格点与面积_小学奥数知道点详解
四年级奥数题及答案-求格点图案面积
四年级奥数题及答案-求格点图案面积
【题目】以下这张图里的三个格点图案面积分别是多少?
【解析】
这三个图形都适合用格点面积公式计算面积:
格点多边形面积 = 内格点个数 + 边格点数÷ 2 - 1
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
我们先来看喇叭图案:
这个图案周界上有8个格点,图内却没有格点,那么利用格点面积公式我们可以求得这个喇叭形状的面积为:0+8÷2-1=3;
接下来这只小猫的图案:
小猫图案的周界上有20个格点,而图内有2个格点,面积为:2+20÷2-1=11;
小狗图案同理:
我们可以看到小狗图案是由两个格点多边形组成,那我们可以将两个图案分开求解,先求出每个格点多边形的面积,再求出总面积。
躯干面积:0+12÷2-1=5;
尾巴面积:0+4÷2-1=1;
总面积:5+1=6。
我们在计算像小狗图案这样的有两个或以上的独立格点多边形组成的图案时,可以先求每个独立的格点多边形的面积,再进行求和计算总面积,这样可以避免数漏多个独立图形公共格点而导致计算错误。
小学奥数格点型面积毕克定理
小学奥数:格点型面积(毕克定理)板块一正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N表示多边形内部格点,L表示多边形周界上的格点,S表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N=+-.这个规律就是毕克定理.【例1】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?【例2】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【例3】判断下列图形哪些是格点多边形?⑴⑵⑶【例4】如图,计算各个格点多边形的面积.【巩固】如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.)毕克定理若一个格点多边形内部有N个格点,它的边界上有L个格点,则它的面积为12LS N=+-.【例5】如图(a),计算这个格点多边形的面积.【例6】(“新加坡小学数学奥林匹克”竞赛试题)右图是一个方格网,计算阴影部分的面积.【例7】分别计算图中两个格点多边形的面积.⑴⑵【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【例8】我们开始提到的“乡村小屋”的面积是多少?【例9】右图是一个812面积单位的图形.求矩形内的箭形ABCDEFGH的面积.HGFAEDCB【例10】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例11】(“小学数学奥林匹克”竞赛试题)55的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【例12】(“保良局亚洲区城市小学数学”竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例13】(第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm,右下角的阴影部分(线状)面积为27.4cm,求大正方形的面积.【例14】(第六届“华杯赛”试题)图中正六边形ABCDEF的面积是54,AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.B PQFEDCB A板块二 三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC 的面积.A B CD F E(b )(a )【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算ABC的面积.【例 16】 求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).⑴⑵⑶⑷【例 17】 把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例 18】 如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD 的面积是多少平方厘米?【例19】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【例20】将图中的图形分割成面积相等的三块.【例21】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【例22】(第五届“华杯赛”试题)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?SRQABC DEFNM PEB【例23】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.。
小学奥数精讲 格点型面积.教师版
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵ ⑶【考点】格点型面积 【难度】2星 【题型】判断 【解析】 根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形. 【答案】⑴是格点多边形【例 2】 如图,计算各个格点多边形的面积.⑶⑵⑴【考点】格点型面积 【难度】2星 【题型】解答 【解析】 本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);图⑵是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位);图⑶是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位); 图⑷是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位); 图⑸是直角梯形,上底是3,下底是5,高是3,所以面积是353212+⨯÷=()(面积单位);毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-. 例题精讲4-2-7.格点型面积图⑹是梯形,上底是3,下底是6,高是4,所以面积是364218+⨯÷=()(面积单位).如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.) 方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要,在下面的题目中我们还将使用这种方法!如图⑶,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑷,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑸、⑹也可利用同样的思想.【答案】图⑴16;图⑵15;图⑶10;图⑷15;图⑸12;图⑹18.【例 3】 如图(a ),计算这个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答 【解析】 方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b ),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=()(面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c )图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【答案】10【例 4】 右图是一个方格网,计算阴影部分的面积.【考点】格点型面积 【难度】2星 【题型】解答 【关键词】新加坡小学数学奥林匹克竞赛 【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF ;另外三个分别是:△ABE 、△FEC 、△DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ).【答案】4【例 5】 分别计算图中两个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答 【解析】 利用“扩展法”和“割补法”我们都可以简单的得到第一幅图的面积均为9面积单位.第二幅图的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【答案】第一幅图的面积均为9;第二幅图的面积均为10.【巩固】 求下列各个格点多边形的面积.(1) (2) (3) (4)【考点】格点型面积 【难度】3星 【题型】解答【解析】 ⑴ ∵12L =;10N =,∴1211011522L S N =+-=+-=(面积单位);⑵ ∵10L =;16N =,∴1011612022L S N =+-=+-=(面积单位);⑶ ∵6L =;12N =,∴611211422L S N =+-=+-=(面积单位);⑷ ∵10L =;13N =,∴1011311722L S N =+-=+-=(面积单位).用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【答案】⑴15;⑵ 20;⑶14;⑷17【例 6】 “乡村小屋”的面积是多少?【考点】格点型面积 【难度】3星 【题型】解答【解析】 图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182LS N =+-=(单位面积). 【答案】18【例 7】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C BA【考点】格点型面积 【难度】3星 【题型】解答 【解析】 箭形ABCDEFGH 的面积810214842121232246=+÷-+⨯+÷-⨯=++=()()(面积单位). 【答案】46【例 8】 比较图中的两个阴影部分①和②的面积,它们的大小关系______【考点】格点型面积【难度】3星【题型】填空【关键词】希望杯,五年级,二试,第9题,6分【解析】①的面积为:1112111313222⨯⨯+⨯⨯+⨯⨯=,②的面积也为3223⨯÷=。
小学奥数 格点型面积 精选练习例题 含答案解析(附知识点拨及考点)
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵⑶⑷【考点】格点型面积 【难度】2星 【题型】判断【解析】 根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形. 【答案】⑴是格点多边形【例 2】 如图,计算各个格点多边形的面积.⑶⑵⑴⑹⑸⑷【考点】格点型面积 【难度】2星 【题型】解答【解析】 本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 12L S N =+-例题精讲4-2-7.格点型面积图⑵是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位); 图⑶是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位); 图⑷是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位);图⑸是直角梯形,上底是3,下底是5,高是3,所以面积是353212+⨯÷=()(面积单位); 图⑹是梯形,上底是3,下底是6,高是4,所以面积是364218+⨯÷=()(面积单位).如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.) 方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要,在下面的题目中我们还将使用这种方法!如图⑶,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑷,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑸、⑹也可利用同样的思想.【答案】图⑴16;图⑵15;图⑶10;图⑷15;图⑸12;图⑹18.【例 3】 如图(a ),计算这个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答【解析】 方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b ),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=()(面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c )图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【答案】10【例 4】 右图是一个方格网,计算阴影部分的面积.【考点】格点型面积 【难度】2星 【题型】解答 【关键词】新加坡小学数学奥林匹克竞赛【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF ;另外三个分别是:△ABE 、△FEC 、△DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ).【答案】4【例 5】 分别计算图中两个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答【解析】 利用“扩展法”和“割补法”我们都可以简单的得到第一幅图的面积均为9面积单位.第二幅图的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【答案】第一幅图的面积均为9;第二幅图的面积均为10.【巩固】 求下列各个格点多边形的面积.(1) (2) (3) (4)【考点】格点型面积 【难度】3星 【题型】解答【解析】 ⑴ ∵12L =;10N =,∴1211011522L S N =+-=+-=(面积单位);⑵ ∵10L =;16N =,∴1011612022L S N =+-=+-=(面积单位);⑶ ∵6L =;12N =,∴611211422L S N =+-=+-=(面积单位);⑷ ∵10L =;13N =,∴1011311722L S N =+-=+-=(面积单位).用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理. 【答案】⑴15;⑵ 20;⑶14;⑷17【例 6】 “乡村小屋”的面积是多少?【考点】格点型面积 【难度】3星 【题型】解答【解析】 图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182LS N =+-=(单位面积).【答案】18【例 7】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C BA【考点】格点型面积 【难度】3星 【题型】解答【解析】 箭形ABCDEFGH 的面积810214842121232246=+÷-+⨯+÷-⨯=++=()()(面积单位). 【答案】46【例 8】 比较图中的两个阴影部分①和②的面积,它们的大小关系______【考点】格点型面积 【难度】3星 【题型】填空【关键词】希望杯,五年级,二试,第9题,6分【解析】 ①的面积为:1112111313222⨯⨯+⨯⨯+⨯⨯=,②的面积也为3223⨯÷=。
小学数学五年级思维奥数寒假讲义-第2讲格点与面积(教师版)
第2讲 格点与面积【知识梳理】一. 正方形格点面积公式(1)定义:在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形。
(2)公式:右图中的乡村小屋图形就是一个格点多边形.下面就看一下其面积的计算。
用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,我们能发现如下规律:12L S N =+-.这个规律就是毕克定理。
二、三角形格点问题(1)定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形。
(2)公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2。
【典例精讲】【例1】图中每个最小正方形的面积都是1平方厘米,那么三个阴影图形的面积分别是多少平方厘米?【答案】4平方厘米;4平方厘米;12平方厘米【解析】左起第一个阴影图形可以分割成4个小正方形,面积为4平方厘米;左起第二个阴影图形可以分割成上、下两个三角形,上面三角形的面积为2×2÷2=2平方厘米,下面三角形的面积是2×2÷2=2平方厘米,则阴影部分的面积为2+2=4平方厘米;左起第三个阴影部分图形可以分割成上面一个三角形、下面一个梯形,上面三角形的面积为5×2÷2=5平方厘米,下面梯形的面积为(2+5)×2÷2=7平方厘米,则阴影部分的面积为5+7=12平方厘米。
【训练1】图中相邻两格点间的距离均为1厘米,那么阴影图形的面积分别为多少平方厘米?【答案】8平方厘米;8平方厘米【解析】左起第一个阴影部分可以分割成8个小正方形,面积为8平方厘米;左起第二个阴影部分可以分割成上、下两个三角形,上面三角形的面积是4×2÷2=4平方厘米,下面三角形的面积为4×2÷2=4平方厘米,则阴影部分的面积为4+4=8平方厘米。
奥数培优 五年级 第3讲 格点与面积
第三讲格点与面积例1、下面是一个格点图,图中有长方形,三角形,平行四边形和梯形各一个,请你利用方格网计算出他们的面积是多少(如图所示阴影部分的校正方形的面积是1平方厘米).例2、图中正方形格点中,这个宝塔图形的面积是多少?(单位:厘米)例3、观察下面四个多边形,计算下列各多边形的面积,并统计每个多边形边界上的格点数和图形内的格点数。
比克定理:任何一个正方形格点多边形的面积都等于图形内部的格点数加上图形边界的格点数除以2的和。
例4、下图是一个四角形,每个小正方形的面积均为1平方厘米,求图中阴影部分的面积。
例5、下面是一个正三角形格点图,共有21个点,其中每相邻的3个点“∴”和“∵”构成的都是面积为1平方厘米的等边三角形,请你计算图中三角形的面积。
思考与练习1、求下面个图形的面积(相邻格点距离1厘米)2、求下图中各图形的面积(相邻格点距离1厘米)3、求下图中各图形的面积(相邻格点距离1厘米)4、下面是一个5×5的方格图,每个小方格的面积是1平方厘米,小方格的顶点为格点。
请你在图中选择7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段顺次连接后所围城的面积尽可能大,那么,所围图形的面积是多少平方厘米?5、下图中每相邻3个点所形成的三角形面积均为1,试计算多边形ABCDE的面积。
6、下面是一个5×5的方格图,求出图中阴影部分面积的和(每小格的面积是1平方厘米).7、在下面5×10的方格图中,连接格点,画出4个面积为7的图形,要求每个图形形状都不相同(每个小方格的面积都是1平方厘米).8、如下图所示,正六边形ABCDEF的面积是6平方厘米。
M是AB的中点,N是CD的中点,P是EF的中点,问:三角形MNP 的面积是多少平方厘米?。
小学奥数:格点型面积(毕克定理)
小学奥数:格点型面积(毕克定理)板块一 正方形格点问题在一张纸上,先画出一些程度直线和一些竖直直线,并使随意率性两条相邻的平行线的距离都相等(通通例定是1个单位),如许在纸上就形成了一个方格网,个中的每个交点就叫做一个格点.在方格网中,以格点为极点画出的多边形叫做格点多边形,例如,右图中的村庄小屋图形就是一个格点多边形.那么,格点多边形的面积若何盘算?它与格点数量有没有关系?假如有,这两者之间的关系可否用盘算公式来表达?下面就让我们一路来商量这些问题吧!用N 暗示多边形内部格点,L 暗示多边形周界上的格点,S 暗示多边形面积,请同窗们剖析前几个例题的格点数. 我们能发明如下纪律:12L S N =+-.这个纪律就是毕克定理.【例 1】 用9个钉子钉成互相距离为1厘米的正方阵(如右图).假如用一根皮筋将恰当的三个钉子贯穿连接起来就得到一个三角形,如许得到的三角形中,面积等于1平方厘米的三角形的个数有若干? 面积等于2平方厘米的三角形有若干个?【例 2】 如图,44⨯的方格纸上放了16枚棋子,以棋子为极点的正方形有个.【例 3】 断定下列图形哪些是格点多边形?【例 4】 如图,盘算各个格点多边形的面积.【巩固】假如两格点之间的距离是2,能应用刚盘算的成果说出响应面积么?(教师总结:面积数值均扩展4倍.)【例 5】 如图(a ),盘算这个格点多边形的面积.【例 6】 (“新加坡小学数学奥林匹克”比赛试题)右图是一个方格网,盘算暗影部分的面积.【例 7】 分离盘算图中两个格点多边形的面积.⑴⑵【巩固】求下列各个格点多边形的面积.【例 8】 我们开端提到的“村庄小屋”的面积是若干?【例 9】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.【例 10】 右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是若干?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是若干平方厘米?【例 11】 (“小学数学奥林匹克”比赛试题)55⨯的方格纸,小方格的面积是1毕克定理若一个格点多边形内部有N 个格点,它的鸿沟上有L 个格点,则它的面积为12L S N =+-.平方厘米,小方格的极点称为格点.请你在图上选7个格点,请求个中随意率性3个格点都不在一条直线上,并且使这7个点用直线衔接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【例 12】(“保良局亚洲区城市小学数学”比赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日揭幕,下面的图形中,每一个小方格的面积是1,那么7.2.1三个数字所占的面积之和是若干?【例 13】(第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小雷同的小方格.现将这两个正方形的一部分重叠起来,若左上角的暗影部分(块状)面积为25.12cm,右下角的暗影部分(线状)面积为27.4cm,求大正方形的面积.【例 14】(第六届“华杯赛”试题)图中正六边形ABCDEF的面积是54,AP=2PF,CQ=2BQ,求暗影四边形CEPQ的面积.板块二三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.划定它的面积为1,以如许的点为极点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的盘算公式:假如用S暗示面积,N暗示图形内包含的格点数,L暗示图形周界上的格点数,那么有22=⨯+-,就是S N L格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】如图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.盘算三角形ABC的面积.【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,盘算ABC的面积.【例 16】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).【例 17】把大正三角形每边八等分,构成如右图所示的三角形网.假如大三角形的面积是128,求图中粗线所围成的三角形的面积.【例 18】如图,假如每一个小三角形的面积是1平方厘米,那么四边形ABCD 的面积是若干平方厘米?【例 19】把统一个三角形的三条边分离5等分.7等分(如图1,图2),然后恰当衔接这些等分点,便得到了若干个面积相等的小三角形.已知图1中暗影部分面积是294平方分米,那么图2中暗影部分的面积是______平方分米.【例 20】将图中的图形朋分成面积相等的三块.【例 21】如图涂暗影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是若干平方厘米?【例 22】(第五届“华杯赛”试题)正六边形ABCDEF的面积是6平方厘米.M 是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是若干平方厘米?【例 23】假如下图中随意率性相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.。
四年级奥数巧箱格点与面积
巧解格点与面积巧点睛一一方法和技巧通过寻找面积之间的关系,培养学生探索问题、解决问题、发现规律的能力。
巧指导一一例题精讲A级冲刺名校•基础点晴【例1】下图是用橡皮盘钉在钉板上围成的几个图形,每相邻两点之间的距离都是1厘米,计算这些图形的面积各是多少平方厘米。
做一做1计算下图各格点多边形的面积,每格面积为1。
【例2】下图每相邻两点之间的距离都是1厘米,求各个图形的面积,再填好下表,最后总结出一般规律。
图形边上点数内部点数面积分析与解按照例1的分析方法,进行分割。
图①的面积是2平方厘米,图②的面积是4.5平方厘米,图③的面积是5.5平方厘米,图④的面积是7平方厘米,图⑤的面积是2平方厘米。
填表:寻找规律:图①:4 + 2 + 1 —1=2图②:9 + 2 + 1 —1=4.5图③:9 + 2 + 1 —1=5.5图④:10 + 2 + 3 — 1=7图⑤:6 + 2 + 0 —1=2于是,图形的面积与格点数有如下关系:图形的面积二边上点数+ 2+内部点数一1做一做2下图是一个8X8的正方形,求正方形内四边形ABCD 的面积。
(先用分割法,再用整点法)【例3】右图中每一小格的面积都是1平方厘米,那么粗线围成的图形面积是多少平方厘米?做一做3设每相邻两点间的距离为1,利用格点面积公式计算下图中阴影部分的面积。
■B级更上层楼【例4】如下图,计算下列各格点多边形的面积,统计每个图形周界上的格点数与图形内包含的格点数。
我们对表内的数据分析发现:任何一个格点多边形的面积等于周界上的格点数除以2减1再加上图形内包含的格点数。
如果用S表示面积,用N表示图形内的格点数,用L表示周界上的格点数,再列成下表,它们之间的关系就更清楚了。
做一做4求下列格点多边形的面积(每相邻三点”.・”“・・・”构成面积为1的等百年三角形)。
心.【例5】右图中每相邻三点连接后组成的等边三角形的面积为1 平方厘米。
问三角形ABC的面积是多少?分析与解边上点数为4,内部点数为4,可以• • / •、• • • 利用公式求出面积。
长沙小升初奥数几何问题格点与面积解题方法
长沙小升初奥数几何问题格点与面积解题方法第1篇:长沙小升初奥数几何问题格点与面积解题方法常见解题方法:求格点图面积常见的几种方法:数格子法、分割法、扩展法、毕克定理。
(一)数格子法对于格点图里面的规则图形,我们有时可以直接通过数图形所占的正方形方格或者三角形方格的个数得出规则图形的面积,或者由图形得出规则图形相应的面积公式需要的量,代入公式解出面积即可!例、如下图,计算下列各个格点多边形的面积:(四年级8月1号天天练)【详解】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。
第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位)。
下面几种方法主要针对的是格点图中的不规则图形,这也是本专题的重点!(二)分割法直接将格点图中的不规则图形分成若干个可求面积的规则图形,然后通过计算规则图形的面积来求原图形的面积。
(三)扩展未完,继续阅读 >第2篇:长沙小升初奥数几何问题之格点与面积经典例题汇总长沙小升初奥数几何问题之格点与面积经典例题。
经典例题例1、图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形的面积。
(小升初8月1号天天练)【详解】方法一(分割法):如图①做辅助线,将原图分割成a、b两个小三角形。
这两个小三角形都以辅助线为底的话,a就是底边是1个面积单位三角形的4倍、高是1个面积单位三角形的1倍,所以a的面积是1个面积单位三角形的4×1倍,即4。
小学五年级奥数思维拓展提升志愿导学:4.格点与面积
A
PF
B Q
C
E D
例9
如图,大正方形的,面积为25平方厘米,连为多少平方厘米?
例10 (迎春杯试题)如图,大正六边形的面积为2009平方厘 米,连接顶点到对边的中点,则阴影部分的面积是多少平 方厘米?
小品题 从A点到B点,要求必须沿着格线走,请问最短路 的线共有几条?
角三角形,若其中较小正方形的边长为12厘米,那么较大 正方形的面积是多少平方厘米。
例7
如图所示,是一个正六边形的图案。已知正六边形的
面积为54c㎡。则阴影部分的面积是多少平方厘米?
30°
60°
例8 (“华杯赛”试题)图中正六边形ABCDEF的面积是54。 AP=2PF,CQ=2BQ。求阴影四边形CEPQ的面积。
格点多边形:
多边形的边必须是线段,顶点要在格点上。
格点
正方形格点图形面积
内部格点数 2
周界格点数 6
S=(面积内部格点数+周界格点数÷2-1
)×单位
例2 求图中方格纸上的图形面积(每个小正方形面积为2平方厘米)
例3
如图,每相邻三个点所形成的三角形都是面积为1的
等边三角形,请计算图中三角形的面积。
A
B
谢谢!
2023.11.12
例4
图中每相邻三个点所形成的三角形都是面积为1的等边三角形,
请用一般方法和数格点的方法求其中多边形的面积
1 2
例5
如图,每个黑点都是一个钉子,每任意相邻三个钉子围成的小正
三角形的面积都是1。那么,橡皮筋围出的图形面积是多少?
例6 (第十三届中环杯决赛) 两个正方形如图放置,图中的每个三角形都是等腰直
思维拓展志愿导学
格点与面积_小学奥数知道点详解
如下图,在一张由一组水平线和一组垂直线组成方格纸上,如果任意相邻平行线之间的距离都相等,我们就把这样两组平行线的交点称为格点(如下图中的红点),把图中相邻两个格点的距离看着一个单位长度,把每个小正方形的面积看作一个面积单位(如图中带阴影的方格)。
一个多边形的顶点如果全是格点,这个多边形就叫做格点多边形,本讲就,学习求格点多边形的面积问题。
这种格点多边形的面积计算起来很方便,一般有三种方法:①规则的格点多边形,可以运用多边形的面积公式求出面积;②一些简单而又特殊的格点多边形,可以通过数格子求出面积;③较复杂的不规则图形,一般用皮克公式计算。
其中数格子的方法比较原始,很少用。
任意格点多边形,只要数出多边形周界上的格点的个数及图内格点的个数,就可用下面的皮克公式算出面积:格点多边形面积=内格点个数 + 边格点数÷2—1这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理",这是一个实用而有趣的定理。
皮克定理的证明:将格点图中的每个点看作以这个点为圆心、以单位面积正方形的边长的一半为半径的圆。
格点多边形图内的点对应的圆的面积都是图形面积的一部分;而在多边形边界上的点对应的圆的面积只有一半属于这个多边形,且多边形每个角上的圆属于图内的面积都不到半个圆,少了其外角对应的扇形面积,因任意多边形的外角和是360度,正好是个整圆,所以周界上圆在图内的面积为:周界格点数÷2—1所以格点多边形面积为:图内格点个数+周界格点数÷2—1。
皮克定理的证明过程比较抽象,孩子难以理解。
本讲只要求孩子初步认识格点面积公式,掌握格点面积公式的应用,到初中还会进一步学习皮克定理.例1:求下面各图形的面积。
【解析】:图①是个平行四边形,周界上有10个格点,图内有4个格点,根据格点面积公式,图①的面积为:4+10÷2—1=8;图②是个梯形,周界上有8个格点,图内有2个格点,根据格点面积公式,图②的面积为:2+8÷2-1=5;图③是个三角形,周界上有6个格点,图内有4个格点,根据格点面积公式,图③的面积为:4+6÷2-1=6;以上3个图形都是规则图形,但四年级学生还没有学过这3种图形的面积计算,不能用面积公式计算。
小学奥数知识讲解-格点与面积
第六讲 格点与面积在一张方格图中,每个方格都是一个小正方形,并且大小都相等,我们称为一个面积单位。
例如:右图中带阴影的小方格就是一个面积单位。
借助格点图,我们可以很快的比较或计算图形的面积大小。
典型例题例[1] 下图是用皮筋在钉板上分别围成的正方形、长方形、平行四边形和三角形。
它们的面积分别是多少?· · · · · · · · · · · · · · · · · · ··· · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(1) (2) (3) (4)分析 题中所给的几个图形都是规则图形,它们的面积可以运用公式求得。
五年级奥数第一讲_格点面积
格点面积知识要点:毕克定理:格点多边形面积=图内格点个数+周界格点数÷2-1(1)正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.正方形格点问题:多边形面积=边÷2+内-1(2)所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.三角形格点问题:多边形面积=(边÷2+内-1)×2例题讲解:例 1.右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).例 2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).例 3.在一个9 6的长方形内,有一个凸四边形ABCD(如右图).用毕克定理先求出它的面积来。
例4.右图中每个小正方形的面积都是1平方厘米,求图中阴影部分的面积.例5.右图是一个10⨯10的正方形,求正方形内的四边形ABCD的面积.例6.右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.同步练习:1.右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?2.右图是一个5⨯5的方格纸,小方格的面积是1平方厘米,小方格的顶点为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段连结所围成的面积尽可能大,那么,所用图形的面积1是多少平方厘米?3.右中每个小正方形的面积为1平方分米,那么阴影部分的面积是多少平方分米?4.右图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.课后作业:1.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算ABC的面积.2.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积.3.把等边三角形ABC每边六等分,组成如右图的三角形网.若图中每个小三角形的面积均为12cm,试求图中三角形DEF的面积.。
四年级奥数---格点与面积 (学生版)
格点与面积一、知识要点(1)基本概念1、格点:在方格纸(平面)上,纵横两组平行线垂直相交的交点称为格点。
2、格点与多边形:以格点为顶点画出的多边形称为格点多边形。
3、面积单位:以格点为顶点围成的小正方形称为面积单位。
(格点多边形面积的大小,与格点数有关,格点越多,面积越大。
)(2)常用技巧利用格点求图形的面积。
一是,直接将图形分成若干个面积单位,再通过计算有多少个面积单位求图形的面积。
二是,将复杂的图形转化成长、正方形来求。
(3) 格点图形面积的计算方法1、格点多边形的面积=图内格点数+周界上的格点数的一半-112L S N =+- 2、三角形格点多边形面积=图内格点数的2倍+周界上格点数-222S N L =+-二、例题精讲【例1】根据下组图填表(1) (2) (3)图形号 1 2 3周界格点数图内格点数面积(单位)【例2】求下图格点多边形的面积。
(每相邻三个点“∵”或“∴”成面积为1 的等边三角形)【例3】下图中每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例4】如下图所示,在圆周上有5个钉,在这5个钉中,任取三个钉用皮筋可套出一个三角形,问以钉1为顶点的三角形有多少个?【例5】如图ABFE和CDEF都是长方形,AB的长是4厘米,BC长3厘米,图中阴影部分的面积是多少平方厘米?【例6】如下图中小猫图的面积是多少?••••••••••••••••••••••••••••••••••••【例7】下图中有21个点,其中相邻的三点所形成的等边三角形的面积是1,试计算四边形的面积。
•••••••••••••••••••••【例8】思考题小刚和小强比赛,用一条长36米的绳子在格点上看谁围出的面积最大,你知道他们是怎样围的吗?(每块土地的长宽均为1米)三、课后作业【作业1】右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少。
(每相邻两个小钉之间的距离都等于1个长度单位)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如下图,在一张由一组水平线和一组垂直线组成方格纸上,如果任意相邻平行线之间的距离都相等,我们就把这样两组平行线的交点称为格点(如下图中的红点),把图中相邻两个格点的距离看着一个单位长度,把每个小正方形的面积看作一个面积单位(如图中带阴影的方格)。
一个多边形的顶点如果全是格点,这个多边形就叫做格点多边形,本讲就,学习求格点多边形的面积问题。
这种格点多边形的面积计算起来很方便,一般有三种方法:
①规则的格点多边形,可以运用多边形的面积公式求出面积;
②一些简单而又特殊的格点多边形,可以通过数格子求出面积;
③较复杂的不规则图形,一般用皮克公式计算。
其中数格子的方法比较原始,很少用。
任意格点多边形,只要数出多边形周界上的格点的个数及图内格点的个数,就可用下面的皮克公式算出面积:
格点多边形面积=内格点个数 + 边格点数÷2-1
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
皮克定理的证明:
将格点图中的每个点看作以这个点为圆心、以单位面积正方形的边长的一半为半径的圆。
格点多边形图内的点对应的圆的面积都是图形面积的一部分;而在多边形边界上的点对应的圆的面积只有一半属于这个多边形,且多边形每个角上的圆属于图内的面积都不到半个圆,少了其外角对应的扇形面积,因任意多边形的外角和是360度,正好是个整圆,所以周界上圆在图内的面积为:周界格点数÷2-1
所以格点多边形面积为:
图内格点个数+周界格点数÷2-1。
皮克定理的证明过程比较抽象,孩子难以理解。
本讲
只要求孩子初步认识格点面积公式,掌握格点面积公式的应
用,到初中还会进一步学习皮克定理。
例1:
求下面各图形的面积。
【解析】:
图①是个平行四边形,周界上有10个格点,图内有4
个格点,根据格点面积公式,图①的面积为:4+10÷2-1=8;
图②是个梯形,周界上有8个格点,图内有2个格点,
根据格点面积公式,图②的面积为:2+8÷2-1=5;
图③是个三角形,周界上有6个格点,图内有4个格点,根据格点面积公式,图③的面积为:4+6÷2-1=6;
以上3个图形都是规则图形,但四年级学生还没有学过这3种图形的面积计算,不能用面积公式计算。
图④是个六边形,周界上有8个格点,图内有9个格点,根据格点面积公式,图④的面积为:9+8÷2-1=12。
这四个图形也可以用数格子的方法计算面积。
例2:
下图中喇叭、小猫、小狗的面积各是多少?
【解析】:
这三个图形都适合用格点面积公式计算面积。
喇叭周界上有8个格点,图内没有格点,面积为:0+8
÷2-1=3;
小猫周界上有20个格点,图内有2个格点,面积为:
2+20÷2-1=11;
小狗图案可以看着是两个格点多边形组成,先分别求
出每个格点多边形的面积,再求出总面积。
躯干面积:0+12÷2-1=5;
尾巴面积:0+4÷2-1=1;
总面积:5+1=6。
像小狗图案这样,由两个或两个以上独立的格点多边形拼成的多边形,要求其总面积,一般先求出每个独立多边形的面积,再求和,以免发生漏数多个独立图形公共格点的错误。
例3:
下面是一个漂亮礼盒的平面图,请你求出它的面积。
【解析】:
这个礼盒平面图是由3个独立的格点多边形组成的。
左边三角形面积可以用皮克公式求出:4+4÷2-1=5;
右边三角形面积可以用皮克公式求出:2+6÷2-1=4;
下面长方形长为6、宽为3,可以直接用长方形面积公
式算出面积:6×3=18;
所以上图总面积为:5+4+18=27。
例4:
你知道下图中共有多少个图形吗?每个图形的面积各是多少?
【解析】:
这里所说的图形既包括凸多边形,也包括凹多边形。
图中有8个三角形:AEC,AED,ADC, ABD,ABC,EBD,EBC,DBC;有3个四边形:ADBC,ABDC,ABCD。
可以用皮克公式算出每个图形的面积,例如四边形ADBC的面积为:
21+8÷2-1=24。
其它图形的面积:(略)。