。

2.温度因素:在高温条件下,溶解在水中的碳酸盐溶解度减小,容易形成沉淀物质,所以高温环境下结垢更严重。

3.酸碱度因素:水的酸碱度也会影响结垢的程度,当水的酸度过高时,会加速结垢的形成。

4.水的流速:水的流速与结垢也有一定的关系,当水在管道内的流速过低时,水中的沉淀物质更容易脱离水流而附着在管道壁上。

二、结垢对系统的影响:1.阻塞管道:结垢会附着在管道壁上,形成堆积的硬垢,导致管道内径减小,从而阻塞了管道,降低了水的流速。

2.减低传热效率:结垢会作为一层隔热层,降低了传热效率,导致设备间接散热效果下降,对于循环水冷却系统来说,影响了冷却效果。

3.增加能耗:由于结垢导致了管道的阻塞和传热效率的降低,系统需要消耗更多的能量来保持设计要求的循环水流速和温度,增加了能耗成本。

4.缩短设备寿命:结垢会使得设备内的水流量不均匀,造成一些设备的局部高温或高压区域,加速了设备的磨损和老化。

三、防止结垢的措施:1.水质处理:可以通过酸洗、软化等方法降低水源中的硬度物质含量,减少结垢的生成。

2.温度控制:降低水温可以减少碳酸盐的溶解度,从根源上避免了结垢的产生。

3.水质控制:通过调节循环水的酸碱度,保持在适当的范围内,避免过酸或过碱引起结垢。

4.增加水流速度:增加水流速度可以减少结垢的几率,可以通过增加泵的功率或增加管道的直径实现。

5.进行周期性清洗:定期对循环水系统进行清洗,可以有效去除已生成的结垢。

6.安装防垢装置:在循环水系统中添加防垢剂或防膜剂,可以抑制和阻止结垢的形成。

循环冷却水的结垢控制

循环冷却水的结垢控制

12-6 循环冷却水处理字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。

其后果主要表现为:(1) 铜管内水的阻力增加;(2) 在设备扬程相同的情况下,冷却水的流量减少;(3) 使凝汽器进出口的冷却水温差加大;(4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。

当出现上述现象时,就应对循环冷却水予以判别。

一、水质判断在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下Ca(HCO3)2→CaCO3↓+CO2+H2O(12-36)尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。

循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。

水质判断的主要方法有:1.饱和指数法[又称朗格里尔(Langlier)指数法]它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。

即IL=pH0-pH s(12-37)式中I L——饱和指数;pH0——水的实测pH值;pH s——水在碳酸钙饱和平衡时的pH值。

当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。

pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出:pH s=(9.3+N s+N t)-(N H+N A)(12-38)饱和指数和稳定指数配合应用,将更有助于判断水质的倾向。

运用指数来判断水质问题有很大的局限性,因为它仅依单一碳酸钙的溶解平衡作为判断依据,没有考虑结晶和电化学过程,更未考虑水中胶体的影响,而且把碳酸钙既作为缓蚀剂又作为污垢来考虑。

循环冷却水的腐蚀和结垢及其控制原理

循环冷却水的腐蚀和结垢及其控制原理

循环冷却水的腐蚀和结垢及其控制原理循环冷却水是用于工业生产中的一种重要的流体介质,用于散热装置中传递热量并保持设备的温度稳定。

然而,长时间运行的循环冷却水系统面临着腐蚀和结垢的问题。

本文将对循环冷却水的腐蚀和结垢原理以及控制措施进行探讨。

首先,循环冷却水腐蚀的原因可以归结为两个方面:化学腐蚀和电化学腐蚀。

化学腐蚀是指水中的氧气和酸性或碱性物质与金属表面产生化学反应,从而导致金属表面的腐蚀。

例如,循环冷却水中的溶解氧会与金属表面发生氧化反应,产生氧化物,从而破坏金属表面并加速腐蚀过程。

此外,循环冷却水中存在的酸性或碱性物质如硫酸、盐酸、氢氧化钠等也会与金属发生反应,导致腐蚀。

另一方面,电化学腐蚀是指水中存在的溶解电解质和金属表面之间的电化学反应。

循环冷却水中的溶解电解质和金属表面形成一个电池系统,其中金属是阳极,而水中的电解质则是阴极。

当水中存在氯离子、硫酸根离子等电解质时,它们可以通过齐物质交换和水解来产生强氧化性反应物,进一步加速金属腐蚀过程。

与腐蚀相对应的是结垢问题。

当循环冷却水中溶解的无机盐超过饱和度,溶解度降低,就会导致盐类沉淀,形成结垢。

结垢主要是由硅酸钙、硅酸镁、硅酸钠等硅酸盐类沉淀所致。

结垢的形成不仅会在水冷器内壁形成厚度不均匀的氧化层,还可能导致水道堵塞,降低散热器的效能。

针对循环冷却水的腐蚀和结垢问题,可以采取以下控制措施:1.控制水质:通过水质处理控制循环冷却水中的溶解氧、酸性或碱性物质的含量。

例如,可以通过气体除氧、化学除氧等方法,降低水中溶解氧的含量;使用缓蚀剂或pH调节剂来控制水中的酸碱度,并保持在适宜的范围内。

2.表面处理:通过对金属表面进行化学处理或物理处理,形成一层保护性的氧化层或膜层,减缓金属腐蚀的速度。

例如,可以通过阳极氧化、镀层、喷涂等方法来处理金属表面。

3.控制水温和水流速度:降低循环冷却水的温度和增加水流速度,可以减少酸碱物质的浓缩和腐蚀的机会,同时也可以减少结垢的发生。

化工循环水系统存在问题及应对措施

化工循环水系统存在问题及应对措施

摘 要:某公司因烯烃装置与循环水进行热交换的冷却器系统存在着工艺侧长期泄漏,导致循环水浊度上升,换热器结垢严重,引起烯烃装置丙烯制冷压缩机出口压力高,导致烯烃装置被迫降负荷,造成效益损失。

通过在泄漏点投加杀菌剂,避免微生物滋生;同时引进撬装旁滤和提高旁滤量,使化工循环水浊度显著下降,生产装置处理能力得到有效提升。

关健词:循环水 烯烃装置 泄漏化工循环水系统存在问题及应对措施戴先进(福建联合石油化工有限公司,福建泉州 362800)收稿日期:2020-11-25作者简介:戴先进,工程师。

1999年毕业于同济大学环境工程专业,目前从事炼油化工一体化装置污水处理工作。

丙烯制冷压缩机是乙烯装置的心脏,也是影响生产稳定的关键设备。

丙烯制冷压缩机平稳运行,才能保证乙烯稳产高产,最终实现效益最大化。

而循环水对装置平稳生产,增收创效,起着保驾护航的作用。

1 化工循环水制约丙烯制冷压缩机的运行烯烃装置丙烯制冷压缩机出口压力经常超过高限值1.75 MPa ,详见图1,其一旦接近高高限联锁值1.92 MPa ,就会造成压缩机联锁停车。

为此,某公司在优化运行策略中明确要求,将该装置的生产负荷从400~436 t/h 调整至380~416 t/h 。

丙烯制冷压缩机出口压力由最后一级压缩后的丙烯气体在冷凝器实现全部冷凝后的温度决定。

循环冷水温度的高低直接影响着丙烯制冷压缩机的运 行[1]。

化工循环水场热水温度高、换热器结垢严重,导致换热器换热系数下降[3],并缩小了流通截面积[4],因此造成丙烯冷凝器的冷凝温度上升。

2 化工循环热水温度高的原因和解决措施2.1 烯烃热负荷超过循环水冷却能力对烯烃装置近期的运行数据进行整理,发现烯烃装置的热负荷超过循环水的冷却能力。

特别是夏天,循环冷水与热水温差最高接近14℃,平均10.97℃,已超过设计能力,如表1所示。

2.2 降低化工循环水的热负荷要降低烯烃装置的循环热水温度,就需要降低化工循环水的热负荷。

循环冷却水系统结垢问题及控制方法

循环冷却水系统结垢问题及控制方法
工 业 技 术
2 0 1 3 年 鲔1 期I 科技创新与应用
循 环冷却水系统结垢 问题及控制 方法
王 兆岳
( 唐山佳华煤4 EX - 有 限公 司, 河北 唐 山 0 6 3 6 1 1 )
摘 要: 本文 详 细 分析 了我公 司循 环冷 却 水 应 用 中 出现 的结垢 问题 及其 控 制 的方 法 , 工 业 用水 采 用循 环水 技 术 的必要 性 。 关键词: 循 环 冷 却 水 系统 ; 结垢 ; 控 制方 法 1工业 用 水 采用 循 环水 技 术 的必 要 性 我 国 淡 水 资 源 并 不 丰 富且 分 配 很 不 均 衡 , 北方 缺雨 少 水 , 更 显 水源紧张 , 节约用水 日益迫切 。 因此 , 无论从节约水源还是从经济观 点和保护环境的观点 出发 ,推广采用循环冷却水系统是 大势所趋。 循环用水 比起直流水 , 除节约大量新鲜水 、 减少排污水量 之外 , 还可 以防 止 热 污染 。 2循环冷却水系统结垢 问题及控制方法 循环冷却水系统 常见问题 主要分为三类 : 结垢、 腐蚀 、 淤积。上 述三类问题会导致热交换能力下降 ; 设备寿命缩短 ; 设备运行故障 ;
3 . 1 . 3系 统 中水 的 流速
产能下降 ; 增加维护费用 ; 系统停产。 所 以应对循环冷却水 日常运行
中上 述 三种 情 况 提 高重 视 。 2 . 1补 充水 水 质 判 断 例如补充水水质分析数据 为: 总硬度( 以C a C O 计) 1 3 9 . 9 4 mr , / L ; 钙硬度( 以C a C O 3 计) 9 8 . 7 8 m g / L ; 总碱度( 以C a C O 3 计) 1 8 7 . 4 8 m g / L ; 氯离子( C l 一 ) 7 . 9 9 m g / L ; P H值 8 . 0 7 ; 电导率 3 0 7 t x s / c m。

循环水结垢原因与防止

循环水结垢原因与防止

循环水结垢原因与防止1、固相物的生成⑴形成污垢的原因:①多组份过饱和溶液中盐类的结晶析出;②有机胶状物和矿质胶状物的沉积;③不同分散度的某些物质固体颗粒的粘结;④某些物质的电化学还原过程生成物等。

以上混合物沉积总称作污垢。

⑵形成水垢的原因:水中溶解盐类产生固相沉淀是构成结垢(水垢)的主要因素,其产生固相沉淀的条件是:①随着温度的升高,某些盐类的溶解度降低,如Ca(HCO3)2、CaCO3、Ca(OH)2、CaSO4、MgCO3、Mg(OH)2等;②随着水份的蒸发,水中溶解盐的浓度增高,达到过饱和程度;③在被加热的水中产生化学过程,某些离子形成另一些难溶的盐类离子。

具备了上述条件的某些盐类,首先在金属表面上个别部分沉积出原始的结晶胚,并以此为核心逐渐合并增长。

之所以易沉积于金属表面,这是因为金属表面在微观上具有一定的粗糙度,微观上的凹凸不平成为过饱和溶液中固体结晶核心;同时加热面上的氧化膜对固相物也有很强的吸附力。

作为构成水垢的盐类——钙镁,在过饱和溶液中生成固相结晶胚芽,逐变而为颗粒,具有无定形或潜晶型结构,接着互相聚附,形成结晶或絮团。

固相沉渣的生成与胚芽核心的生成速度有关,即与单位时间内出现的结晶核数量与结晶生长的线速度有关,而这两个因素又与水温和水中含盐浓度及其它杂质的存在有关。

2、重碳酸盐的分解冷却水结垢的主要原因是因为水中含有较多的重碳酸钙,在加热过程中失去平衡,分解为碳酸钙、二氧化碳和水。

碳酸钙溶解度较低,因而首先在冷却设备表面沉积下来.温度、压力等因素也影响结垢的强度与速度。

重碳酸钙是反溶解度盐类,在超过一定温度(临界点)时,其饱和浓度急剧减小。

3、钙、镁碳酸盐水垢碳酸盐水垢通常以致密的结晶沉淀在加热器壁面甚至冷却塔填料或壁上。

但当水温在过热面超过100℃时,CaCO3沉淀是海绵状的絮状体。

虽然,在沸腾温度以下,也有可能出现硫酸钙的沉淀,但这只能是特例,因为硫酸钙的三种状态:Ca SO4、2CaSO4·H2O、CaSO4·2H2O三者的溶解度都很大,因而在冷却水的具体条件下,可以完全不必考虑硫酸钙的沉积问题。

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法一、循环冷却水系统为什么会结垢1.一般解释冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢.如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:Ca(HCO3)2→CaCO3↓+ H2O + CO2.当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:Ca(HCO3)2+ 2OH—→CaCO3↓+ 2H2O + CO32—难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。

方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。

2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。

所以在溶液里也出现这样的平衡:Ca2++CO3 2—CACO3(固)在一定条件下达到平衡状态时〔Ca2+〕与〔CO32—〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值.若此条件下〔Ca2+〕×〔CO32—〕>K SP时,平衡向右移,有晶体析出。

若此条件下〔Ca2+〕×〔CO32—〕<K SP时,平衡向左移,晶体溶解.注:实际情况下〔Ca2+〕×〔CO32—〕值称为K CP二、抑制为结垢的方法(一)化学方法1。

加酸:目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小,效果比较明显缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.2.软化目的:降低水中至垢阳离子的含量优点:防止结垢效果好缺点:操作复杂、软化后水腐蚀性增强.3。

循环水处理整体解决方案

循环水处理整体解决方案

循环水处理整体解决方案一. 循环冷却水系统概况二. 问题概述循环冷却水系统日常运行面临的问题:2.1 设备结垢,阻碍传热,增加能耗,降低生产负荷结垢:是指水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。

冷却水中富含碳酸氢钙等不稳定盐类,在换热管壁受热,即转变为碳酸钙等致密硬垢,规则沉积在管壁,其传热效率仅为碳钢的1%左右,也就是在换热管壁如果沉积0.5mm厚的硬垢,就相当于换热管壁厚增加了50mm,严重阻碍传热的正常进行,能耗增加,从而对生产负荷构成极大影响,甚至停车。

2.2 滋生粘泥软垢,阻碍传热;加速设备腐蚀,特别是发生点蚀事故阻碍传热:微生物繁殖、代产生的黏液(象胶水一样具有很强黏性),与循环水中的悬浮物(补充水进入、冷却塔抽风冷却水洗涤空气灰尘进入)和微生物尸体等交织黏附在一起,随水流黏附在设备壁面,不久就会形成一层滑腻的垢层,即所谓的表面疏松多孔的软垢。

附着在换热管壁的软垢,是热的不良导体(导热系数很小,只有不锈钢材的百分之一),因此会造成换热效果明显下降,影响生产负荷。

发生点蚀:软垢层疏松多孔,为氧气的渗入形成良好通道,在循环水这个大的电导池中(富含盐),形成无数个小浓差电池,每个小电池就是一个点发生电化学反应,从而加速设备点蚀现象的发生,久之即发生纵深腐蚀穿孔事故。

2.3 设备腐蚀,缩短使用寿命腐蚀:是指通过化学或电化学反应使金属被消耗破坏的现象。

在循环水系统中,主要以溶解氧化学或电化学腐蚀为主,这种腐蚀除了会造成系统的水冷设备损坏或使用寿命减少外,还会由于腐蚀造成水冷器穿孔,从而引起工艺介质泄漏造成计划外的停车事故等,另外由于腐蚀会产生锈镏,会引起换热效率下降或管线堵塞等危害。

三. 循环冷却水处理技术要求3.1 循环冷却水系统设计标准HG/T 20690-2000《化工企业循环冷却水处理设计技术规定》,《GB50050-95》3.2 补充水预处理水质要求3.3 循环水系统水处理效果指标3.4补充水量与浓缩倍率、排污水量关系补充水量 = 蒸发水量 + 排污水量 + 风吹损失 + 渗漏.1 蒸发水量: E =⊿T×Q×4.184÷R(m3/h )式中:T—示进出水温差,℃;Q—示循环水量,m3/h;R—示蒸发潜热,kJ/kg;(根据系统设计温度一般R值为2404.5 kJ/kg).2 风吹损失:一般为循环水量的0.1%,为0.5 m3/h;.3 排污水量:B排 = E÷(K-1)- D(风吹)式中:K—示浓缩倍数;D—示风吹损失,一般为循环水量的0.1%;.4 系统渗漏:系统渗漏一般设为0 m3/h与水处理药剂投入关系系统水处理费用与补充水量成正比,因此提高浓缩倍率运行,是降低水处理费用的有效方法,但随浓缩倍率提高一定倍数时,又会使循环水中有害物质含量超标,因此须同时采取一定的辅助措施,如pH调节/加大旁流过滤处理等方法,使系统处理综合成本最低。

冷却循环水处理方案

冷却循环水处理方案

冷却循环水处理方案1.物理处理方法物理处理方法主要是通过物理手段去除循环冷却水中的颗粒物、悬浮物和悬浮杂质。

常用的物理处理方法有:(1)过滤:采用砂滤器、多介质滤器或超滤器等进行过滤,去除颗粒和悬浮物。

(2)沉淀:通过沉淀池,将悬浮物和悬浮物质沉淀,再通过污泥泵或底泥泵将其排除。

(3)脱气:通过脱气器将系统中的氧气和二氧化碳排除,减少腐蚀和细菌滋生的可能。

2.化学处理方法化学处理方法主要是通过添加化学药剂来调节循环冷却水的pH值、控制水垢和腐蚀,提高循环冷却水的稳定性和耐腐蚀性。

(1)碱性调整:在循环冷却水中加入氢氧化钠或石灰进行碱性调整,以控制水的酸碱度。

(2)阻垢剂:添加阻垢剂可以控制水垢的生成,减少设备的结垢和堵塞。

(3)缓蚀剂:通过添加缓蚀剂来减少金属腐蚀的速度,延长设备使用寿命。

3.生物处理方法生物处理方法主要是利用微生物对冷却循环水中的有机物进行分解和降解,减少水中的污染物。

(1)生物过滤器:利用微生物在过滤介质上生长繁殖,分解有机物和构筑微生物群落,去除COD、BOD等有机物。

(2)生物添加剂:通过添加含有特定细菌或酶的生物添加剂,加速有机物的降解和去除。

二、冷却循环水处理设备1.滤清器滤清器是冷却循环水处理中常用的设备之一,可按照过滤介质的不同分为砂滤器、多介质滤器和超滤器等。

(1)砂滤器:通过对水进行过滤,去除颗粒和悬浮物,常用于冷却塔进水前的预处理。

(2)多介质滤器:采用多种过滤介质,如石英砂、石英砾石、磁性颗粒等,能去除更小的颗粒和悬浮物。

(3)超滤器:采用高分子微孔膜进行过滤,能有效去除水中的胶体、微生物和有机物。

2.脱气器脱气器是用于去除冷却循环水中的氧气和二氧化碳的设备,既可以是物理脱气,也可以是化学脱气。

(1)空气式脱气器:通过将水与空气接触,气体从水中脱出,从而减少水中的氧气和二氧化碳含量。

(2)化学脱气器:利用化学药剂与水中的氧气和二氧化碳发生反应,将其转化为不易溶于水的化合物,再通过过滤器或沉淀池将其去除。

循环冷却水的结垢控制

循环冷却水的结垢控制

12-6 循环冷却水处理字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、 Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。

其后果主要表现为:(1) 铜管内水的阻力增加;(2) 在设备扬程相同的情况下,冷却水的流量减少;(3) 使凝汽器进出口的冷却水温差加大;(4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。

当出现上述现象时,就应对循环冷却水予以判别。

一、水质判断在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为 Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下Ca(HCO3)2→CaCO3↓+CO2+H2O(12-36)尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。

循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。

水质判断的主要方法有:1.饱和指数法[又称朗格里尔(Langlier)指数法]它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。

即IL=pH0-pH s(12-37)式中 I L——饱和指数;pH0——水的实测pH值;pH s——水在碳酸钙饱和平衡时的pH值。

当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。

pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出:pH s=+N s+N t)-(N H+N A)(12-38)饱和指数和稳定指数配合应用,将更有助于判断水质的倾向。

运用指数来判断水质问题有很大的局限性,因为它仅依单一碳酸钙的溶解平衡作为判断依据,没有考虑结晶和电化学过程,更未考虑水中胶体的影响,而且把碳酸钙既作为缓蚀剂又作为污垢来考虑。

循环水的问题及解决方案

循环水的问题及解决方案

循环水的问题及解决方案在我国的火力发电厂中,由于循环冷却水系统处理不当而引起的发电机组凝汽器腐蚀结垢问题屡见不鲜。

凝汽器腐蚀容易引起铜管穿孔、开裂,增加设备的检修时间和次数,缩短设备的使用寿命,减少发电量,增加发电成本;凝汽器结垢一方面导致垢下腐蚀,另一方面降低换热器的热交换效率(从而影响到生产效率),增加能源消耗。

在正常运行状况下,凝汽器的真空度下降为89%-92%。

如果所使用的缓蚀阻垢剂的性能不当,导致系统一定程度的结垢,使凝汽器的真空度下降为86%-89%,这将使发电热耗增大4.5%-7.5%,发电煤耗增高8%-14%/kW·H。

如果考虑停车清洗、设备腐蚀和增加维修频率等所引起的连带后果,其经济损失是异常惊人的。

总之,凝汽器腐蚀结垢所造成的直接后果真空度下降、蒸汽出力减小、正常生产处理不当而引起的发电机组凝汽器周期缩短、设备寿命降低、运行成本提高、生产效率下降,带来巨大的经济损失。

因此,采用经济的有效的手段防止循环冷却水系统的腐蚀和结垢是非常重要的。

【火力发电厂循环冷却水的处理方式】我国许多缺水地区的火力发电厂,普遍采用地下水作为循环冷却水系统的补充水。

一般而言,地下水普遍存在含盐量高和硬度、碱度高的特点。

随着系统谁的不断浓缩,硬度离子如(Ca2+,Mg2+,HCO3-等)和侵蚀性离子(如Cl-和SO42-等)的浓度不断升高,超过一定的容忍度后极易引起设备管道的腐蚀与结垢。

另外,在这些缺水地区,为了节水节能的需要,循环水的浓缩倍数一般控制较高,这就进一步加重了系统腐蚀和结垢的危险性。

对于有些以地表水作补充水的电厂循环水系统,虽然硬度离子和侵蚀性离子浓度较低,但如果浓缩倍数过高,再加上处理方式不合适,同样也会引起机组的腐蚀和结垢。

为了解决循环冷却水系统的腐蚀结垢问题,国内的火力发电厂常规的处理方法有以下几种。

1、利用软化水降低补水的硬度该方法通过离子交换去除补水中的Ca2+和Mg2+等硬度离子而达到预防无机垢沉积的目的。

循环水系统结垢原因分析及对策

循环水系统结垢原因分析及对策

循环水系统结垢原因分析及对策【摘要】在人类生活生产用水中,要从各种天然水体中取用大量的水,其中工业用水占了很大比重,约占城市用水量的80%,其中冷却用水量约占2/3。

钢铁联合企业更是消耗工业水的大户,因此处理好工业循环水对于节约水资源具有重要的意义。

本文主要从循环水的水温、浓缩倍数、系统运行管理等方面对循环水使用中常见的结垢问题进行了分析,提出了建议,对于循环水的正常运行具有一定指导意义。

【关键词】循环水冷却水;结垢;水温;浓缩倍数;运行管理Cause analysis and countermeasures of circulating water systemMa Songjie 1, Wei Xiangling 21. Guangxi Liugang Environmental Protection Co., Ltd., Liuzhou, Guangxi, 5450022. Guangxi Zhongsheng Testing Technology Co., LTD., Liuzhou, Guangxi, 545002[Abstract] In the water used for human life and production, a large amount of water should be taken from various natural water bodies, among which the industrial water consumption accounts for a large proportion, accounting for about 80% of the urban water consumption, of which the cooling water consumption accounts for about 2 / 3. Iron and steel joint enterprises are large users of industrial water, so it is of great significance to deal with industrial circulating water to save water resources.This paper mainly analyzes the common scaling problems in the use of circulating water from the aspects of water temperature, concentration multiple, system operationand management of circulating water, and puts forward some suggestions, which has some guiding significance for the normal operation of circulating water.[Key words] circulating water cooling water; scaling; water temperature; concentration multiple; operation management一、垢样成分循环水中常常溶有各种杂质,如重碳酸盐、碳酸盐、硫酸盐、氯化物、硅酸盐、磷酸盐等。

水电站机组冷却水系统存在的问题及改进措施

水电站机组冷却水系统存在的问题及改进措施

水电站机组冷却水系统存在的问题及改进措施水电站机组冷却水系统存在的问题及改进措施1. 引言在水电站的运行中,机组冷却水系统起着至关重要的作用。

冷却水的循环,能有效降低机组温度,提高发电效率,保证水电站的稳定运行。

然而,随着水电站的运行时间的推移,一些问题逐渐显现,影响到了冷却水系统的效能。

本文将重点讨论水电站机组冷却水系统存在的问题,并提出改进措施,以进一步优化水电站的发电效率及稳定性。

2. 问题分析2.1 冷却水流动不畅在长期运行后,水电站机组冷却水系统中会积累大量的污垢,如锈蚀物、沉积物等,导致冷却水的流动不畅。

这不仅会造成冷却效果的下降,还容易引发机组温度过高等安全隐患。

2.2 水质问题由于水电站机组冷却水系统需要从水源中获取大量的水,水质问题成为一个不可忽视的因素。

常见的水质问题包括水中含有多种矿物质、有机物、微生物等,这些物质会在冷却水系统中沉积,并可能引发腐蚀、结垢等问题。

2.3 能耗问题水电站机组冷却水系统的运行需要耗费大量的能源,如水泵的能耗、冷却设备的能耗等。

由于冷却水系统的排放量通常较大,能源消耗问题也十分突出,需要寻找方法降低能源的浪费。

3. 改进措施3.1 清洗和维护针对冷却水流动不畅的问题,应定期进行清洗和维护,包括清除污垢、修复损坏设备等。

可以借助高压水枪等工具,将冷却系统中的污垢清除干净,从而恢复冷却水的流动畅通。

3.2 水质处理为了解决冷却水中的水质问题,可以采取一系列措施进行水质处理,如净化、过滤、消毒等。

通过净化设备过滤掉悬浮物、微生物等有害物质,定期检测水质,及时消毒杀菌等,可以有效减少冷却水系统中的污染物和细菌数量,降低腐蚀和结垢的风险。

3.3 节能措施为了降低机组冷却水系统的能源消耗,可以采取一些节能措施。

在选择冷却设备时,可以优先选择节能型高效设备;在冷却水的循环过程中,可以合理控制冷却水流量,避免过高或过低,从而减少能源的浪费。

4. 个人观点与理解作为水电站机组冷却水系统的重要组成部分,保证其运行效能和稳定性具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环冷却水系统结垢问题及控制方法
摘要:本文详细分析了我公司循环冷却水应用中出现的结垢问题及其控制的方法,工业用水采用循环水技术的必要性。

关键词:循环冷却水系统;结垢;控制方法
1 工业用水采用循环水技术的必要性
我国淡水资源并不丰富且分配很不均衡,北方缺雨少水,更显水源紧张,节约用水日益迫切。

因此,无论从节约水源还是从经济观点和保护环境的观点出发,推广采用循环冷却水系统是大势所趋。

循环用水比起直流水,除节约大量新鲜水、减少排污水量之外,还可以防止热污染。

2 循环冷却水系统结垢问题及控制方法
循环冷却水系统常见问题主要分为三类:结垢、腐蚀、淤积。

上述三类问题会导致热交换能力下降;设备寿命缩短;设备运行故障;产能下降;增加维护费用;系统停产。

所以应对循环冷却水日常运行中上述三种情况提高重视。

2.1 补充水水质判断
例如补充水水质分析数据为:总硬度(以caco3计)139.94 mg/l;钙硬度(以caco3计)98.78 mg/l;总碱度(以caco3计)187.48mg/l;氯离子(cl-)7.99mg/l;p h值8.07;电导率307μs/cm。

2.1.1 饱和指数(l.s.i)计算:
饱和指数是水中可能产生碳酸钙结垢或产生腐蚀倾向的一种计
算指数。

l.s.i =ph- phs>0 结垢
l.s.i =ph- phs=0 稳定
l.s.i =ph- phs0 结垢型
2.1.2 结垢指数( p.s.i )的计算:
帕科拉兹认为用总碱度测定出平衡ph值(pheq)来判断水质则更接近实际。

p.s.i=2phs-pheq>6 腐蚀
p.s.i=2phs-pheq=6 稳定
p.s.i=2phs-pheq<6 结垢
循环水k=2.0时
通过查表pheq=8.3
p.s.i=2×6.78-8.3=5.26<6结垢型
通过计算说明该补充水浓缩运行后结垢性增强。

综合以上指数计算可以看出,公司各系统补充水浓缩后结垢性增强。

在该补充水质情况下循环冷却水系统日常运用中应以阻垢为主,兼顾缓蚀。

阻垢效果的好坏直接影响循环冷却水系统的正常运行。

3 结垢的主要因素及控制方法
3.1 结垢的主要因素
循环冷却水系统结垢现象是循环水系统中微溶物质在环境条件发生变化导致生成过饱和现象产生晶核析出,随着晶核不断沉积在换热器表面就形成了垢。

按垢的种类可分为碳酸垢、磷酸垢、硅酸
垢、硫酸垢等;按金属离子区分可分为钙垢、镁垢、铁垢等。

循环冷却水系统内垢的形成受到水质、水温、流速、换热温差和缓蚀阻垢剂等因素的影响。

3.1.1 循环水和原水的水质
循环冷却水在运行过程中随着水分挥发的消耗,水中各种杂质的浓度就会相应增大,结垢的概率就会同时增加。

这时补充水的水质其含盐量、碱度、硬度、ph值等指标就显得尤为重要。

这几个指标越高循环水越容易达到饱和而产生结垢。

3.1.2 水温和浓缩倍数
循环水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小。

因此水温越高越易结垢。

循环水的浓缩倍数较大时,系统中各种离子浓度相应增大,结垢概率也相应增大。

3.1.3 系统中水的流速
水垢的附着速度是随着换热器内的冷却水流速的增大而减小。

如果水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走不易沉积。

相反如果在换热器中,某些部位流速过小或水流分配不均、死角就容易沉积水垢。

3.1.4 换热温差
循环冷却水和热介质之间的换热温降也和结垢有着直接关系,温差越大换热器的结垢的概率也越大。

正是基于这个原因几乎所有换热器的冷热介质的进出流向上都是相反的,也就是说循环冷却水的
升温不会突然间过大而产生局部结垢的现象。

3.2 控制结垢方法
3.2.1 设备回水温度的控制
根据以往的经验循环水回水温度控制在不超过45℃,严格控制设备的回水温度不超过45℃。

3.2.2 浓缩倍数的控制
采用循环冷却水处理技术后,浓缩倍数达到2.0倍时与直流水相比,可节约淡水95%以上,如果将浓缩倍数从2.0提高至5.0倍时,在此基础上又可节约淡水38%左右。

浓缩倍数越高节水效果越好,但结垢概率也大大增加。

各系统浓缩倍数基本稳定在3.0左右,根据大量实例补充水与系统内水总硬指标对比来看,在药剂使用情况下没有出现明显结垢现象,说明各系统浓缩倍数3.0左右运行,系统阻垢效果较好。

如保持原有药剂投加浓度的情况下,在循环冷却水系统日常运行中必须严格将浓缩倍数控制在3.0左右。

3.2.3 缓蚀阻垢剂的管理
缓蚀阻垢剂的投加要根据药剂厂家提供的加药方案严格执行,杜绝在日常运行中出现少加药、不加药的现象,保证系统药剂浓度符合设计投加浓度。

同时还要保证现场加药设备运行正常以保持药剂添加量稳定、连续。

这样就可以保证水中的药剂成分含量和ph值一定。

3.2.4 除菌灭藻和排污的管理
生物粘泥、藻类、软垢浮渣等物质在循环水系统中的危害是巨大
的,可以造成冷却塔填料、换热设备堵塞。

杀菌灭藻剂的投加要根据药剂厂家的方式定时定量进行加药,另外还要经常检查各冷却塔内绿色藻类的滋长情况。

为降低系统中菌藻的抗药性,应采用氧化型杀菌灭澡剂与非氧化型杀菌灭藻剂交替投加,同时加杀菌灭藻剂时不排污,运行一定时间后开始排污,这样能保证水质稳定。

3.2.5 水中淤泥的清理
各水系统运行一段时间后,会在冷却塔下沉积一些淤泥等杂质。

时间久了会随着水进入冷却设备和冷却塔,造成设备和填料堵塞,影响冷却效果。

所以需定期组织人员清理冷却塔下水池和吸水井,最少一年清理两次。

3.2.6 凉水塔的日常管理
凉水塔是给水降温的地方,首先要保证在凉水塔内布水均匀并定期检查清理塔内设备,保证凉水塔的冷却效果。

凉水塔风机也要定期检查,保证其运行的稳定性。

4 结论
“三分药剂,七分管理”一个好的循环冷却水系统除了好的药剂以外,还要有好的管理。

经过以上分析,若在日常运行中做好以上六项内容,可以将循环冷却水系统的结垢概率降到最低,保证系统运行定,延长换热设备的使用寿命。

参考文献
[1]周本省.工业水处理技术[m].北京:化学工业出版社,2002,168-201.
[2]金熙等.工业水处理技术问答[m].北京:化学工业出版社,2003,70-85.
[3]唐受印等.工业循环冷却水处理[m].北京:化学工业出版社,2003,
95-125.。

相关文档
最新文档