正确额钢格构柱计算

合集下载

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算◆钢结构连接计算一、连接件类别不焊透的对接焊缝二、计算公式1.在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:2.在其它力或各种综合力作用下,σf,τf共同作用处。

式中N──-构件轴心拉力或轴心压力,取 N=100N;lw──对接焊缝或角焊缝的计算长度,取lw=50mm;γ─-作用力与焊缝方向的角度γ=45度;σf──按焊缝有效截面(helw)计算,垂直于焊缝长度方向的应力;hf──较小焊脚尺寸,取 hf=30mm;βt──正面角焊缝的强度设计值增大系数;取1;τf──按焊缝有效截面计算,沿焊缝长度方向的剪应力;Ffw──角焊缝的强度设计值。

α──斜角角焊缝两焊脚边的夹角或V形坡口角度;取α=100度。

s ──坡口根部至焊缝表面的最短距离,取 s=12mm;he──角焊缝的有效厚度,由于坡口类型为V形坡口,所以取he=s=12.000mm.三、计算结果1. 正应力:σf=N×sin(γ)/(lw×he)=100×sin(45)/(50×12.000)=0.118N/mm2;2. 剪应力:τf=N×cos(γ)/(lw×he)=100×cos(45)/(50×12.000)=0.118N/mm2;3. 综合应力:[(σf/βt)2+τf2]1/2=0.167N/mm2;结论:计算得出的综合应力0.167N/mm2≤对接焊缝的强度设计值ftw=10.000N/mm2,满足要求!◆钢结构强度稳定性计算一、构件受力类别:轴心受弯构件。

二、强度验算:1、受弯的实腹构件,其抗弯强度可按下式计算:Mx/γxWnx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.800×106 N·mm,10.000×106 N·mm;γx, γy──对x轴和y轴的截面塑性发展系数,分别取 1.2,1.3;Wnx,Wny──对x轴和y轴的净截面抵抗矩,分别取 947000 mm3,85900 mm3;计算得:Mx/(γxWnx)+My/(γyWny)=100.800×106/(1.2×947000)+10.000×106/(1.3×85900)=178.251 N/mm2受弯的实腹构件抗弯强度=178.251 N/mm2 ≤抗弯强度设计值f=215N/mm2,满足要求!2、受弯的实腹构件,其抗剪强度可按下式计算:τmax = VS/Itw ≤ fv式中V──计算截面沿腹板平面作用的剪力,取V=10.300×103 N;S──计算剪力处以上毛截面对中和轴的面积矩,取 S= 947000mm3;I──毛截面惯性矩,取 I=189300000 mm4;tw──腹板厚度,取 tw=8 mm;计算得:τmax = VS/Itw=10.300×103×947000/(189300000×8)=6.441N/mm2受弯的实腹构件抗剪强度τmax =6.441N/mm2≤抗剪强度设计值fv = 175 N/mm2,满足要求!3、局部承压强度计算τc = φF/twlz ≤ f式中φ──集中荷载增大系数,取φ=3;F──集中荷载,对动力荷载应考虑的动力系数,取 F=0kN;tw──腹板厚度,取 tw=8 mm;lz──集中荷载在腹板计算高度上边缘的假定分布长度,取lz=100(mm);计算得:τc = φF/twlz =3×0×103/(8×100)=0.000N/mm2局部承压强度τc =0.000N/mm2≤承载力设计值f = 215 N/mm2,满足要求!4、在最大刚度主平面内受弯的构件,其整体稳定性按下式计算:Mx/φbWx ≤ f式中Mx──绕x轴的弯矩,取100.8×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;Wx──对x轴的毛截面抵抗矩Wx,取 947000 mm3;计算得:Mx/φbwx = 100.8×106/(0.9×947000)=118.268 N/mm2≤抗弯强度设计值f= 215 N/mm2,满足要求!5、在两个主平面受弯的工字形截面构件,其整体稳定性按下式计算:Mx/φbWx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.8×106 N·mm,10×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;γy──对y轴的截面塑性发展系数,取 1.3;Wx,Wy──对x轴和y轴的毛截面抵抗矩,分别取 947000 mm3, 85900 mm3;Wny──对y轴的净截面抵抗矩,取 85900 mm3计算得:Mx/φbwx +My/ γyWny =100.8×106/(0.9×947000)+10×106/(1.3×85900)=207.818 N/mm2≤抗弯强度设计值f=215 N/mm2,满足要求!◆钢筋支架计算公式一、参数信息钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。

钢格构柱计算范文

钢格构柱计算范文

钢格构柱计算范文钢格构柱,也被称为网格构柱,是一种常用于建筑结构中的柱子类型。

它采用了网格状的纵、横钢筋交错布置,以提高柱子的承载能力和抗震能力。

钢格构柱的计算包括柱子的尺寸设计、钢筋计算、极限承载力计算等。

下面将详细介绍钢格构柱的计算方法。

1.钢格构柱尺寸设计钢格构柱的尺寸设计主要涉及柱子的高度和截面尺寸的确定。

根据建筑结构的设计要求以及使用条件,可采用结构力学的方法进行尺寸设计。

首先,确定柱子的高度,考虑到建筑物的结构高度以及使用要求,一般需要结合建筑设计师和结构工程师的协商确定。

然后,根据柱子的受力特点,选择合适的截面形状和尺寸,如方形、圆形或其他几何形状。

截面的尺寸可根据以下几个因素进行确定:荷载大小、建筑物的抗震需求、截面面积与开间比、钢筋出框厚度等。

2.钢筋计算钢格构柱的钢筋计算包括纵向钢筋和横向钢筋的计算。

纵向钢筋的计算可采用试算法进行。

首先,根据柱子的荷载大小以及要求的构造要素来计算柱子受力情况,包括净荷载、自重和地震力等。

然后,根据柱子的荷载情况和设计规范的要求,计算纵向钢筋的截面积。

对于柱子的纵向受拉区域,通常采用主筋和箍筋组合的方式进行钢筋布置。

箍筋的计算主要考虑箍筋的截面积和间距等。

3.极限承载力计算钢格构柱的极限承载力计算是钢构件计算中最重要的一步。

根据柱子的几何尺寸、钢材的力学性能以及设计要求,进行杆件弹塑性分析。

在极限承载力计算中,通常采用将柱子进行等效塑性铰处理的方法,并应用强度杆件理论进行计算。

计算时,需考虑柱子的受力状态,包括压力区域和拉力区域等,并确定杆件所受的最大弯矩和轴向力,以及柱子的塑性铰位置。

根据这些参数,采用强度材料理论计算柱子的极限承载力,并进行安全性评估。

总之,钢格构柱计算是一项复杂而重要的工作。

它需要结构工程师具备扎实的力学和材料知识,并且掌握相关的设计规范和计算方法。

只有通过科学、准确的计算,才能保证钢格构柱结构的安全和稳定。

格构柱轴压检算

格构柱轴压检算

《钢结构设计规范》P65 《钢结构设计规范》P18
角焊缝最小尺寸 通过 通过
缀板强度验算
σ= τ = 67.61 34.7645 通过 通过
格构柱重量
2
∠160×16
缀板间净距离(cm) 50 计算长度(cm) 50 y0-y0截面回转半径(cm): 6.12 y0-y0截面惯性矩(cm4): 2865.262 回转半径(cm):i1= 6.12 λ 1(cm)= 8.17 λ 0y= 63.356 查表υ y= 0.788 N/(υ y×A)= 206.04 分肢稳定性检算 8.17 31.678
轴心压杆
截面估算
柱长(cm) l= 计算长度系数:μ 计算长度(cm):l0= 轴力代表值(kN):Nd= 荷载分项系数:γ G= 荷载设计值(kN):N= 假设长细比: λ = 查表υ y= 选用钢材 角钢屈服强度(N/mm2):fy= 角钢强度设计值(N/mm2):f= 厚度(cm): 所需截面面积(cm2)A= 1575 1 1575 4823.5 1.03 4968.205 70 0.839 Q235 345 310 1.6 191.019
计算λ
1
通过
λ 1(cm)= 判定条件
通过
缀板尺寸确定及刚度检算
缀板钢材屈服强度(N/mm ):fy= 缀板钢材强度设计值(N/mm2):f= 缀板钢材抗剪强度设计值(N/mm3):f= 分肢轴心纵向间距(cm)a= 2a/3= a/40= 缀板长(cm): 缀板厚(cm): 缀板高(cm): 缀板间净距(cm):129 《钢结构设计规范》P17
柱截面检算
单肢角钢截面面积(cm ): A= 4肢角钢截面面积(cm2): A= 相邻角钢最外边缘距离(cm) 单肢截面惯性矩 (cm4)Ic= 单肢重心距(cm)Z0= 76.5 306 60 2867 5.69 截面惯性矩(cm4) I= 192306.688 回转半径(cm)i= 25.069 λ y= 62.827

格构柱计算

格构柱计算

格构柱计算格构柱重量及总金额一、高度:-16.3至-2.4米,总高度:13.9米二、四肢杆:∠180×16单根截面积:(0.18×2-0.016)×0.016=0.005504m2 单根体积:0.005504×13.9=0.00.0765056m3 单根重量:0.0795056×7.85=0.6吨四根总重:0.6×4=2.4吨三、缀条:∠80×5@500单根截面积:(0.08×2-0.005)×0.005=0.000775m2 每米体积:0.000775×1=0.000775m3 每米重量:0.000775×7.85=0.00608吨单面长度:13.9m÷0.5×1=27.8m 四面总长度:27.8×4=111.2m四面总重量:0.00608×111.2=0.6765吨=0.676吨四、一道撑与立柱节点1、100×100×12三角钢板8块2、4Φ25U形筋3、700×700×12钢板3 体积:0.7×0.7×0.012=0.00588 m3重量:0.00588m×7.85=0.046158=0.046吨五、第二道撑与立柱节点1、200×200×14三角钢板8块M1=0.2×0.2×4=0.16 m22、950×200×14钢板2块M2=0.95×.02×2=0.38 m23、550×200×14钢板2块M3=0.55×0.2×2=0.22 m24、总体积:(M1+M2+M3)×0.014=0.01064m35、总重量:0.01064m3×7.85=0.083524=0.083吨六、第三道撑与立柱节点1、200×200×14三角钢板8块M1=0.2×0.2×4=0.16 m22、950×200×14钢板2块M2=0.95×.02×2=0.38 m23、550×200×14钢板2块M3=0.55×0.2×2=0.22 m24、总体积:(M1+M2+M3)×0.014=0.01064m35、总重量:0.01064m3×7.85=0.083524=0.083吨七、单根总重G=2.4+0.676+0.046+0.083+0.083=3.288吨八、总根数:157-2.5=154.5九、总重:3.288×154.5=507.99吨十、总金额:507.99×2550=1295389.8元感谢您的阅读,祝您生活愉快。

钢结构框架柱的计算长度

钢结构框架柱的计算长度

第一章钢结构框架柱的计算长度8.3.1等截面柱,在框架平面内的计算长度应等于该层柱的高度乘以计算长度系数μ0框架应分为无支撑框架和有支撑框架。

当采用二阶弹性分析方法计算内力且在每层柱顶附加考虑假想水平力时,框架柱的计算长度系数可取LO或其他认可的值。

当采用一阶弹性分析方法计算内力时,框架柱的计算长度系数μ应按下列规定确定:1无支撑框架:D框架柱的计算长度系数IJ应按本标准附录E表E.0.2有侧移框架柱的计算长度系数确定,也可按下列简化公式计算:・5K 】K2+4(K+K2)+L52 (1)7.5K1K2+K1+K2«,,「口式中:Ki、K2一分别为相交于柱上端、柱下端的横梁线刚度之和与柱线刚度之和的比值,(、K2的修正应按本标准附录E表E.0.2注确定。

2)设有摇摆柱时,摇摆柱自身的计算长度系数应取i.o,框架柱的计算长度系数应乘以放大系数n,n应按下式计算:—h]X(NI/阳) ∕∩O1Q∖LJl+∑(Nf∕R)(8.3.1-2)式中:∑(Nf∕hf)——本层各框架柱轴心压力设计值与柱子高度比值之和;∑(Nι/hi)——本层各摇摆柱轴心压力设计值与柱子高度比值之和。

3)当有侧移框架同层各柱的N/1不相同时,柱计算长度系数宜按式(831-3)计算;当框架附有摇摆柱时,框架柱的计算长度系数宜按式(8.3.1-5)确定;当根据式(8.3.1-3)或式(8.3.1-5)计算而得的μ"J∖于1.0时,应取μl=L-=√FWN El∙=π2EI i∕h^_小后—L2Σ(N,√叫)+Σ(N/G内―√M ---------- κ---------(8.3.1-3)(8. 3.1-4)(8. 3.1-5)式中:N i ——第i 根柱轴心压力设计值(N);N ∈i —第i 根柱的欧拉临界力(N);hi —第i 根柱高度(mm);K ——框架层侧移刚度,即产生层间单位侧移所需的力(N/mm);Ni i ——第j 根摇摆柱轴心压力设计值(N);h j ——第j 根摇摆柱的高度(mm)。

钢格构柱吊装时的抗风力计算方法

钢格构柱吊装时的抗风力计算方法

钢格构柱吊装时的抗风力计算方法
钢格构柱是一种常见的建筑结构材料,用于桥梁、建筑等领域。

在吊装钢格构柱时,需要考虑抗风力,以确保施工安全。

以下是计算抗风力的几种方法:
1. 风压计算:根据当地气象资料,计算出钢格构柱所承受的风压。

风压与风速、空气密度和截面积有关,可以使用公式P = ρ × V² / 2进行计算。

其中,ρ为空气密度,V为风速。

2. 风振系数:考虑风的动力效应,引入风振系数。

根据相关规范,可以查阅或计算风振系数的值。

3. 刚度要求:钢格构柱需要具有一定的刚度,以抵抗风的振动和变形。

根据相关规范,可以确定钢格构柱的刚度要求。

4. 施工条件:吊装时的施工条件也会影响抗风力。

例如,吊装高度、吊装角度、地形条件等都会影响风的力和作用点。

总之,在吊装钢格构柱时,需要综合考虑各种因素,并进行抗风力计算,以确保施工安全。

同时,还需要采取相应的安全措施,如选择合适的吊装设备、合理安排施工顺序等。

正确额钢格构柱计算

正确额钢格构柱计算
格构柱
角钢: 序号 1 2 缀板: 序号 3 4 合计 角钢: 序号 1 2 缀板: 序号 3 4 合计 角钢: 序号 1 2 缀板: 序号 3 4 合计 型号 LP3 小计 (2)+(4)*1.05 格构柱长 度(m) 16 单桩 410*200*1 410*200*1 410*200*10 410*200*1 0钢板总量 0钢板块重 钢板总重 钢板间距 0钢板数 (块) kg (T) (块) 0.5 128 128 6.437 0.824 0.824 2.310 型号 LP3 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 16 0 16 1 单桩角钢 根数 140*10角 140*10角 140*10角钢 钢总长 钢米重kg 总重(T) (米) 4 64 21.5 1.376 1.376 型号 LP2 小计 (2)+(4)*1.05 格构柱长 度(m) 12.6 单桩 440*200*1 440*200*1 440*200*12 钢板间距 440*200*1 2钢板总量 2钢板块重 钢板总重 2钢板数 (块) kg (T) (块) 0.7 72 216 8.29 1.791 1.791 5.932 型号 LP2 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 12.6 0 12.6 3 单桩角钢 根数 140*12角 140*12角 140*12角钢 钢总长 钢米重kg 总重(T) (米) 4 151.2 25.522 3.859 3.859 型号 LP1 小计 (2)+(4)*1.05 格构柱长 度(m) 16 单桩 420*200*1 420*200*1 420*200*12 420*200*1 2钢板总量 2钢板块重 钢板总重 钢板间距 2钢板数 (块) kg (T) (块) 0.5 128 128 7.91 1.012 1.012 3.046 型号 LP1 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 16 0 16 1 单桩角钢 根数 140*14角 140*14角 140*14角钢 钢总长 钢米重kg 总重(T) (米) 4 64 29.5 1.888 1.888

钢格构柱重量计算稿(带计算式)

钢格构柱重量计算稿(带计算式)

编号顶标高底标高长度格构柱数量零件编号规格厚度宽度P1-1-2.5-32.2029.73立柱4L180*16P1-1钢板4-14*300*58014300 P1-2-2.5-37.0034.51立柱4L180*16P1-2钢板4-14*300*58014300 P1-3-2.5-33.0030.53立柱4L180*16P1-3钢板4-14*300*58014300 P1-4-2.5-32.8030.33立柱4L180*16P1-4钢板4-14*300*58014300 P1-5-2.5-38.6536.151立柱4L180*16P1-5钢板4-14*300*58014300 P2-1-2.5-32.2029.714立柱4L180*16P2-1钢板4-14*300*58014300 P2-2-2.5-33.0030.53立柱4L180*16P2-2钢板4-14*300*58014300 P3-1-1.0-32.2031.212立柱4L180*18P3-1钢板4-14*300*58014300 P3-2-1.0-38.00371立柱4L180*18P3-2钢板4-14*300*58014300 P3-3-1.0-33.3032.31立柱4L180*18P3-3钢板4-14*300*58014300 P3-4-1.0-42.7541.751立柱4L180*18P3-4钢板4-14*300*58014300 P3-5-1.0-39.9538.951立柱4L180*18P3-5钢板4-14*300*58014300 P4-1.0-32.2031.24立柱4L180*18P4钢板4-14*300*58014300 P4-1.0-33.00321立柱4L180*18P4钢板4-14*300*58014300 P5-1.0-42.7541.751立柱4L180*18P5钢板4-14*300*58014300 P6-1-2.5-32.2029.742立柱4L180*18P6-1钢板4-14*450*58014450 P6-2-2.5-37.4034.93立柱4L180*18P6-2钢板4-14*450*58014450 P6-3-2.5-40.2537.755立柱4L180*18P6-3钢板4-14*450*58014450 P6-4-2.5-38.6036.12立柱4L180*18P6-4钢板4-14*450*58014450 P6-5-2.5-32.8030.39立柱4L180*18P6-5钢板4-14*450*58014450 P6-6-2.5-38.6536.152立柱4L180*18P6-6钢板4-14*450*58014450 P6-7-2.5-39.9537.451立柱4L180*18P6-7钢板4-14*450*58014450 P6-8-2.5-32.7030.210立柱4L180*18P6-8钢板4-14*450*58014450 P6-9-2.5-33.0030.56立柱4L180*18P6-9钢板4-14*450*58014450 P7-1-2.5-32.2029.7108立柱4L180*18P7-1钢板4-14*450*58014450P7-2-2.5-39.9537.451立柱4L180*18P7-2钢板4-14*450*58014450 P7-3-2.5-32.7030.22立柱4L180*18P7-3钢板4-14*450*58014450 P7-4-2.5-39.0536.551立柱4L180*18P7-4钢板4-14*450*58014450 P7-5-2.5-38.6036.11立柱4L180*18P7-5钢板4-14*450*58014450 P7-6-2.5-40.2537.751立柱4L180*18P7-6钢板4-14*450*58014450 P7-7-2.5-32.8030.37立柱4L180*18P7-7钢板4-14*450*58014450 P7-8-2.5-33.0030.51立柱4L180*18P7-8钢板4-14*450*58014450 P7-9-2.5-37.0034.51立柱4L180*18P7-9钢板4-14*450*58014450 P8-1-1.0-32.2031.265立柱4L200*18P8-1钢板4-14*450*58014450 P8-2-1.0-39.0538.054立柱4L200*18P8-2钢板4-14*450*58014450 P8-3-1.0-38.6537.651立柱4L200*18P8-3钢板4-14*450*58014450 P8-4-1.0-36.6535.651立柱4L200*18P8-4钢板4-14*450*58014450 P8-5-1.0-33.3032.38立柱4L200*18P8-5钢板4-14*450*58014450 P8-6-1.0-39.6538.651立柱4L200*18P8-6钢板4-14*450*58014450 P8-7-1.0-37.3536.352立柱4L200*18P8-7钢板4-14*450*58014450 P8-8-1.0-38.00371立柱4L200*18P8-8钢板4-14*450*58014450 P8-9-1.0-36.5035.54立柱4L200*18P8-9钢板4-14*450*58014450 P8-10-1.0-40.0539.053立柱4L200*18P8-10钢板4-14*450*58014450 P8-11-1.0-42.7541.754立柱4L200*18P8-11钢板4-14*450*58014450 P8-12-1.0-37.3536.353立柱4L200*18P8-12钢板4-14*450*58014450 P8-13-1.0-33.5032.510立柱4L200*18P8-13钢板4-14*450*58014450 P8-14-1.0-33.00324立柱4L200*18P8-14钢板4-14*450*58014450 P8-15-1.0-39.9538.951立柱4L200*18P8-15钢板4-14*450*58014450 P8-16-1.0-38.3037.32立柱4L200*18P8-16钢板4-14*450*58014450 P8-17-1.0-32.7031.75立柱4L200*18P8-17钢板4-14*450*58014450 P9-1-1.0-32.2031.2121立柱4L200*18P9-1钢板4-14*450*58014450 P9-2-1.0-39.0538.052立柱4L200*18P9-2钢板4-14*450*58014450 P9-3-1.0-33.3032.33立柱4L200*18P9-3钢板4-14*450*58014450 P9-4-1.0-38.6537.652立柱4L200*18P9-4钢板4-14*450*58014450 P10-1-1.0-36.5035.51立柱4L200*18P10-1钢板4-14*450*58014450 P10-2-1.0-42.7541.752立柱4L200*18P10-2钢板4-14*450*58014450 P10-3-1.0-37.00362立柱4L200*18P10-3钢板4-14*450*58014450 P10-4-1.0-33.5032.51立柱4L200*18P10-4钢板4-14*450*58014450长度每米比重每米重量合计每米重每12米重量每12米总重总重钢板数量43.5174250.520883388.351685807.8576.5130032894343.5174250.520883388.360035807.8576.5130038255043.5174250.520883388.353075807.8576.5130034424543.5174250.520883388.352725807.8576.5130033664443.5174250.520883388.362905807.8576.5130040545343.5174250.520883388.351685807.8576.5130032894343.5174250.520883388.353075807.8576.5130034424548.6194.4270.92332.83633.160655807.8576.5130035194648.6194.4270.92332.83633.171935807.8576.5130041305448.6194.4270.92332.83633.162795807.8576.5130035954748.6194.4270.92332.83633.181165807.8576.5130046666148.6194.4270.92332.83633.175725807.8576.5130043605748.6194.4270.92332.83633.160655807.8576.5130035194648.6194.4270.92332.83633.162215807.8576.5130035954748.6194.4270.92332.83633.181165807.8576.5130046666148.6194.4309.12332.84283.357745807.85114.7195149344348.6194.4309.12332.84283.367855807.85114.7195158525148.6194.4309.12332.84283.373395807.85114.7195163105548.6194.4309.12332.84283.370185807.85114.7195160815348.6194.4309.12332.84283.358905807.85114.7195150484448.6194.4309.12332.84283.370285807.85114.7195160815348.6194.4309.12332.84283.372805807.85114.7195163105548.6194.4309.12332.84283.358715807.85114.7195150484448.6194.4309.12332.84283.359295807.85114.7195151634548.6194.4309.12332.84283.357745807.85114.7195149344348.6194.4309.12332.84283.372805807.85114.7195163105548.6194.4309.12332.84283.358715807.85114.7195150484448.6194.4309.12332.84283.371055807.85114.7195160815348.6194.4309.12332.84283.370185807.85114.7195160815348.6194.4309.12332.84283.373395807.85114.7195163105548.6194.4309.12332.84283.358905807.85114.7195150484448.6194.4309.12332.84283.359295807.85114.7195151634548.6194.4309.12332.84283.367075807.85114.7195157375054.4217.6332.32611.24561.767895807.85114.7195152784654.4217.6332.32611.24561.782805807.85114.7195163105554.4217.6332.32611.24561.781935807.85114.7195163105554.4217.6332.32611.24561.777575807.85114.7195159665254.4217.6332.32611.24561.770285807.85114.7195153934754.4217.6332.32611.24561.784105807.85114.7195164255654.4217.6332.32611.24561.779105807.85114.7195160815354.4217.6332.32611.24561.780515807.85114.7195161965454.4217.6332.32611.24561.777255807.85114.7195159665254.4217.6332.32611.24561.784975807.85114.7195165405754.4217.6332.32611.24561.790855807.85114.7195169996154.4217.6332.32611.24561.779105807.85114.7195160815354.4217.6332.32611.24561.770725807.85114.7195153934754.4217.6332.32611.24561.769635807.85114.7195153934754.4217.6332.32611.24561.784765807.85114.7195165405754.4217.6332.32611.24561.781165807.85114.7195161965454.4217.6332.32611.24561.768985807.85114.7195152784654.4217.6332.32611.24561.767895807.85114.7195152784654.4217.6332.32611.24561.782805807.85114.7195163105554.4217.6332.32611.24561.770285807.85114.7195153934754.4217.6332.32611.24561.781935807.85114.7195163105554.4217.6332.32611.24561.777255807.85114.7195159665254.4217.6332.32611.24561.790855807.85114.7195169996154.4217.6332.32611.24561.778345807.85114.7195159665254.4217.6332.32611.24561.770725807.85114.71951539347单件总重总重分段数量8457253713 982898283 8749262473 8638259133 10344103444 84571183963 8749262473 95841150063 11323113234 987498743 12782127824 11932119324 9584383353 981698163 12782127824 107074497073 12636379083 136******** 130******** 10939984483 131******** 135******** 109191091923 11092665543 1070711563903135******** 10919218383 131******** 130******** 136******** 10939765713 11092110923 12444124443 120677843523 14590583614 14503145034 137******** 12421993683 14835148354 139******** 14247142474 136******** 150******** 16084643354 139******** 124651246463 12356494233 150******** 14312286244 12176608793 120671460102314590291804 12421372633 14503290064 136******** 16084321674 138******** 12465124653 kg5845734t5845.734。

格构柱受力计算书

格构柱受力计算书

格构柱受力计算书
计算依据:
(1)《钢结构设计规范》(GB50017-2003)。

(2)《钢结构设计与计算》
1. 格构柱截面的力学特性:
格构柱的截面尺寸为×;
主肢选用:18号角钢b×d×r=180×18×18mm;
缀条选用:20号角钢b×d×r=180×24×18mm;
主肢的截面力学参数为A0=,Z0=,
Ix0=,Iy0=;
缀条的截面力学参数为At=;
格构柱截面示意图
格构柱的y-y轴截面总惯性矩:
格构柱的x-x轴截面总惯性矩:
经过计算得到:
Ix=4×[+×(65/2]=;
Iy=4×[+×(65/2]= cm4;
2. 格构柱的长细比计算:
格构柱主肢的长细比计算公式:
其中H ──格构柱的总计算长度,取;
I ──格构柱的截面惯性矩,取,Ix=,Iy=;
A0 ──一个主肢的截面面积,取。

经过计算得到x=,y=。

3. 格构柱的整体稳定性计算:
格构柱在弯矩作用平面内的整体稳定性计算公式:
其中N ──轴心压力的计算值(N);取N=4×105N;
A──格构柱横截面的毛截面面积,取4×;
──轴心受压构件弯矩作用平面内的稳定系数;
根据换算长细比0x=,0y=≤150(容许长细比)满足要求!
经过计算得到:
X方向的强度值为mm2,不大于设计强度205N/mm2,所以满足要求!
Y方向的强度值为mm2,不大于设计强度205N/mm2,所以满足要求!。

格构柱计算

格构柱计算
5、总重量:0.01064m3×7.85=0.083524=0.083吨
七、单根总重
G=2.4+0.676+0.046+0.083+0.083=3.288吨
八、总根数:
157-205=154.5
九、总重:
3.288×154.5=507.99吨
十、总金额:507.99×2550=1295389.8元
1、200×200×14三角钢板8块
M1=0.2×0.2×4=0.16 m2
2、950×200×14钢板2块
M2=0.95×.02×2=0.38 m2
3、550×200×14钢板2块
M3=0.55×0.2×2=0.22 m2
4、总体积:(M1+M2+M3)×0.014=0.01064m3
5、总重量:0.01064m3×7.85=0.083524=0.083吨
10.12爆破
时间
毛重
车重
净重
10.15
32.34
18.12
14.22
10.17
8.44
4.12
4.32
10.18
47.74
18.12
29.62
10.2
10.54
4.12
6.42
10.21
13.7
10.21
61.36
10.25
9.38
10.25
15.66
总重
154.68
价格
3350
氧割费用
-180
金额
六、第三道撑与立柱节点
1、200×200×14三角钢板8块
M1=0.2×0.2×4=0.16 m2
2、950×200×14钢板2块

格构柱计算书

格构柱计算书
1000
1、杆件轴心受拉强度验算
分肢毛截面积之和:
A=4A0=4×32.51×100=13004mm2
σ=N/A=500000/13004=38.45N/mm2≤[f]=205N/mm2
满足要求!
2、格构式钢柱换算长细比验算
整个格构柱截面对X、Y轴惯性矩:
Ix=4[I0+A0(a/2-Z0)2]=4×[604+32.51×(45/2-3.9)2]=47404.638cm4
32.51
分肢对最小刚度轴的回转半径iy0(cm)
2.76
分肢平行于对称轴惯性矩I0(cm4)
604
分肢形心轴距分肢外边缘距离Z0(cm)
3.9
分肢材料强度设计值fy(N/mm2)
235
分肢材料抗拉、压强度设计值f(N/mm2)
205
格构柱缀件参数
格构柱缀板材料
400×100×10
格构柱缀板截面积A1x'(mm2)
整个构件长细比:λx=λy=L0/(Ix/(4A0))0.5=150/(47404.638/(4×32.51))0.5=7.856
分肢长细比:λ1=l01/iy0=35/2.76=12.681
分肢毛截面积之和:A=4A0=4×32.51×100=13004mm2
格构式钢柱绕两主轴的换算长细比:
λ0max=(λx2+λ12)0.5=(7.8562+12.6812)0.5=14.917
格构柱计算书
计算依据:
1、《钢结构设计标准》GB50017-2017
一、基本参数
格构柱轴向力设计值N(kN)
500
格构柱计算长度L0(mm)
1500
格构柱参数

格构柱承载力验算

格构柱承载力验算

附件:格构柱承载力验算格构柱稳定性验算(钢结构设计规范GB50017-2003):一、计算参数1、计算参数分项系数γ0= 1.375 1.25x1.1最大设计轴力标准值Nk=928KN 格构柱长度L0=11.35m 计算长度系数μ=1按两端铰支考虑x方向偏心距x0=0cmy方向偏心距y0= 5.675cm 格构柱计算长度L0x=L0y=μ*L0=11.35m 最大设计弯矩标准值Mxk=0KN-m 最大设计弯矩标准值Myk=52.664KN-m 2、格构柱参数钢材牌号Q 235B抗拉、抗压和抗弯强度f=215MPa弹性模量E= 2.06E+05N/mm 2(1)单肢特性等边角钢 L140x14b0=140mm t0=14mm A0=37.57cm 2e0= 3.98cm沿e-e轴 Ix0=Iy0=688.81cm 4沿1-1轴 I1=284.06cm 4ix0=iy0= 4.28cmi 1=2.75cm (2)缀板特性a1=400mm b1=300mm t1=10mm d1=800mm(3)组合截面特性460x460组合截面Lx=Ly=460mmAn=4*A 0=150.28cm 2按照1/200垂直度取二、强度验算σ=σ1+σ2+σ3=N/An+Mx/(γx*Wnx)+My/(γy*Wny)≤f公式5.2.1σ1=N/An=84.91N/mm 2σ2=Mx/(γx*Wnx)=0.00N/mm 2σ3=My/(γy*Wny)=29.16N/mm 2其中γx=1截面塑性发展系数,按表5.2.1取γy=1Wnx=Inx/(Lx/2)=2483.50cm 3Wny=Iny/(Ly/2)=2483.50cm 3Inx=4*(Ix0+A0*dx 2)=57120.5929cm 4绕x-x轴的惯性矩Iny=4*(Iy0+A0*dy2)=57120.5929cm4绕y-y轴的惯性矩σ=σ1+σ2+σ3=114.07N/mm 2≤f=215N/mm 2强度满足要求。

格构柱稳定性的计算书

格构柱稳定性的计算书

格构柱稳定性的计算计算依据:(1)《钢结构设计规范》(GB50017-2003)。

(2)《钢结构设计与计算》1. 格构柱截面的力学特性:格构柱的截面尺寸为0.65×0.65m;主肢选用:18号角钢b×d×r=180×18×18mm;缀条选用:20号角钢b×d×r=180×24×18mm;主肢的截面力学参数为 A0=61.95cm2,Z0=5.13cm,I x0=1881.12cm4,I y0=3338.25cm4;缀条的截面力学参数为 A t=61.95cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:格构柱的x-x轴截面总惯性矩:经过计算得到:I x=4×[1881.12+61.95×(65/2-5.13)2]=193155.64cm4;I y=4×[1881.12+61.95×(65/2-5.13)2]=193155.64 cm4;2. 格构柱的长细比计算:格构柱主肢的长细比计算公式:其中 H ──格构柱的总计算长度,取18.40m;I ──格构柱的截面惯性矩,取,I x=193155.64cm4,I y=193155.64cm4; A0──一个主肢的截面面积,取61.95cm2。

经过计算得到x=65.90,y=65.90。

3. 格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:其中 N ──轴心压力的计算值(N);取 N=4×105N;A──格构柱横截面的毛截面面积,取4×61.95cm2;──轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比0x=65.9,0y=65.90≤150(容许长细比)满足要求!经过计算得到:X方向的强度值为20.85N/mm2,不大于设计强度205N/mm2,所以满足要求!Y方向的强度值为20.85N/mm2,不大于设计强度205N/mm2,所以满足要求!。

格构柱的立柱计算方式

格构柱的立柱计算方式

格构柱的立柱计算方式格构柱是一种常见的建筑结构,用于支撑建筑物的屋顶、桥梁或其他重要结构。

它有助于分散荷载并保持结构的稳定性。

立柱是格构柱的组成部分之一,承担着承压、受力等重要功能。

在计算格构柱的立柱时,需要考虑材料的强度、荷载、结构形式等多个因素。

本文将介绍格构柱的立柱计算方式。

首先要计算格构柱立柱的最大承载力。

这需要考虑立柱所使用的材料的抗压强度。

常用的材料包括钢、混凝土和木材。

这些材料的抗压强度是指材料能够承受的最大压力。

其次,需要考虑立柱的荷载。

荷载是指施加在结构上的力,包括自重、活载、风载、地震载等。

这些荷载会对立柱施加压力,因此在计算立柱时需要将这些荷载考虑进去。

接下来,需要确定立柱的结构形式。

常见的立柱形式有方形、圆形和矩形。

不同的结构形式具有不同的受力特点,需要根据具体情况进行选择。

在进行计算时,可以使用杨氏模量等力学性质来计算立柱的刚度。

杨氏模量是材料的一种物理特性,表示了材料在受力时的变形能力。

在计算过程中,还需要考虑立柱的长度和支撑条件。

立柱的长度会影响其承载能力,较长的立柱会有较大的变形和失稳风险。

支撑条件指立柱的两端是否有支撑点,支撑点可以减少立柱受到的压力和变形。

此外,还需要考虑立柱的安全系数。

安全系数是指在实际使用中,承载力与荷载之间的比值。

通常情况下,建筑结构的设计通常采用安全系数较大的值,以确保结构的安全性。

在实际计算中,可以使用一些计算方法和公式。

例如,对于方形和矩形立柱,可以使用Euler公式来计算其临界压力。

对于圆形立柱,则可以使用安全系数等来计算其承载力。

总之,格构柱的立柱计算方式涉及材料的抗压强度、荷载、结构形式、杨氏模量、长度和支撑条件等因素。

需要根据具体情况选择合适的计算方法和公式,并考虑安全系数,以确保格构柱的立柱能够承受预期的荷载和保持结构的稳定性。

框架柱子力学计算公式

框架柱子力学计算公式

框架柱子力学计算公式框架柱子力学计算公式是用来计算框架柱子在受力作用下的变形和承载能力的公式。

框架柱子是建筑结构中常见的承重构件,其受力分析和计算是建筑设计和结构工程中重要的一部分。

本文将介绍框架柱子力学计算公式的基本原理和应用。

1. 框架柱子受力分析。

框架柱子在建筑结构中起着承重和支撑的作用,通常受到垂直向下的压力和水平向两侧的拉力或压力。

在受到外力作用时,框架柱子会产生变形和应力,需要通过力学计算来确定其承载能力和安全系数。

2. 框架柱子力学计算公式。

框架柱子的力学计算公式通常包括以下几个方面,柱子的稳定性计算、柱子的受压承载能力计算、柱子的受拉承载能力计算等。

2.1 柱子的稳定性计算。

框架柱子的稳定性计算是指在受到外力作用时,柱子不会发生屈曲或侧向位移,保持稳定的能力。

根据力学原理,柱子的稳定性可以通过欧拉公式来计算,即:Pcr = π²EI / L²。

其中,Pcr为柱子的临界压力,E为柱子的弹性模量,I为柱子的惯性矩,L为柱子的长度。

2.2 柱子的受压承载能力计算。

柱子在受到压力作用时会产生压应力,当压应力超过柱子的承载能力时会发生屈曲破坏。

柱子的受压承载能力可以通过欧拉公式来计算,即:Pn = A Fy。

其中,Pn为柱子的承载能力,A为柱子的截面面积,Fy为柱子的屈服强度。

2.3 柱子的受拉承载能力计算。

柱子在受到拉力作用时会产生拉应力,当拉应力超过柱子的承载能力时会发生拉断破坏。

柱子的受拉承载能力可以通过拉力计算公式来计算,即:Pn = A Fu。

其中,Pn为柱子的承载能力,A为柱子的截面面积,Fu为柱子的抗拉强度。

3. 框架柱子力学计算公式的应用。

框架柱子力学计算公式的应用可以帮助工程师和设计师确定柱子的尺寸和材料选取,保证柱子在受力作用下的安全性和稳定性。

通过力学计算公式,可以确定柱子的承载能力和安全系数,从而指导工程实践中的设计和施工。

总之,框架柱子力学计算公式是建筑结构设计和工程施工中重要的工具,通过对柱子受力分析和力学计算,可以确定柱子的承载能力和稳定性,保证建筑结构的安全性和可靠性。

格构柱稳定性计算

格构柱稳定性计算

格构柱稳定性的计算依据《钢结构设计规范》(GB50017-2003)。

1.格构柱截面的力学特性:格构柱的截面尺寸为0.45×0.45m;主肢选用:20号角钢b×d×r=200×24×18mm;缀条选用:20号角钢b×d×r=200×24×18mm;主肢的截面力学参数为A0=90.66cm2,Z0=5.87cm,I x0=3338.25cm4,I y0=3338.25cm4;缀条的截面力学参数为A t=90.66cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:格构柱的x-x轴截面总惯性矩:经过计算得到:I x=4×[3338.25+90.66×(45/2-5.87)2]=113644.70cm4;I y=4×[3338.25+90.66×(45/2-5.87)2]=113644.70cm4;2.格构柱的长细比计算:格构柱主肢的长细比计算公式:其中H──格构柱的总计算长度,取21.80m;I──格构柱的截面惯性矩,取,I x=113644.70cm4,I y=113644.70cm4;A0──一个主肢的截面面积,取90.66cm2。

经过计算得到x=123.15,y=123.15。

换算长细比计算公式:其中A──格构柱横截面的毛截面面积,取4×90.66cm2;A1──格构柱横截面所截垂直于x-x轴或y-y轴的毛截面面积,取2×90.66cm2;经过计算得到kx=123.47,ky=123.47。

3.格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:其中N──轴心压力的计算值(kN);取N=1130.42kN;A──格构柱横截面的毛截面面积,取4×90.66cm2;──轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比0x=123.47,0y=123.47≤150满足要求!查《钢结构设计规范》得到x=0.42,y=0.42。

一、二、框架柱钢筋计算

一、二、框架柱钢筋计算

第二章框架柱钢筋计算
一、“平法”柱的标注方法
现行柱钢筋“平法”设计的表达方式有列表注写方式、截面注写方式两种
二、嵌固部位的判断(11G101—1P57、P58)
柱的嵌固部位系指地下室的顶面或无地下室情况的基础顶面;嵌固部位加密区长度不小于该层柱净高的1/3;嵌固部位的纵筋非连接区大于等于该层柱净高的1/3(图2.1)
注1、嵌固部位:无地下室时的嵌固部位指的是基础顶面,
有地下室的嵌固部位指的是首层楼面位置;
注2、底层柱:无地下室时的底层柱净高指的是:从基础顶面至首层顶板梁下皮的高度;有地下室时的底层柱净
高指的是:基础顶面至相邻基础层的顶板梁下皮的高

注3、底层柱净高:无地下室时的底层柱净高指的是:从基础顶面至首层顶板梁下皮的高度;有地下室时的底层
柱净高指的是:从基础顶面至相邻基础层的顶板梁下
皮的高度。

钢结构格构式柱的结构设计计算

钢结构格构式柱的结构设计计算

钢结构格构式柱的结构设计计算摘要:本文通过对钢结构格构式柱的强度、整体稳定性、局部稳定性的实例设计计算,理论结合实际,指出在进行钢结构格构式柱设计中的部分误区及设计人员容易忽视的部分,避免设计人员在今后的设计工作中出现重大设计失误.关键词:钢结构格构式柱;强度;整体稳定性;局部稳定性一、引言工程实践中,我们常常遇到钢结构格构式柱如:钢结构厂房柱、钢结构民用建筑框架柱、钢结构管道支架等。

对于这些钢结构格构式柱在工程结构设计中,应该对柱的强度、整体稳定性、局部稳定性,逐一进行验算,只有这样才能使你的设计方案达到安全、经济、适有、美观。

但在实际工程设计中,对于设计经验不足设计人员,通常只注重柱的强度验算,而忽视柱的稳定性验算,认为只要构件强度满足要求就是安全的,对钢结构构件稳定性的重要程度认识不够,这个设计误区往往导致构件的失稳破坏,造成工程事故。

还有设计人员容易忽视的一个问题就是:在工况和作用力不变的情况下,由于施工现场实际情况,需要在不改变柱材料的情况下,增大柱的截面尺寸,部分设计人员认为,增大柱截面对柱自身的整体稳定性是起有利作用的。

对于这个问题,本人通过多年的设计经验和设计实例得出:在不改变工况、作用力和柱材料的情况下,增大柱的截面尺寸对格构式柱自身的整体稳定性是不利的。

以下通过设计实例来证实本人的以上论断。

二、设计实例本人于2012年设计的动力厂一轧钢北侧DN800煤气管线异地更换工程-钢结构格构式管道支架,燃气专业提供条件:煤气管线在事故状态下管道单重:300Kg/m,支架最大间距:17m,支架高度:6.143m,滑动支架摩擦系数:0.15。

采用Q235钢材。

1.荷载及作用力计算:(由于燃气专业提供的管道单重为事故状态下单重,所以在荷载及作用力计算时不再乘荷载分项系数)N=17X300X10=51000N=51KN; Vx=51X0.15=7.65KN;My=0KN/m;Mx=7.65X6.143≈47KN/m2.支架几何截面选型(见图示1):iy=0.4h=0.4X250=100mm;分肢截面参数:(2).局部稳定性验算:由于构件分肢为标准工字型钢,局部稳定性满足要求,无需验算.6.綴条稳定性验算:由于本构件Y方向没有剪力,綴条用于减小受压构件的长细比和连接固定分肢,所以不用验算綴条的稳定性,只验算綴条刚度即可。

最新框架柱钢筋计算规则

最新框架柱钢筋计算规则

框架柱钢筋计算规则------------------------------------------作者xxxx------------------------------------------日期xxxx第二章框架柱钢筋计算一、“平法"柱的标注方法现行柱钢筋“平法"设计的表达方式有列表注写方式、截面注写方式两种。

二、基础插筋的计算钢筋部位及其名称计算公式说明附图基础插筋(基础平板中)当筏板基础≤2000mm时:基础插筋长度=基础高度-保护层+基础弯折a+基础纵筋外露长度Hn/3+与上层纵筋搭接llE(如采用焊接时,搭接长度为0)1、04G101-3P45柱插筋构造一ﻫ2、柱墙插筋锚固竖直长度与弯钩长度对照表图2当筏板基础>2000mm时:基础插筋长度=基础高度/2-保护层+基础弯折a+基础纵筋外露长度Hn/3+与上层纵筋搭接llE(如采用焊接时,搭接长度为0)3、04G101-3P45柱插筋构造二图3基础插筋(基础主梁中)当基础梁底与基础板底一平时:基础插筋长度=基础高度-保护层+基础弯折a+基础钢筋外露长度Hn/3+与上层纵筋搭接llE(如采用焊接时,搭接长度为0)1、04G101-3P32柱插筋构造一图4当基础梁顶与基础板顶一平2、04G101-3P32柱插筋构造图5时:基础插筋长度=基础高度-保护层+基础弯折a+基础钢筋外露长度Hn/3+与上层纵筋搭接llE(如采用焊接时,搭接长度为0)二(图2)(图3)(图4)(图5)弯钩长度a的取值表:柱墙插筋锚固竖直长度与弯钩长度对照表竖直长度弯钩长度a≥0.5laE(≥0。

5la)12d且≥150≥0。

6laE (≥0。

6la)10d且≥15≥0.7laE(≥0。

7la)8d且≥150≥0。

8laE(≥0。

8la)6d且≥150三、柱根的判断(03G101-1P41、GB50010-2002 P178)底层柱的柱根系指地下室的顶面或无地下室情况的基础顶面;柱根加密区长度应取不小于该层柱净高的1/3;有刚性地面时,除柱端箍筋加密区外,尚应在刚性地面上、下各500mm的高度范围内加密箍筋。

格构柱计算(精编文档).doc

格构柱计算(精编文档).doc

【最新整理,下载后即可编辑】格构式轴心受压构件6.7.1 格构式轴心受压构件绕实轴的整体稳定格构式受压构件也称为格构式柱(latticed columns),其分肢通常采用槽钢和工字钢,构件截面具有对称轴(图6.1.1)。

当构件轴心受压丧失整体稳定时,不大可能发生扭转屈曲和弯扭屈曲,往往发生绕截面主轴的弯曲屈曲。

因此计算格构式轴心受压构件的整体稳定时,只需计算绕截面实轴和虚轴抵抗弯曲屈曲的能力。

格构式轴心受压构件绕实轴的弯曲屈曲情况与实腹式轴心受压构件没有区别,因此其整体稳定计算也相同,可以采用式(6.4.2)按b类截面进行计算。

6.7.2 格构式轴心受压构件绕虚轴的整体稳定1.双肢格构式轴心受压构件实腹式轴心受压构件在弯曲屈曲时,剪切变形影响很小,对构件临界力的降低不到1%,可以忽略不计。

格构式轴心受压构件绕虚轴弯曲屈曲时,由于两个分肢不是实体相连,连接两分肢的缀件的抗剪刚度比实腹式构件的腹板弱,构件在微弯平衡状态下,除弯曲变形外,还需要考虑剪切变形的影响,因此稳定承载力有所降低。

根据弹性稳定理论分析,当缀件采用缀条时,两端铰接等截面格构式构件绕虚轴弯曲屈曲的临界应力为:构式轴心受压构件(图6.1.2d)缀条的三肢组合构件(图6.1.2d)6.7.3 格构式轴心受压构件分肢的稳定和强度计算格构式轴心受压构件的分肢既是组成整体截面的一部分,在缀件节点之间又是一个单独的实腹式受压构件。

所以,对格构式构件除需作为整体计算其强度、刚度和稳定外,还应计算各分肢的强度、刚度和稳定,且应保证各分肢失稳不先于格构式构件整体失稳。

一、分肢稳定和强度的计算方法1.分肢内力的确定构件总挠度曲线为2.分肢稳定的验算①对缀条式构件:图7.7.1格构式轴心受压构件弯曲屈曲稳定和强度求v0的简化计算方法(规范规定的方法)①由钢构件制造容许最大初弯曲l/1000,考虑其它初始缺陷按经验近似地规定v0=l/500右l/400等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
格构柱
角钢: 序号 1 2 缀板: 序号 3 4 合计 角钢: 序号 1 2 缀板: 序号 3 4 合计 角钢: 序号 1 2 缀板: 序号 3 4 合计 型号 LP3 小计 (2)+(4)*1.05 格构柱长 度(m) 16 单桩 410*200*1 410*200*1 410*200*10 410*200*1 0钢板总量 0钢板块重 钢板总重 钢板间距 0钢板数 (块) kg (T) (块) 0.5 128 128 6.437 0.824 0.824 2.310 型号 LP3 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 16 0 16 1 单桩角钢 根数 140*10角 140*10角 140*10角钢 钢总长 钢米重kg 总重(T) (米) 4 64 21.5 1.376 1.376 型号 LP2 小计 (2)+(4)*1.05 格构柱长 度(m) 12.6 单桩 440*200*1 440*200*1 440*200*12 钢板间距 440*200*1 2钢板总量 2钢板块重 钢板总重 2钢板数 (块) kg (T) (块) 0.7 72 216 8.29 1.791 1.791 5.932 型号 LP2 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 12.6 0 12.6 3 单桩角钢 根数 140*12角 140*12角 140*12角钢 钢总长 钢米重kg 总重(T) (米) 4 151.2 25.522 3.859 3.859 型号 LP1 小计 (2)+(4)*1.05 格构柱长 度(m) 16 单桩 420*200*1 420*200*1 420*200*12 420*200*1 2钢板总量 2钢板块重 钢板总重 钢板间距 2钢板数 (块) kg (T) (块) 0.5 128 128 7.91 1.012 1.012 3.046 型号 LP1 小计 格构柱长 接头长度 实际角钢 格构柱数 度(m) (m) 用料(m) 量 16 0 16 1 单桩角钢 根数 钢米重kg 总重(T) (米) 4 64 29.5 1.888 1.888
11.287
角钢;140*10 140*12 140*14 钢板;10: 12: 14:
21.5kg/m 25.522kg/m 29.5kg/m 78.5kg/m2 94.2kg/m2 109.9kg/m2
广奕 25.985 13.232 6.569 3.139 5.65 7.533 62.108
相关文档
最新文档